
NFSv4 Working Group M. Naik
Internet Draft M. Eshel
Intended Status: Standards Track IBM Almaden
Expires: January 19, 2015 July 18, 2014

Support for File System Extended Attributes in NFSv4
draft-naik-nfsv4-xattrs-01

Abstract

 This document proposes extensions to existing NFSv4 operations to
 allow file extended attributes (here forth also referred to as
 xattrs) to be manipulated in the protocol. An xattr is a file system
 feature that allows opaque metadata, not interpreted by the file
 system, to be associated with files and directories and are supported
 by many modern file systems. New file attributes are proposed to
 allow clients to query the server for xattr support, and new
 operations to get and set xattrs on file system objects.

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

Copyright and License Notice

 Copyright (c) 2014 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Naik, et al. Expires January 19, 2015 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1 Introduction . 3
1.1 Terminology . 3

2 Uses . 4
3 Namespaces . 5
4 Differences with Named Attributes 5
5 Protocol Enhancements . 6
5.1 New Attributes . 6
5.1.1 Attribute 82: maxxattrsize 7
5.1.2 Attribute 83: xattrsize 7

5.2 New Operations . 7
5.2.1 New definitions . 8
5.2.2 Caching . 9
5.2.3 GETXATTR - Get extended attributes of a file 9
5.2.4 SETXATTR - Set extended attributes for a file 11
5.2.5 Valid Errors . 13

5.3 Extensions to ACE Access Mask Attributes 14
5.4 pNFS Considerations . 14

6 Security Considerations . 14
7 IANA Considerations . 14
8 References . 15
8.1 Normative References 15
8.2 Informative References 15

9 Acknowledgements . 15
 Authors' Addresses . 16

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Naik, et al. Expires January 19, 2015 [Page 2]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

1 Introduction

 Extended attributes, also called xattrs, are a means to associate
 opaque metadata with file system objects, typically organized in
 key/value pairs. They are especially useful when they add information
 that is not, or cannot be, present in the associated object itself.
 User-space applications can arbitrarily create, read from, and write
 to the key/value pairs.

 Extended attributes are file system-agnostic; applications use an
 interface not specific to any file system to manipulate them.
 Applications do not need to be concerned about how the key/value
 pairs are stored internally on the underlying file system. All major
 operating systems provide various flavors of extended attributes.
 Many user space tools allow xattrs to be included in attributes that
 need to be preserved when objects are updated, moved or copied.

 Extended attributes have long been considered unsuitable for
 portability because they are inadequately defined and not formally
 documented by any standard (such as POSIX). However, evidence
 suggests that xattrs are widely deployed and their support in modern
 disk-based file systems is fairly universal.

 There are no clear indications on how xattrs can be mapped to any
 existing recommended or optional file attributes defined in RFC 5661
 [2]; thereby most NFS client implementations ignore application-
 specified xattrs. This results in data loss if one copies, over the
 NFS protocol, a file with xattrs from one file system to another that
 also supports xattrs.

 There is a relatively strong interest in the community in exposing
 xattrs over NFS despite the shortcomings.

 This document discusses why the current NFSv4 named attributes as
 currently standardized in [2], are unsuitable for representing
 xattrs, and proposes alternate language, adjustment and protocol
 mechanisms to support them.

1.1 Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [1].

 In this document, these words will appear with that interpretation
 only when in ALL CAPS. Lower case uses of these words are not to be
 interpreted as carrying RFC-2119 significance.

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Naik, et al. Expires January 19, 2015 [Page 3]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

2 Uses

 Applications can store tracking information in extended attributes.
 Examples include storing metadata identifying the application that
 created the file, a tag to indicate when the file was last verified
 by a data integrity scrubber, or a tag to hold a checksum/crypto hash
 of the file contents along with the date of that signature. Xattrs
 can also be used for decorations or annotations. For example, a file
 downloaded from a web server can be tagged with the URL, which can be
 convenient if its source has to be determined in the future.
 Likewise, an email attachment, when saved, can be tagged with the
 message-id of the email, making it possible to trace the original
 message.

 Applications may need to behave differently when handling files of
 varying types. For example, file managers, such as GNOME's, offer
 unique icons, different click behavior, and special lists of
 operations to perform depending on the file format. This can be
 achieved by looking at the file extension (Windows), or interpret the
 type by inspecting it (Unix MIME type). Some file managers generate
 this information on the fly; others generate the information once and
 then cache it. Those that cache the information tend to put it in a
 custom database. The file manager must work to keep this database in
 sync with the files, which can change without the file manager's
 knowledge. A better approach is to jettison the custom database and
 store such metadata in extended attributes: these are easier to
 maintain, faster to access, and readily accessible by any application
 [5].

 On Mac OSX, applications such as Dropbox, Skydrive (Onedrive), and
 Google Drive use the extended attribute interface to assign specific
 tags to folders.

 Xattrs can be retrieved and set through system calls or shell
 commands and generally supported by user-space tools (such as copy
 tools) that preserve other file attributes.

 Extended attributes are supported by many file systems.

 In Linux, ext3, ext4, JFS, XFS, Btrfs, among other file systems
 support extended attributes. The getfattr and setfattr utilities can
 be used to retrieve and set xattrs. The names of the extended
 attributes must be prefixed by the name of the category and a dot;
 hence these categories are generally qualified as name spaces.
 Currently, four namespaces exist: user, trusted, security and system
 [5]. Recommendations on how they should be used are published by
 freedesktop.org [4].

Naik, et al. Expires January 19, 2015 [Page 4]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 FreeBSD supports extended attributes in two universal namespaces -
 user and system, although individual file systems are allowed to
 implement additional namespaces [6].

 Solaris 9 and later allows files to have extended attributes, but
 implements them as "forks", logically represented as files within a
 hidden directory that is associated with the target file [7].

 In the NTFS file system, extended attributes are one of several
 supported "file streams" [8].

3 Namespaces

 Operating systems may define multiple "namespaces" in which xattrs
 can be set. Namespaces are more than organizational classes; the
 operating system may enforce different access policies and allow
 different capabilities depending on the namespace. Linux, for
 example, defines "security", "system", "trusted" and "user"
 namespaces, the first three being specific to Linux [4].

 Implementations generally agree on the semantics of a "user"
 namespace, that allows applications to store arbitrary user attribute
 data with file system objects. Access to this namespace is controlled
 via the normal file system attributes. As such, getting and setting
 xattrs from the user namespace can be considered interoperable across
 platforms and vendor implementations. Attributes from other
 namespaces are typically platform-specific, but some of them may be
 generalized into well-defined set of names that promote interoperable
 implementations. Similarly, attaching the namespace to the attribute
 key can avoid conflicting use of attributes.

 This document does not propose any language to restrict the key names
 of extended attributes. Future versions, or other related IETF
 documents, may include additional text to enforce namespace prefix to
 key names, formalize names of some well-defined xattrs, or impose
 additional restrictions on the allowed namespaces to user-managed
 metadata only, in order to prevent the development of non-
 interoperable implementations. This document, however, does require
 that the attribute key/value MUST not be interpreted by the NFS
 clients and servers.

4 Differences with Named Attributes

RFC5661 defines named attributes as opaque byte streams that are
 associated with a directory or file and referred to by a string name
 [2]. Named attributes are intended to be used by client applications
 as a method to associate application-specific data with a regular
 file or directory. In that sense, xattrs are similar in concept and

https://datatracker.ietf.org/doc/html/rfc5661

Naik, et al. Expires January 19, 2015 [Page 5]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 use to named attributes, but there are subtle differences.

 File systems typically define individual xattrs "get" and "set"
 operations as being atomic, although collectively they may be
 independent. Xattrs generally have size limits ranging from a few
 bytes to several kilobytes; the maximum supported size is not
 universally defined and is usually restricted by the file system.
 Similar to ACLs, the amount of xattr data exchanged between the
 client and server for get/set operations can be considered to fit in
 a single COMPOUND request, bounded by the channel's negotiated
 maximum size for requests. Named attributes, on the other hand, are
 unbounded data streams and do not impose atomicity requirements.

 Individual named attributes are analogous to files, and caching of
 the data for these needs to be handled just as data caching is for
 ordinary files following close-to-open semantics. Xattrs, on the
 other hand, impose caching requirements like other file attributes.

 Named attributes and xattrs have different semantics and belong to
 disjoint namespaces. As a result, mapping one to another is, at best,
 a compromise.

 While it should be possible to write guidance about how a client can
 use the named attribute mechanism to act like xattrs, such as carving
 out some namespace and specifying locking primitives to enforce
 atomicity constraints on individual get/set operations, this is
 problematic. A client application trying to use xattrs through named
 attributes with a server that supported xattrs directly would get a
 lower level of service, and could fail to cooperate on a local
 application running on the server unless the server file system
 defined its own interoperability constraints. File systems that
 already implement xattrs and named attributes natively would need
 additional guidance such as reserving named attribute namespace
 specifically for implementation purposes.

5 Protocol Enhancements

 This section proposes extensions to the NFSv4 protocol operations to
 allow xattrs to be queried and set by clients. New attributes are
 added to bitmap4 data type to allow xattr support to be queried. This
 follows the guidelines specified in [2] with respect to minor
 versioning. In addition, new operations, namely GETXATTR and
 SETXATTR, are defined to allow xattr key/value to be queried and
 set.

5.1 New Attributes

 The following RECOMMENDED attributes are proposed for use with

Naik, et al. Expires January 19, 2015 [Page 6]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 GETATTR. A client can query the server to determine if xattrs are
 supported, the maximum size of the xattrs that are allowed for a file
 system object, and the total current size of all the xattrs for a
 given file system object.

 A client may ask for any of these attributes to be returned by
 setting a bit in the GETATTR request but MUST handle the case where
 the server does not return them. A client may ask for the set of
 attributes the server supports and SHOULD NOT request attributes the
 server does not support.

 +------------------+----+-------------------+-----+----------------+
 |Name | Id | Data Type | Acc | Defined in |
 +------------------+----+-------------------+-----+----------------+
 | maxxattrsize | 82 | uint32_t | R | Section 5.1.1 |
 | xattrsize | 83 | uint32_t | R | Section 5.1.2 |
 +------------------+----+-------------------+-----+----------------+

5.1.1 Attribute 82: maxxattrsize

 Maximum size in bytes of all the extended attributes per object that
 the object's file system supports. If maxxattrsize is 0, the server
 does not support extended attributes. The protocol does not enforce
 any limits on the number of keys, the length of a key or the size of
 a value, that are allowed for a file, as long as the total size is
 contained by maxxattrsize. The server file system MAY impose
 additional limits. In addition, the total size of xattrs exchanged
 between the client and server for get/set operations is limited by
 the channel's negotiated maximum size for requests and responses.

5.1.2 Attribute 83: xattrsize

 The total size of all the extended attributes of this object in
 bytes. This MUST be less than or equal to maxxattrsize.

5.2 New Operations

 Unlike other file system attributes, xattrs can represent disparate
 metadata most file systems allow disparate metadata to be associated
 with an object through one or more xattrs, and combining them into a
 single attribute is unwieldy. As such, adding new attributes to
 bitmap4 for use in GETATTR and SETATTR is inappropriate to support
 xattr operations. For example, obtaining the value of a single xattr
 using the bitmap would require a client implementation to read all
 the xattrs of the file and find a match for the one requested.
 Similarly, replacing or deleting a single xattr while keeping the
 others intact would require a client to read the xattrs first,
 replacing the existing list with a modified list that excludes the

Naik, et al. Expires January 19, 2015 [Page 7]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 one to be deleted, and writing out the remaining xattrs. Moreover,
 distinguishing between creating new and replacing existing xattrs on
 an object is not possible with the existing bitmap.

 Applications need to perform the following operations on a given
 file's extended attributes [5]:

 o Given a file, return a list of all of the file's assigned extended
 attribute keys.

 o Given a file and a key, return the corresponding value.

 o Given a file, a key, and a value, assign that value to the key.

 o Given a file and a key, remove that extended attribute from the
 file.

 This section introduces two new operations, GETXATTR and SETXATTR, to
 query and set xattrs. GETXATTR allows listing all the xattrs names,
 names with values, or querying the value of a single name. SETXATTR
 allows deleting a single xattr or replacing a few without modifying
 the rest.

5.2.1 New definitions

 The NFS xattr structure is defined as follows:

 typedef utf8str_cis xattrname4;
 typedef opaque xattrvalue4<>;

 struct xattr4 {
 xattrname4 xa_name;
 xattrvalue4 xa_value;
 };

 Each xattr, defined by xattr4, is a key/value pair. xattrname4 is a
 UTF-8 string denoting the xattr key name, xattrvalue4 is a variable
 length string that identifies the values of a specified xattr. The
 size of the xattr is a combination of the size of its name
 represented by xattrname4, and its value represented by xattrvalue4.
 Any regular file or directory may have an array of xattr4, each
 consisting of a key and associated value. The NFS client or server
 MUST NOT interpret the contents of xattr4. Similar to ACLs, the
 client can use the OPEN or ACCESS operations to check access without
 modifying or reading data or metadata.

 Future versions of this document or other related IETF documents may
 define specific values for xattr key names, or mechanisms for

Naik, et al. Expires January 19, 2015 [Page 8]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 encoding namespace in xattrname4.

5.2.2 Caching

 The caching behavior for extended attributes is similar to other file
 attributes such as ACLs and is affected by whether OPEN delegation
 has been granted to a client or not.

 When a delegation is in effect, an operation by a second client to a
 delegated file will cause the server to recall the delegation through
 a callback. For individual operations, we will describe, under
 IMPLEMENTATION, when such operations are required to effect a recall.
 For GETXATTR, see Section 5.2.3.4. For SETXATTR, see Section 5.2.4.4.

 When the client does not hold a delegation on the file, xattrs
 obtained from the server may be cached and clients can use them to
 avoid subsequent GETXATTR requests. Such caching is write through in
 that modification to xattrs is always done by means of requests to
 the server and should not be only done locally. Due to the relative
 infrequency of xattr updates, it is suggested that all changes be
 propagated synchronously. The client MUST NOT maintain a cache of
 modified xattrs.

 The result of local caching is that the xattrs maintained on
 individual clients may not be coherent. Changes made in one order on
 the server may be seen in a different order on one client and in a
 third order on another client. In order to manage the incoherency
 caused by separate operations to obtain xattrs and other file
 attributes, a client should treat xattrs just like other file
 attributes with respect to caching as detailed in section 10.6 of RFC

5661 [2]. A client may validate its cached version of xattrs for a
 file by fetching both the change and time_access attributes and
 assuming that if the change attribute has the same value as it did
 when the attributes were cached, then xattrs have not changed.

5.2.3 GETXATTR - Get extended attributes of a file

5.2.3.1 ARGUMENTS

 enum getxattr_type4 {
 GETXATTR4_LIST = 0,
 GETXATTR4_ONE = 1,
 GETXATTR4_ALL = 2
 };

https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5661

Naik, et al. Expires January 19, 2015 [Page 9]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 union getxattr_args4 switch (getxattr_type4 ga_type) {
 case GETXATTR4_ONE:
 xattrname4 ga_name;
 default:
 void;
 };

 struct GETXATTR4args {
 /* CURRENT_FH: file */
 getxattr_type4 ga_type;
 getxattr_args4 ga_args;
 };

5.2.3.2 RESULTS

 union getxattr_res4 switch (getxattr_type4 gr_type) {
 case GETXATTR4_LIST:
 xattrname4 gr_names<>;
 case GETXATTR4_ONE:
 xattrvalue4 gr_value;
 case GETXATTR4_ALL:
 xattr4 gr_xattrs<>;
 };

 union GETXATTR4res switch (nfsstat4 gr_status) {
 case NFS4_OK:
 getxattr_res4 gr_resok4;
 default:
 void;
 };

5.2.3.3 DESCRIPTION

 The GETXATTR operation will obtain extended attributes for the file
 system object specified by the current filehandle. The client
 specifies what kind of xattr information it would like the server to
 return through the ga_type argument. GETXATTR4_LIST is used to
 enumerate the set of extended attribute keys assigned to the file.
 GETXATTR4_ONE returns the value of an extended attribute from the
 file, given the key. GETXATTR4_ALL returns the key/value pairs for
 the set of extended attributes assigned to the file.

 The server MUST return the xattr key and/or value that the client
 requests if xattrs are supported by the server for the target file
 system. If the server does not support xattrs on the target file
 system, then it MUST NOT return key and/or value and MUST return an
 error. The server also MUST return an error if it supports xattrs on
 the target but cannot obtain the requested data. In that case, no

Naik, et al. Expires January 19, 2015 [Page 10]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 key/value will be returned. If the xattr keys and/or values contained
 in the server response will exceed the channel's negotiated maximum
 response size, then the server MUST return NFS4ERR_REP_TOO_BIG in
 gr_status.

5.2.3.4 IMPLEMENTATION

 If there is an OPEN_DELEGATE_WRITE delegation held by another client
 for the file in question, and size and/or change are among the set of
 attributes being interrogated in GETATTR, the server can either
 obtain the actual current value of these attributes from the client
 holding the delegation by using the CB_GETATTR callback, or revoke
 the delegation. See Section 18.7.4 of RFC 5661 for details [2].
 Consequently, if a client needs to verify the list of extended
 attributes with the server, it must also query the change attribute
 of the file with GETATTR. This handling is similar to how a client
 would revalidate other file attributes such as ACLs.

5.2.4 SETXATTR - Set extended attributes for a file

5.2.4.1 ARGUMENTS

 enum setxattr_type4 {
 SETXATTR4_CREATE = 0,
 SETXATTR4_REPLACE = 1,
 SETXATTR4_DELETE = 2,
 SETXATTR4_REPLACE_ALL = 3,
 SETXATTR4_DELETE_ALL = 4
 };

 union setxattr_args4 switch (setxattr_type4 sa_type) {
 case SETXATTR4_CREATE:
 case SETXATTR4_REPLACE:
 case SETXATTR4_REPLACE_ALL:
 xattr4 sa_xattrs<>;
 case SETXATTR4_DELETE:
 xattrname4 sa_xattrnames<>;
 case SETXATTR4_DELETE_ALL:
 void;
 };

 struct SETXATTR4args {
 /* CURRENT_FH: file */
 setxattr_args4 sa_args;
 };

https://datatracker.ietf.org/doc/html/rfc5661#section-18.7.4

Naik, et al. Expires January 19, 2015 [Page 11]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

5.2.4.2 RESULTS

 union setxattr_res4 switch (setxattr_type4 sr_type) {
 case SETXATTR4_CREATE:
 case SETXATTR4_REPLACE:
 case SETXATTR4_DELETE:
 nfsstat4 sr_res<>;
 case SETXATTR4_REPLACE_ALL:
 case SETXATTR4_DELETE_ALL:
 void;
 };

 union SETXATTR4res switch (nfsstat4 sr_status) {
 case NFS4_OK:
 void;
 default:
 setxattr_res4 sr_array;
 };

5.2.4.3 DESCRIPTION

 The SETXATTR operation changes one or more of the extended attributes
 of a file system object. The change desired is specified by sr_type.
 SETXATTR4_CREATE is used to associate the specified values with the
 extended attribute keys for the file system object specified by the
 current filehandle. The server MUST return an error if the attribute
 key already exists. SETXATTR4_REPLACE is also used to set an xattr,
 but the server MUST return an error if the attribute key does not
 exist. An application can delete all existing xattrs for a file and
 replace them with a new set by using SETXATTR4_REPLACE_ALL.
 SETXATTR4_DELETE can be used to remove the specified xattr keys, if
 they exist. SETXATTR4_DELETE_ALL removes all the xattr keys for the
 file.

 While the SETXATTR request MAY contain multiple attribute keys and/or
 values to be changed for a file, this does not impose any atomicity
 considerations on the server implementation. If the server cannot
 update all the attributes for the file atomically, it MUST set them
 in the order specified. In such cases, it is possible that some keys
 are changed successfully while others encounter errors. To handle
 this, contained within the SETXATTR results is a "status" field. If
 any of the change operations incur an error, then the "status" value
 MUST NOT be NFS4_OK. In this case, the status of the individual
 change operations is returned in sr_array. If the xattr keys and/or
 values contained in the client request exceeds the channel's
 negotiated maximum request size, then the server MUST return
 NFS4ERR_REQ_TOO_BIG in sr_status.

Naik, et al. Expires January 19, 2015 [Page 12]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

 A successful SETXATTR SHOULD change the file time_modify and change
 attributes. However, these attributes SHOULD NOT be changed unless
 the xattrs are changed.

5.2.4.4 IMPLEMENTATION

 If the object whose xattrs are being changed has a file delegation
 that is held by a client other than the one doing the SETXATTR, the
 delegation(s) must be recalled, and the operation cannot proceed to
 actually change the xattrs until each such delegation is returned or
 revoked. In all cases in which delegations are recalled, the server
 is likely to return one or more NFS4ERR_DELAY errors while the
 delegation(s) remains outstanding, although it might not do that if
 the delegations are returned quickly.

5.2.5 Valid Errors

 This section contains a table that gives the valid error returns for
 each new protocol operation. The error code NFS4_OK (indicating no
 error) is not listed but should be understood to be returnable by all
 new operations. The error values for all other operations are
 defined in Section 15.2 of RFC 5661 [2].

 Valid Error Returns for Each New Protocol Operation

 +----------------------+--+
 | Operation | Errors |
 +----------------------+--+
GETXATTR	NFS4ERR_ACCESS, NFS4ERR_BADXDR,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_FHEXPIRED, NFS4ERR_GRACE,
	NFS4ERR_INVAL, NFS4ERR_IO, NFS4ERR_ISDIR,
	NFS4ERR_MOVED, NFS4ERR_NAMETOOLONG,
	NFS4ERR_NOFILEHANDLE, NFS4ERR_NOTSUPP,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_NOTDIR,
	NFS4ERR_PERM, NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG,
	NFS4ERR_RETRY_UNCACHED_REP,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS, NFS4ERR_WRONG_TYPE
SETXATTR	NFS4ERR_ACCESS, NFS4ERR_ADMIN_REVOKED,
	NFS4ERR_ATTRNOTSUPP, NFS4ERR_BADCHAR,
	NFS4ERR_BADOWNER, NFS4ERR_BAD_RANGE,
	NFS4ERR_BADXDR, NFS4ERR_BAD_STATEID,
	NFS4ERR_DEADSESSION, NFS4ERR_DELAY,
	NFS4ERR_DELEG_REVOKED, NFS4ERR_DQUOT,
	NFS4ERR_EXIST, NFS4ERR_EXPIRED,

https://datatracker.ietf.org/doc/html/rfc5661#section-15.2

Naik, et al. Expires January 19, 2015 [Page 13]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

	NFS4ERR_FBIG, NFS4ERR_FHEXPIRED,
	NFS4ERR_GRACE, NFS4ERR_INVAL, NFS4ERR_IO,
	NFS4ERR_LOCKED, NFS4ERR_MOVED,
	NFS4ERR_NAMETOOLONG, NFS4ERR_NOFILEHANDLE,
	NFS4ERR_NOSPC, NFS4ERR_NOTDIR,
	NFS4ERR_OLD_STATEID, NFS4ERR_OPENMODE,
	NFS4ERR_OP_NOT_IN_SESSION, NFS4ERR_PERM,
	NFS4ERR_REP_TOO_BIG,
	NFS4ERR_REP_TOO_BIG_TO_CACHE,
	NFS4ERR_REQ_TOO_BIG,
	NFS4ERR_RETRY_UNCACHED_REP, NFS4ERR_ROFS,
	NFS4ERR_SERVERFAULT, NFS4ERR_STALE,
	NFS4ERR_TOO_MANY_OPS,
	NFS4ERR_UNKNOWN_LAYOUTTYPE,
	NFS4ERR_WRONG_TYPE
 +----------------------+--+

5.3 Extensions to ACE Access Mask Attributes

 Two new bitmask constants are proposed for the access mask field:

 const ACE4_GET_XATTRS = 0x00200000;
 const ACE4_SET_XATTRS = 0x00400000;

 Permission to get and set the extended attributes of a file. The
 affected operations are GETXATTR and SETXATTR respectively. No
 additional granularity of control is implied by these constants for
 server implementations.

5.4 pNFS Considerations

 Both GETXATTR and SETXATTR are sent to the metadata server, which is
 responsible for coordinating the changes onto the storage devices.

6 Security Considerations

 The additions to the NFS protocol for supporting extended attributes
 do not alter the security considerations of the NFSv4.1 protocol [2].

7 IANA Considerations

 There are no IANA considerations in this document. All NFSv4.1 IANA
 considerations are covered in [2].

Naik, et al. Expires January 19, 2015 [Page 14]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

8 References

8.1 Normative References

 [1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
 Levels", BCP 14, RFC 2119, March 1997.

 [2] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network
 File System (NFS) Version 4 Minor Version 1 Protocol", RFC 5661,
 January 2010.

 [3] Shepler, S., Ed., Eisler, M., Ed., and D. Noveck, Ed., "Network
 File System (NFS) Version 4 Minor Version 1 External Data
 Representation Standard (XDR) Description", RFC 5662, January
 2010.

8.2 Informative References

 [4] http://www.freedesktop.org/wiki/CommonExtendedAttributes,
 "Guidelines for extended attributes".

 [5] Love, R., "Linux System Programming: Talking Directly to the
 Kernel and C Library", O'Reilly Media, Inc., 2007.

 [6] http://www.freebsd.org/cgi/man.cgi?query=extattr&sektion=9,
 "FreeBSD Man Pages - extattr"

 [7] http://docs.oracle.com/cd/E19253-01/816-5175/6mbba7f02,
 "Oracle Man Pages - fsattr"

 [8] http://msdn.microsoft.com/en-
 us/library/windows/desktop/aa364404(v=vs.85).aspx, "File
 Streams"

9 Acknowledgements

 This draft has attempted to capture the discussion on adding
 xattrs to the NFSv4 protocol from many participants on the IETF
 NFSv4 mailing list. Valuable input and advice was received from
 Tom Haynes on the first revision of this draft.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5661
https://datatracker.ietf.org/doc/html/rfc5662
http://www.freedesktop.org/wiki/CommonExtendedAttributes
http://www.freebsd.org/cgi/man
http://docs.oracle.com/cd/E19253-01/816-5175/6mbba7f02
http://msdn.microsoft.com/en-

Naik, et al. Expires January 19, 2015 [Page 15]

Internet Draft Extended Attributes in NFSv4 July 18, 2014

Authors' Addresses

 Manoj Naik
 IBM Almaden
 650 Harry Rd
 San Jose, CA 95120

 Phone: +1 408-927-1707
 Email: mnaik@us.ibm.com

 Marc Eshel
 IBM Almaden
 650 Harry Rd
 San Jose, CA 95120

 Phone: +1 408-927-1894
 Email: eshel@us.ibm.com

Naik, et al. Expires January 19, 2015 [Page 16]

