M. Matsui
J. Nakajima

Mitsubishi Electric Corporation
Expires June 2004
S. Moriai

Sony Computer Entertainmemt Inc.
December 2003

A Description of the Camellia Encryption Algorithm

<draft-nakajima-camellia-03.txt>

Status of this Memo

This document is an Internet-Draft and is in full conformance with all provisions of Section 10 of RFC2026.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as InternetDrafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

Abstract

This document describes the Camellia encryption algorithm. Camellia is a block cipher with 128-bit block size and 128-, 192-, and 256-bit keys. The algorithm description is presented together with key scheduling part and data randomizing part.

Note:
This work was done when the second author worked for NTT.

1. Introduction

1.1 Camellia

Camellia was jointly developed by Nippon Telegraph and Telephone Corporation and Mitsubishi Electric Corporation in 2000
[CamelliaSpec]. Camellia specifies the 128 -bit block size and 128-, 192-, and 256-bit key sizes, the same interface as the Advanced Encryption Standard (AES). Camellia is characterized by its suitability for both software and hardware implementations as well as its high level of security. From a practical viewpoint, it is designed to enable flexibility in software and hardware implementations on 32 -bit processors widely used over the Internet and many applications, 8-bit processors used in smart cards, cryptographic hardware, embedded systems, and so on [CamelliaTech]. Moreover, its key setup time is excellent, and its key agility is superior to that of AES.

Camellia has been scrutinized by the wide cryptographic community during several projects for evaluating crypto algorithms. In particular, Camellia was selected as a recommended cryptographic primitive by the EU NESSIE (New European Schemes for Signatures, Integrity and Encryption) project [NESSIE] and also included in the list of cryptographic techniques for Japanese e-Government systems which were selected by the Japan CRYPTREC (Cryptography Research and Evaluation Committees) [CRYPTREC].

1.2 Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document (in uppercase, as shown) are to be interpreted as described in [RFC2119].

2. Algorithm Description

Camellia can be divided into "key scheduling part" and "data randomizing part".

2.1 Terminology

The following operators are used in this document to describe the algorithm.

```
& bitwise AND operation.
| bitwise OR operation.
^ bitwise exclusive-OR operation.
<< logical left shift operation.
>> logical right shift operation.
<<< left rotation operation.
~y bitwise complement of y.
0x hexadecimal representation.
```

Note that the logical left shift operation is done with the infinite data width.

The constant values of MASK8, MASK32, MASK64, and MASK128 are defined as follows.

```
    MASK8 = 0xff;
```

Nakajima \& Moriai
[Page 2]

```
MASK32 = 0xffffffff;
MASK64 = 0xffffffffffffffff;
MASK128 = 0xfffffffffffffffffffffffffffffffff;
```


2.2 Key Scheduling Part

In the key schedule part of Camellia, the 128 -bit variables of KL and KR are defined as follows. For 128 -bit keys, the 128 -bit key K is used as KL and KR is 0. For 192-bit keys, the leftmost 128-bits of key K are used as KL and the concatenation of the rightmost 64-bits of K and the complement of the rightmost 64-bits of K are used as KR. For 256-bit keys, the leftmost 128 -bits of key K are used as KL and the rightmost 128 -bits of K are used as KR.

```
128-bit key K:
    KL = K; KR = 0;
192-bit key K:
    KL = K >> 64;
    KR = ((K & MASK64) << 64) | (~(K & MASK64));
256-bit key K:
    KL = K >> 128;
    KR = K & MASK128;
```

The 128 -bit variables KA and KB are generated from KL and KR as follows. Note that KB is used only if the length of the secret key is 192 or 256 bits. D1 and D2 are 64 -bit temporary variables.

D1 $=(K L \wedge K R) \gg 64 ;$
D2 $=(K L \wedge K R) \&$ MASK64;
D2 = D2 ^ F(D1, Sigma1);
D1 = D1 ^ F(D2, Sigma2);
D1 = D1 ^ (KL >> 64);
D2 = D2 ^ (KL \& MASK64);
D2 = D2 ^ F(D1, Sigma3);
D1 = D1 ^ F(D2, Sigma4);
$K A=(D 1 \ll 64) \mid D 2 ;$
D1 = (KA $\wedge K R) \gg 64 ;$
D2 = (KA ^ KR) \& MASK64;
D2 = D2 ^ F(D1, Sigma5);
D1 = D1 ^ F(D2, Sigma6);
$K B=(D 1 \ll 64) \mid D 2 ;$

The 64-bit constants Sigma1, Sigma2, ..., Sigma6 are used as "keys" in the Feistel network. These constant values are, in hexadecimal notation, as follows.

Sigma1 = 0xA09E667F3BCC908B;
Sigma2 = 0xB67AE8584CAA73B2;

```
Sigma3 = 0xC6EF372FE94F82BE;
Sigma4 = 0x54FF53A5F1D36F1C;
Sigma5 = 0x10E527FADE682D1D;
Sigma6 = 0xB05688C2B3E6C1FD;
```

Nakajima \& Moriai
[Page 3]

The 64-bit subkeys are generated by rotating $K L, K R, K A$ and $K B$ and taking the left- or right-half of them.

For 128-bit keys, subkeys are generated as follows.

```
kW1 = (KL <<< 0) >> 64;
kw2 = (KL <<< 0) & MASK64;
k1 = (KA <<< 0) >> 64;
k2 = (KA <<< 0) & MASK64;
k3 = (KL <<< 15) >> 64;
k4 = (KL <<< 15) & MASK64;
k5 = (KA <<< 15) >> 64;
k6 = (KA <<< 15) & MASK64;
ke1 = (KA <<< 30) >> 64;
ke2 = (KA <<< 30) & MASK64;
k7 = (KL <<< 45) >> 64;
k8 = (KL <<< 45) & MASK64;
k9 = (KA <<< 45) >> 64;
k10 = (KL <<< 60) & MASK64;
k11 = (KA <<< 60) >> 64;
k12 = (KA <<< 60) & MASK64;
ke3 = (KL <<< 77) >> 64;
ke4 = (KL <<< 77) & MASK64;
k13 = (KL <<< 94) >> 64;
k14 = (KL <<< 94) & MASK64;
k15 = (KA <<< 94) >> 64;
k16 = (KA <<< 94) & MASK64;
k17 = (KL <<< 111) >> 64;
k18 = (KL <<< 111) & MASK64;
kw3 = (KA <<< 111) >> 64;
kw4 = (KA <<< 111) & MASK64;
```

For 192- and 256-bit keys, subkeys are generated as follows.

```
kw1 = (KL <<< 0) >> 64;
kw2 = (KL <<< 0) & MASK64;
k1 = (KB <<< 0) >> 64;
k2 = (KB <<< 0) & MASK64;
k3 = (KR <<< 15) >> 64;
k4 = (KR <<< 15) & MASK64;
k5 = (KA <<< 15) >> 64;
k6 = (KA <<< 15) & MASK64;
ke1 = (KR <<< 30) >> 64;
ke2 = (KR <<< 30) & MASK64;
k7 = (KB <<< 30) >> 64;
k8 = (KB <<< 30) & MASK64;
k9 = (KL <<< 45) >> 64;
k10 = (KL <<< 45) & MASK64;
```

```
k11 = (KA <<< 45) >> 64;
k12 = (KA <<< 45) & MASK64;
ke3 = (KL <<< 60) >> 64;
ke4 = (KL <<< 60) & MASK64;
k13 = (KR <<< 60) >> 64;
```

Nakajima \& Moriai
[Page 4]

```
k14 = (KR <<< 60) & MASK64;
k15 = (KB <<< 60) >> 64;
k16 = (KB <<< 60) & MASK64;
k17 = (KL <<< 77) >> 64;
k18 = (KL <<< 77) & MASK64;
ke5 = (KA <<< 77) >> 64;
ke6 = (KA <<< 77) & MASK64;
k19 = (KR <<< 94) >> 64;
k20 = (KR <<< 94) & MASK64;
k21 = (KA <<< 94) >> 64;
k22 = (KA <<< 94) & MASK64;
k23 = (KL <<< 111) >> 64;
k24 = (KL <<<< 111) & MASK64;
kw3 = (KB <<< 111) >> 64;
kw4 = (KB <<< 111) & MASK64;
```


2.3 Data Randomizing Part

2.3.1 Encryption for 128-bit keys

128-bit plaintext M is divided into the left 64-bit D1 and the right 64-bit D2.

D1 = M >> 64;
D2 = M \& MASK64;
D1 = D1 ^ kw1; // Prewhitening
D2 = D2 ^ kw2;
D2 = D2 ^ F(D1, k1); // Round 1
D1 = D1 ^ F(D2, k2); // Round 2
D2 = D2 ^ F(D1, k3); // Round 3
D1 = D1 ^ F(D2, k4); // Round 4
D2 = D2 ^ F (D1, k5); // Round 5
D1 = D1 ^ F (D2, k6); // Round 6
D1 = FL (D1, ke1); // FL
D2 = FLINV(D2, ke2); // FLINV
D2 = D2 ^ F(D1, k7); // Round 7
D1 = D1 ^ F(D2, k8); // Round 8
D2 = D2 ^ F(D1, k9); // Round 9
D1 = D1 ^ F(D2, k10); // Round 10
D2 $=D 2 \wedge F(D 1, k 11) ; \quad / /$ Round 11
D1 = D1 ^ F(D2, k12); // Round 12
D1 = FL (D1, ke3); // FL
D2 = FLINV(D2, ke4); // FLINV
D2 = D2 ^ F(D1, k13); // Round 13
$D 1=D 1 \wedge F(D 2, k 14) ; \quad / /$ Round 14
$D 2=D 2 \wedge F(D 1, k 15) ; \quad / /$ Round 15
D1 $=\mathrm{D} 1 \wedge \mathrm{~F}(\mathrm{D} 2, \mathrm{k} 16) ; \quad / /$ Round 16
D2 = D2 ^ F(D1, k17); // Round 17
D1 = D1 ^ F(D2, k18); // Round 18

D2 = D2 ^ kw3; // Postwhitening
D1 = D1 ^ kw4;

128-bit ciphertext C is constructed from D1 and D2 as follows.

Nakajima \& Moriai
[Page 5]

$$
C=(D 2 \ll 64) \mid D 1 ;
$$

2.3.2 Encryption for 192- and 256-bit keys

128-bit plaintext M is divided into the left 64-bit D1 and the right 64-bit D2.

D1 = M >> 64;
D2 = M \& MASK64;
D1 = D1 ^ kw1; // Prewhitening
D2 = D2 ^ kw2;
D2 = D2 ^ F(D1, k1); // Round 1
D1 = D1 ^ F(D2, k2); // Round 2
D2 = D2 ^ F(D1, k3); // Round 3
D1 = D1 ^ F (D2, k4); // Round 4
D2 $=D 2 \wedge F(D 1, k 5) ; \quad / /$ Round 5
D1 = D1 ^ F(D2, k6); // Round 6
D1 = FL (D1, ke1); // FL
D2 = FLINV(D2, ke2); // FLINV
D2 = D2 ^ F(D1, k7); // Round 7
D1 = D1 ^ F(D2, k8); // Round 8
D2 = D2 ^ F (D1, k9); // Round 9
$D 1=D 1 \wedge F(D 2, k 10) ; \quad / /$ Round 10
$D 2=D 2 \wedge F(D 1, k 11) ; \quad / /$ Round 11
D1 = D1 ^ F(D2, k12); // Round 12
D1 = FL (D1, ke3); // FL
D2 = FLINV(D2, ke4); // FLINV
D2 = D2 ^ F(D1, k13); // Round 13
D1 = D1 ^ F(D2, k14); // Round 14
$D 2=D 2 \wedge F(D 1, k 15) ; \quad / /$ Round 15
D1 $=D 1 \wedge F(D 2, k 16) ; \quad / /$ Round 16
D2 = D2 ^ F(D1, k17); // Round 17
D1 = D1 ^ F(D2, k18); // Round 18
D1 = FL (D1, ke5); // FL
D2 = FLINV(D2, ke6); // FLINV
$D 2=D 2 \wedge F(D 1, k 19) ; \quad / /$ Round 19
D1 = D1 ^ F(D2, k20); // Round 20
D2 $=D 2 \wedge F(D 1, k 21) ; \quad / /$ Round 21
D1 = D1 ^ F(D2, k22); // Round 22
D2 = D2 ^ F(D1, k23); // Round 23
D1 = D1 ^ F(D2, k24); // Round 24
D2 = D2 ^ kw3; // Postwhitening
D1 = D1 ^ kw4;
128-bit ciphertext C is constructed from D1 and D2 as follows.
$C=(D 2 \ll 64) \mid D 1 ;$

2.3.3 Decryption

```
The decryption procedure of Camellia can be done in the same way as the encryption procedure by reversing the order of the subkeys.
```

Nakajima \& Moriai
[Page 6]

That is to say:

128-bit key:
kw1 <-> kw3
kw2 <-> kw4
k1 <-> k18
k2 <-> k17
k3 <-> k16
k4 <-> k15
k5 <-> k14
k6 <-> k13
k7 <-> k12
k8 <-> k11
k9 <-> k10
ke1 <-> ke4
ke2 <-> ke3

192- or 256-bit key:
kw1 <-> kw3
kw2 <-> kw4
k1 <-> k24
k2 <-> k23
k3 <-> k22
k4 <-> k21
k5 <-> k20
k6 <-> k19
k7 <-> k18
k8 <-> k17
k9 <-> k16
k10 <-> k15
k11 <-> k14
k12 <-> k13
ke1 <-> ke6
ke2 <-> ke5
ke3 <-> ke4

2.4 Components of Camellia

2.4.1 F-function

Function F takes two parameters. One is 64 -bit wide input data, namely F_IN. The other is $64-b i t ~ w i d e ~ s u b k e y, ~ n a m e l y ~ K E . ~ F ~ r e t u r n s ~$ 64-bit wide data, namely F_OUT.

F(F_IN, KE)
begin
var x as 64-bit unsigned integer;
var t1, t2, t3, t4, t5, t6, t7, t8 as 8-bit unsigned integer;

```
var y1, y2, y3, y4, y5, y6, y7, y8 as 8-bit unsigned integer;
x = F_IN ^ KE;
t1 = x >> 56;
t2 = (x >> 48) & MASK8;
t3 = (x >> 40) & MASK8;
```

Nakajima \& Moriai

```
    t4 = (x >> 32) & MASK8;
    t5 = (x >> 24) & MASK8;
    t6 = (x >> 16) & MASK8;
    t7 = (x >> 8) & MASK8;
    t8 = x & MASK8;
    t1 = SB0X1[t1];
    t2 = SBOX2[t2];
    t3 = SBOX3[t3];
    t4 = SBOX4[t4];
    t5 = SBOX2[t5];
    t6 = SBOX3[t6];
    t7 = SBOX4[t7];
    t8 = SB0X1[t8];
    y1 = t1 ^ t3 ^ t4 ^ t6 ^ t7 ^ t8;
    y2 = t1 ^ t2 ^ t4 ^ t5 ^ t7 ^ t8;
    y3 = t1 ^ t2 ^ t3 ^ t5 ^ t6 ^ t8;
    y4 = t2 ^ t3 ^ t4 ^ t5 ^ t6 ^ t7;
    y5 = t1 ^ t2 ^ t6 ^ t7 ^ t8;
    y6 = t2 ^ t3 ^ t5 ^ t7 ^ t8;
    y7 = t3 ^ t4 ^ t5 ^ t6 ^ t8;
    y8 = t1 ^ t4 ^ t5 ^ t6 ^ t7;
    F_OUT = (y1 << 56) | (y2 << 48) | (y3 << 40) | (y4 << 32)
    | (y5 << 24) | (y6 << 16) | (y7 << 8) | y8;
    return FO_OUT;
```

end.

SBOX2, SBOX3, and SBOX4 are defined using SBOX1 as follows:
$\operatorname{SBOX} 2[\mathrm{x}]=\operatorname{SBOX1}[\mathrm{x}] \lll 1$;
$\operatorname{SBOX} 3[\mathrm{x}]=\operatorname{SBOX1}[\mathrm{x}] \lll 7$;
SBOX4[x] = SBOX1[x <<< 1];
SBOX1 is defined by the following table. For example, SB0X1[0x3d] equals 86.

SB0X1:

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
$00:$	112	130	44	236	179	39	192	229	228	133	87	53	234	12	174	65
$10:$	35	239	107	147	69	25	165	33	237	14	79	78	29	101	146	189
$20:$	134	184	175	143	124	235	31	206	62	48	220	95	94	197	11	26
$30:$	166	225	57	202	213	71	93	61	217	1	90	214	81	86	108	77
$40:$	139	13	154	102	251	204	176	45	116	18	43	32	240	177	132	153
$50:$	223	76	203	194	52	126	118	5	109	183	169	49	209	23	4	215
$60:$	20	88	58	97	222	27	17	28	50	15	156	22	83	24	242	34
$70:$	254	68	207	178	195	181	122	145	36	8	232	168	96	252	105	80
$80:$	170	208	160	125	161	137	98	151	84	91	30	149	224	255	100	210
$90:$	16	196	0	72	163	247	117	219	138	3	230	218	9	63	221	148
a0:	135	92	131	2	205	74	144	51	115	103	246	243	157	127	191	226
$b 0:$	82	155	216	38	200	55	198	59	129	150	111	75	19	190	99	46
c0:	233	121	167	140	159	110	188	142	41	245	249	182	47	253	180	89
d0:	120	152	6	106	231	70	113	186	212	37	171	66	136	162	141	250

e0: $114 \quad 7 \quad 185 \quad 85 \quad 248 \quad 238172 \quad 10 \quad 54 \quad 73$ f0: $\begin{array}{lllllllllllllllllllllllllll}64 & 40 & 211 & 123 & 187 & 201 & 67 & 193 & 21 & 227 & 173 & 244 & 119 & 198 & 158\end{array}$

2.4.2 FL- and FLINV-functions

Function FL takes two parameters. One is 64-bit wide input data, namely FL_IN. The other is 64-bit wide subkey, namely KE. FL returns 64-bit wide data, namely FL_OUT.

FL(FL_IN, KE)
begin
var x1, x2 as 32-bit unsigned integer;
var k1, k2 as 32-bit unsigned integer;
x1 = FL_IN >> 32;
x2 = FL_IN \& MASK32;
k1 = KE >> 32;
$\mathrm{k} 2=\mathrm{KE}$ \& MASK32;
$x 2=x 2 \wedge((x 1 \& k 1) \lll 1)$;
$x 1=x 1 \wedge(x 2 \mid k 2) ;$
FL_OUT $=(x 1 \ll 32) \mid x 2 ;$
end.

Function FLINV is the inverse function of FL.

FLINV(FLINV_IN, KE)
begin
var y1, y2 as 32-bit unsigned integer;
var k1, k2 as 32-bit unsigned integer;
y1 = FLINV_IN >> 32;
y2 = FLINV_IN \& MASK32;
k1 = KE >> 32;
k2 = KE \& MASK32;
y1 = y1 ^ (y2 | k2);
$y 2=y 2 \wedge((y 1 \& k 1) \lll 1)$;
FLINV_OUT $=(y 1 \ll 32) \mid y 2 ;$
end.

3. Object Identifiers

The Object Identifier for Camellia with 18 rounds and 128 -bit key in Cipher Block Chaining (CBC) mode is as follows:

```
id-camellia128-cbc OBJECT IDENTIFIER ::=
    { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) symmetric-encryption-algorithm(1)
        camellia128-cbc(2) }
```

The Object Identifier for Camellia with 24 rounds and 192-bit key in Cipher Block Chaining (CBC) mode is as follows:

```
id-camellia192-cbc OBJECT IDENTIFIER ::=
    { iso(1) member-body(2) 392 200011 61 security(1)
        algorithm(1) symmetric-encryption-algorithm(1)
        camellia192-cbc(3) }
```

The Object Identifier for Camellia with 24 rounds and 256-bit key in Cipher Block Chaining (CBC) mode is as follows:

id-camellia256-cbc OBJECT IDENTIFIER ::=

Nakajima \& Moriai
[Page 9]

```
{ iso(1) member-body(2) 392 200011 61 security(1)
algorithm(1) symmetric-encryption-algorithm(1)
camellia256-cbc(4) }
```

The above alogrithms need Initialization Vector (IV) as like as other algorithms, such as DES-CBC, DES-EDE3-CBC, MISTY1-CBC and so on. To determine the value of IV, the above algorithms take parameter as:

```
CamelliaCBCParameter ::= CamelliaIV -- Initialization Vector
```

CamelliaIV ::= OCTET STRING (SIZE(16))

When these object identifiers are used, plaintext is padded before encrypt it. At least 1 padding octet is appended at the end of the plaintext to make the length of the plaintext to the multiple of 16 octets. The value of these octets is as same as the number of appended octets. (e.g., If 10 octets are needed to pad, the value is 0x0a.)

4. Security Considerations

The recent advances in cryptanalytic techniques are remarkable. A quantitative evaluation of security against powerful cryptanalytic techniques such as differential cryptanalysis and linear cryptanalysis is considered to be essential in designing any new block cipher. We evaluated the security of Camellia by utilizing state-of-the-art cryptanalytic techniques. We confirmed that Camellia has no differential and linear characteristics that hold with probability more than $2^{\wedge}(-128)$, which means that it is extremely unlikely that differential and linear attacks will succeed against the full 18-round Camellia. Moreover, Camellia was designed to offer security against other advanced cryptanalytic attacks including higher order differential attacks, interpolation attacks, related-key attacks, truncated differential attacks, and so on [Camellia].

5. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can
be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice

Nakajima \& Moriai
[Page 10]
this standard. Please address the information to the IETF Executive Director.

The IETF has been notified of intellectual property rights claimed in regard to some or all of the specification contained in this document. For more information consult the online list of claimed rights.

6. Informative References

[CamelliaSpec] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Specification of Camellia --- a 128-bit Block Cipher". http://info.isl.ntt.co.jp/camellia/
[CamelliaTech] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms". http://info.isl.ntt.co.jp/camellia/
[Camellia] K. Aoki, T. Ichikawa, M. Kanda, M. Matsui, S. Moriai, J. Nakajima, and T. Tokita, "Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms - Design and Analysis -", In Selected Areas in Cryptography, 7th Annual International Workshop, SAC 2000, Waterloo, Ontario, Canada, August 2000, Proceedings, Lecture Notes in Computer Science 2012, pp.39-56, Springer-Verlag, 2001.
[CRYPTREC] "CRYPTREC Advisory Committee Report FY2002", Ministry of Public Management, Home Affairs, Posts and Telecommunications, and Ministry of Economy, Trade and Industry, March 2003. http://www.soumu.go.jp/joho_tsusin/security/cryptrec.html CRYPTREC home page by Information-technology Promotion Agency, Japan (IPA).
http://www.ipa.go.jp/security/enc/CRYPTREC/index-e.html
[NESSIE] New European Schemes for Signatures, Integrity and Encryption (NESSIE) project. http://www.cryptonessie.org
[RFC2119] S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997.

Appendix A. Example Data of Camellia

Here is a test data for Camellia in hexadecimal form.

128-bit key
Key : 01 23456789 ab cd ef fe dc ba 9876543210 Plaintext : 0123456789 ab cd ef fe dc ba 9876543210 Ciphertext: 67673138549669730857065648 ea be 43

192-bit key
Key : 0123456789 ab cd ef fe dc ba 9876543210 : 0011223344556677

Nakajima \& Moriai
[Page 11]

```
    Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
    Ciphertext: b4 99 34 01 b3 e9 96 f8 4e e5 ce e7 d7 9b 09 b9
    256-bit key
    Key : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
            : 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff
    Plaintext : 01 23 45 67 89 ab cd ef fe dc ba 98 76 54 32 10
    Ciphertext: 9a cc 23 7d ff 16 d7 6c 20 ef 7c 91 9e 3a 75 09
Authors' Addresses
Mitsuru Matsui & Junko Nakajima
Mitsubishi Electric Corporation, Information Technology R&D Center
5-1-1 Ofuna, Kamakura, Kanagawa 247-8501, Japan
Phone: +81-467-41-2190
FAX: +81-467-41-2185
Email: matsui@iss.isl.melco.co.jp
Shiho Moriai
Sony Computer Entertainment Inc.
Phone: +81-3-6438-7523
FAX: +81-3-6438-8629
Email: camellia@isl.ntt.co.jp (Camellia team)
    shiho@rc.scei.sony.co.jp (Shiho Moriai)
```

