
Network Working Group S. Nandakumar
Internet-Draft C. Jennings
Intended status: Informational Cisco
Expires: 27 April 2023 24 October 2022

Cached and Async meSsage Transport (CAST)
draft-nandakumar-mimi-transport-00

Abstract

 This specification defines message transport, called CAST, based on
 publish/subscribe semantics for interoperable inter-server messaging
 that is rooted in modern, cloud friendly and scalable architectural
 underpinnings.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 27 April 2023.

Copyright Notice

 Copyright (c) 2022 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Motivation
 2. Modern Messaging Federation Transport
 2.1. Load Balancing and Reliability

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 3. Security Considerations
Appendix A. Acknowledgements

 Authors' Addresses

1. Motivation

 When designing federation systems for message exchange, one common
 way to implement a messaging transport would follow architectural
 patterns like "Send and Forget Architecture".

 In this type of architecture, the requirement of the message
 transport is to attempt to send the message from the source domain to
 the target domain with no additional protections against losses in
 transit or causes that render messages not being delivered.

 As depicted in the diagram below, the happy path flow results in the
 message being from alice@abc.com to be delivered to bob@xyz.com.

 ┌────────────┐ (2)Post:hi bob ┌────────────┐
 │ │ │ │
 ┌──▶│ abc.com │──┬────────────▶ │ xyz.com │───┐
 │ │ │ │ │ │ │
 │ ───────────┘ │ └────────────┘ │
(1)Post:hi│bob ▲ │ (4│Post:hi bob
 │ │ │ │
 │ └────────┘ │
 │ ▼
 .─────────. (3)Delete:hi bob .─────────.
 ╱ ╲ ╱ ╲
 (alice@abc.com) (bob@xyz.com)
 `. ,' `. ,'
 `───────' `───────'

 Figure 1: Send and Forget Pattern

 One of the shortcomings of this architecture is the federation
 message transport doesn't provide protections or options to recover
 from reasons that might result in messages being undelivered. As
 shown in the below depiction, when one/more resources at the target
 domain becomes unavailable (due to server(s) failure, server down due
 to maintenance), the message from alice@abc.com misses its delivery
 to bob@xyz.com. Also to note, mechanisms to retry may be
 unsuccessful under these circumstances. In such cases, the onerous
 task is on the message sender to realize and retry/resend the
 messages. This is either done out of band with human intervention
 typically.

 ▮ ▮
 ▮▮ ▮▮
 ┌────────────┐ (2)Post:hi bob ┌───▮▮─▮▮────┐
 │ │ │ ▮▮ │
 ┌──▶│ abc.com │──┬────────────▶ │ xy▮▮▮▮m │

 │ │ │ │ │ ▮ ▮▮▮ │
 │ ───────────┘ │ └──▮──────▮▮─┘
 (1)Post:hi│bob ▲ │ ▮▮ ▮▮
 │ │ │
 │ └────────┘
 │
 .─────────. (3)Delete:hi bob .─────────.
 ╱ ╲ ╱ ╲
 (alice@abc.com) (bob@xyz.com)
 `. ,' `. ,'
 `───────' `───────'

 Figure 2: Send and Forget Pattern, Failure Case

 SMTP and XMPP based federation transports are typical examples where
 "Send and Forget" architecture is employed.

 This specification proposes a message interop transport suited for
 modern messaging and cloud friendly architectures which intends to
 address shortcoming with existing transports.

2. Modern Messaging Federation Transport

 Any considerations for building interop messaging protocol for modern
 messaging workloads needs to meet certain functional requirements as
 listed below:

 * Leverage modern cloud native architectures

 * Scale to large number of messages and consumers

 * Be less onerous on the message senders to ensure the delivery

 * Easy to build high reliability cloud design

 * Easy to build horizontal scalability cloud design

 * Better aligned with internal architecture of some existing
 solutions

 * Easy to build gateways to existing APIs

 CAST is publish/subscribe based interoperable messaging transport for
 inter-server message delivery. Such a transport can be used for
 delivering messages between servers within the same domain of
 operation or for cross domain message delivery.

 An example set of CAST messages exchanged for delivering messages for
 the flow depicted are given below

 (1)Add Subscription
 messages/xyz.com/* -> xyz.com

 ▮ ▮ ▮
 ▮ ▮
 ▮ ▮ (0)Sub:messages/xyz.com/*
 ┌──────────▾─┐ ▮ ┌────────────┐
 │ │◀──▮───────────────────────│ │
 ┌────▶│ abc.com │ │ xyz.com │─────┐
 │ │ │───▮──────────────────────▶│ │ │
 │ └───────────▲┘ ▮ ─────────┘ │
 │ ▮ ▮ (4)Publish │
 │ ▮ ▮ Name:... │
 │ ▮▮▮ │
 │ │
 │ (3)Store:
 │ Publish message (5)Publish
 │ Name:messages/
xyz.com/..
 Msg:{body:"hi
bob"....}
 Name:messages/xyz.com/1
 Msg:{body:"hi bob"..} │
 ▼

│ .─────────.
 .─────────.
╱ ╲
 ╱ ╲
(bob@xyz.com)
 (alice@abc.com)
`. ,'
 `. ,'
`───────'
 `───────'

 Figure 3: CAST Message Flow

 In the example, the target domain, xyz.com, is interested in having
 messages from the domain abc.com to be delivered. Such a setup may
 be possible due to business relationships between the domains or any
 entity within the target domain expresses such an interest.

 1. The CAST endpoint in the domain xyz.com sends "Subscribe" message
 to CAST endpoint in the "abc.com" indicating its interest to
 receive any message that matches the name "messages/xyz.com/*",
 i.e any message targetted to the domain "xyz.com"

 2. On receiving the "Subscribe" message, the CAST entity at the
 domain "abc.com" creates an active subscription entry for the
 name "messages/xyz.com/*" against the domain "xyz.com". Thus
 created subscriptions remain active until they expire or are
 canceled. Subscriptions can be renewed periodically to keep them
 active as well.

 3. When Alice from abc.com publishes message to Bob at xyz.com, by
 sending "Publish" message, the CAST entity (within abc.com)
 performs the following steps on receiving the message: - Store
 the message (with name messages/xyz.com/1) for at least for 24
 hours. - Look up for any active subscriptions that matches the
 name - Forward the message to the CAST endpoint that matches the
 name from the previous step - In this example, since there exists
 an active subscription for the pattern "messages/xyz.com/*",
 Alice's message will be delivered to the CAST entity at "xyz.com"
 based on the lookup result

 4. On receiving the CAST Publish message, the CAST entity at the
 domain "xyz.com" will have sufficient information in the message
 to forward it to the right target within its domain, in this
 case, to Bob

 Messages within CAST are cached for at least 24 hours by default,
 regardless of the status of message delivery. This allows, for
 example, "xyz.com" to ask for the message again if the transaction to
 store it is unsuccessful.

 In scenarios where subscriber CAST entity is unavailable at the time
 of the message delivery, the CAST entity resyncs its state by
 reissuing a "Subscribe" message, when it's back in operation and thus
 retrieve any cached messages as well as stream new messages that get
 published in the future.

2.1. Load Balancing and Reliability

 To horizontally scale to a huge volume of messages, the servers in
 the abc.com domain can use any of the traditional techniques for load
 balancing requests across a cluster of servers including DNS, IP
 hashing, and others. Allowing the receiving domain, xyz.com, to load
 balance the incoming message across many servers can be slightly more
 complicated. The technique proposed here is to allow the
 subscription to filter a subset of message and make sure there is a
 sperate subscription for each incoming set. The filter criteria is
 is done by taking the hash of the UUID for the message and computing
 a modulo for it and checking it that matches a constant provide for
 each subscription. For example if the xyz.com wanted to split the
 data across 3 connection, it would specify a module of 3 and then
 each connection would specify 0,1,2 respectively as the constant.

 The fact that the abc.com domain retains the message for some period
 of time and they can be requested a second time if needed allows the
 messages processing to be pipelined and batched with no
 acknowledgement which can greatly increase the speed of processing
 some sort of transaction where the sender can discard the message
 once the receivers acknowledge having it. The UUID in the messages
 allow the receiver to easily deal with receiving the same message

 more than once.

3. Security Considerations

 The assumption is all messages are end to end encrypted and neither
 domain can read the contents of any message between alice and bob.

 The assumption is that a major mitigation of SPAM will be that alice
 sends a connection request to bob and bob accepts that before any
 messages with user generated content can be sent between alice and
 bob.

 Within the CAST architecture, the interacting domains are trusted to
 deliver each other messages for their users and are bound by business
 agreements that further constrain the rules related to use of
 messages exchanged, dealing with spam and any other policies that
 govern the successful federation. This is meant for major services
 to connect to other major services and not designed to deal with the
 issue of a domain with no business relationship to another domain
 connected to it.

 A given domain like abc.com does not reveal to xyz.com all the users
 it has but if alice in abc sends a message to bob in xyz, it does
 reveal to abc the existence of bob, and to xyz the existence of
 alice.

Appendix A. Acknowledgements

 TODO

Authors' Addresses

 Suhas Nandakumar
 Cisco
 Email: snandaku@cisco.com

 Cullen Jennings
 Cisco
 Email: fluffy@iii.ca

