
Independent Submission                                     S. Nandakumar
Internet-Draft                                                     Cisco
Intended status: Informational                                C. Huitema
Expires: 14 September 2023                          Private Octopus Inc.
                                                             C. Jennings
                                                                   Cisco
                                                           13 March 2023

Exploration of MoQ scenarios and Data Model
draft-nandakumar-moq-scenarios-00

Abstract

   This document delineates a set of key scenarios and details the
   requirements that they place on the MoQ data model.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 14 September 2023.

Copyright Notice

   Copyright (c) 2023 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Introduction
   2.  Scenarios

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info


     2.1.  Streaming Scenarios
     2.2.  Live Video Ingestion
     2.3.  Live Streaming
     2.4.  Interactivr Usecases
   3.  Scenario differences
     3.1.  Interval between access points
     3.2.  Intervals and congestion
   4.  Handling Scalable Video Codecs
     4.1.  Application choice for ordering
     4.2.  Linear ordering using priorities
     4.3.  Relay behavior
   5.  High Loss Networks
   6.  Security and Privacy Considerations
   7.  IANA Considerations
   8.  Acknowledgments
   Authors' Addresses

1.  Introduction

   When developing the data model for MoQ, we realized that different WG
   participants were making different assumptions about the role of
   streams, broadcast or emitters, and also on the delivery constraints
   for objects compositing different streams.  This draft studies
   different scenarios and details their requirements.

2.  Scenarios

   One ambition of MoQ is to define a single QUIC based transport for
   multiple transmission scenarios, including streaming scenarios
   currently using RTMP and conferencing scenarios currently using
   WebRTC.  Ideally, this would enable support in Content Distribution
   Networks for both types of scenarios.

2.1.  Streaming Scenarios

   This section dicusses few scenarios for streaming use-cases.  The
   scenarios listed are not exhaustive and doesn't intend to capture all
   possible applications and architectures.

   Streaming scenarios typically separate "content ingestion" and
   "content distribution".  Content is provided by one or several
   "emitters".  Streaming scenarios typically operate with latency
   profile between 500 ms - 2s for live streaming use-cases.

2.2.  Live Video Ingestion

   In a typical live video ingestion, the broadcast client - like OBS
   client, publishes the video content to an ingest server under a
   provider domain (say twicth.com)

                  E1: t1,t2,t3   ┌──────────┐
    .─────────────.              │          │



   (    Emitter    )────────────▶│  Ingest  │
    `─────────────'              │  Server  │
                                 │          │
                                 └──────────┘

   The Track IDs are scoped to the broadcast for the application under a
   provider domain.

2.3.  Live Streaming

   In a reference live streaming example shown below, the emitter live
   streams on or more tracks as part of the application operated under a
   provider domain, which gets eventually distributed to multiple
   clients by some form of distribution server operating under the
   provider domain, over a content distribution network.

   In this setup, one can imagine the ingestion and distribution as 2
   separate systems operating under a given provider domain, where the
   track Ids used by the emitter need not match the ones referred to by
   the subscribers.  The reason being, the distribution server sources
   the new tracks (possibly transcoded)

                                                                 DS: t1,t2
                                                                   .───.
                                                          ┌──────▶( S1  )
                                                          │        `───'
                                                          │
        E1: t1,t2,t3 ┌──────────┐    ┌──────────────┬─────┘     DS: t1
.─────────.          │          │    │              │         .───.
(   E1    )─────────▶│  Ingest  ├────┤  Distributon │───────▶( S2  )
`─────────'          │  Server  │    │      Server  |         `───'
                     │          │    │              │
                     └──────────┘    └──────────────┴─────┐
                                                          │        .───.
                                                          └──────▶( S3  )
                                                                   `───'
                                                                DS: t1,t2, t3

2.4.  Interactive Usecases

   A interactive conference typically works with the expected operating
   glass-to-glass latency to be around 200ms and is made up of
   multiplicity of participant with varying capabilities and operating
   under varying network conditions.

   A typical conferencing session comprises of:

   *  Multiple emitters, publishing on multiple tracks (audio, video
      tracks and at different qualities)

   *  A media switch, sourcing tracks that represent a subset of tracks
      from across all the emitters.  Such subset may represent tracks



      representing top 5 speakers at higher qualities and lot of other
      tracks for rest of the emitters at lower qualities.

   *  Multiple receivers, with varied receiving capacity (bandwidth
      limited), subscribing to subset of the tracks

                                      SFU:t1, E1:t2, E3:t6
    .───.  E1: t1,t2,t3,t4                          .───.
   ( E1  )─────┐                           ┌────▶ ( R1  )
    `───'      │                           │       `───'
               │                           │
               └───────▶─────────┐         │
                        │         │────────┘
    .───.  E2: t1,t2    │   SFU   │   SFU:t1,E1:t2 .───.
   ( E2  )─────────────▶│         │──────────────▶( R2  )
    `───'               │         │                `───'
              ┌────────▶└─────────┴─────────┐
              │                             │
              │                             │
              │                             │
              │                             │
    .───.     │                             │       .───.
   ( E3  )────┘                             └─────▶( R3  )
    `───'   E3: t1,t2,t3,t4,t5,t6          E3: t2,  `───'
                                           E1: t2,
                                           E2: t2,
                                           SFU: t1

   Above setup brings in following properties on the data model for the
   transport protocol

   *  Media Switches to source new tracks but retain media payload from
      the original emitters.  This implies publishing new Track IDs
      sourced from the SFU, with object payload unchanged from the
      original emitters.

   *  Media Switches to propogate subset of tracks as-is from the
      emitters to the subscribers.  This implies Track IDs to be
      unchanged between the emitters and the receivers.

   *  Subscribers to explictily request multiple appropriate qualities
      and dynamically move between the qualtiies during the course of
      the session

   Another topology for the interactive use-case is to use multiple
   distribution networks for delivering the media, with thus media
   switching functionality running across disrtibution networks and also
   moving these media functions to the core distribution network as
   shown below

                      Distribution Network A
    E1: t1,t2,t3,t4



                                       SFU:t1, E1:t2, E3:t6
       .───.        ┌────────┐      ┌────────┐      .───.
      ( E1  )───────│ Relay  │──────│ Relay  ├───▶ ( R1  )
       `───'        └─────┬──┘      └──┬─────┘      `───'
                          │ ┌────────┐ │
      E2: t1,t2           └─┤ Relay  │─┘
                ┌──────────▶└────┬───┘         SFU:t1,E1:t2
       .───.    │                 │                  .───.
      ( E2  )───┘                 │              ┌─▶( R2  )
       `───'                      │              │   `───'
                      ┌────────┐  │   ┌────────┬─┘
                ──────┤ Relay  │──┴───│ Relay  │─┐
                |     └─────┬──┘      └──┬─────┘ │
                |           │ ┌────────┐ │       │
                |           └─┤ Relay  │─┘       │
       .───.    |             └────────┘         │   .───.
      ( E3  )───┘         Distribution Network B └─▶( R3  )
       `───'                                         `───'
        E3: t1,t2,t3,t4,t5,t6                        E3: t2,
                                                     E1: t2,
                                                     E2: t2,
                                                    SFU: t1

   Such a topology needs to meet all the properties listed in the
   homogenous topology setup, however having multiple distribution
   networks and relying on the distribution networks to carryout the
   media delivery, brings in further requirements towards a data model
   that enables tracks to be uniquely identifiable across the
   distribution networks and not just within a single distribution
   network.

3.  Scenario differences

   We find that scenarios differs in multiple ways.  In the previous
   sections we detail the obvious differences, such as different network
   topologies or different latency targets, but other factors also come
   in play.

3.1.  Interval between access points

   In the streaming scenarios, there is an important emphasis on
   resynchronization, characterized by a short distance between "access
   points".  This can be used for features like fast-forward or
   rewinding, which are common in non-real-time streaming.  For real-
   time streaming experiences such as watching a sport event, frequent
   access points allow "channel surfers" to quickly join the broadcast
   and enjoy the experience.  The interval between these access points
   will often be just a few seconds.

   In video encoding, each access point is mapped to a fully encoded
   frame that can be used as reference for the "group of blocks".  The



   encoding of these reference frames is typically much larger than the
   differential encoding of the following frames.  This creates a peak
   of traffic at the beginning of the group.  This peak is much easier
   to absorb in streaming applications that tolerate higher latencies
   than interactive video conferences.  In practice, many real time
   conferences tend to use much longer groups, resulting in higher
   compression ratios and smoother bandwidth consumption along with a
   way to request the start of a new group when needed.  Other real time
   conferences tend to use very short groups and just wait for the next
   group when needed.

   Of course, having longer blocks create other issues.  Realtime
   conferences also need to accomodate the occasional occasional late
   comer, or the disconnected user who want to resynchronize after a
   network event.  This drives a need for synchronization "between
   access points".  For example, rather than waiting for 30 seconds
   before connecting, the user might quickly download the "key" frames
   of the past 30 seconds and replay them in order to "synchronize" the
   video decoder.

3.2.  Intervals and congestion

   It is possible to use groups as units of congestion control.  When
   the sending strategy is understoud, the objects in the group can be
   assigned sequence numbers and drop priorities that capture the
   encoding dependencies, such that:

   *  an object can only have dependencies with other objects in the
      same group,

   *  an object can only have dependencies with other objects with lower
      sequence numbers,

   *  an object can only have dependencies with other objects with lower
      or equal drop priorities.

   This simple rules enable real-time congestion control decisions at
   relays and other nodes.  The main drawback is that if a packet with a
   given drop priority is actually dropped, all objects with higher
   sequence numbers and higher or equal drop priorities in the same
   group must be dropped.  If the group duration is long, this means
   that the quality of experience may be lowered for a long time after a
   brief congestion.  If the group duration is short, this can produce a
   jarring effect in which the quality of experience drops perdiodically
   at the tail of the group.

4.  Handling Scalable Video Codecs

   Some video codecs have a complex structure.  Consider an application
   using both temporal layering and spatial layering.  It would send for
   example:



   *  an object representing the 30 fps frame at 720p

   *  an object representing the spatial enhancement of that frame to
      1080p

   *  an object representing the 60 fps frame at 720p

   *  an object representing the spatial enhancement of that 60 fps
      frame to 1080p

   The encoding of the 30 fps frame depends on the previous 30 fps
   frames, but not on any 60 fps frame.  The encoding of the 60 fps
   depends on the previous 30 fps frames, and possibly also on the
   previous 60 fps frames (there are options).  The encoding of the
   spatial enhancement depends on the corresponding 720p frames, and
   also on the previous 1080p enhancements.  Add a couple of layers, and
   the expression of dependencies can be very complex.  The AV1
   documentation for example provides schematics of a video stream with
   3 frame rate options at 15, 30 and 60 fps, and two definition
   options, with a complex graph of dependencies.  Other video encodings
   have similar provisions.  They may differ in details, but there are
   constants: if some object is dropped, then all objects that have a
   dependency on it are useless.

   Of course, we could encode these dependencies as properties of the
   object being sent, stating for example that "object 17 can only be
   decoded if objects 16, 11 and 7 are available."  However, this
   approach leads to a lot of complexity in relays.  We believe that a
   linear approach is preferable, using attributes of objects like
   delivery order or priorities.

4.1.  Application choice for ordering

   The conversion from dependency graph to linear ordering is not
   unique.  The simple graph in our example could be ordered either
   "frame rate first" versus "definition first".  If the application
   chooses frame rate first, the policy is expressed as "in case of
   congestion, drop the spatial enhancement objects first, and if that
   is not enough drop the 60 fps frames".  If the application chooses
   "definition first", the policy becomes "drop the 60 fps frames and
   their corresponding 1080p enhancement first, and if that is not
   enough also drop the 1080p enhancement of the 30 fps frames".

   More complex graphs will allow for more complex policies, maybe for
   example "15 fps at 720p as a minimum, but try to ensure at least
   30fps, then try to ensure 1080p, and if there is bandwidth available
   forward 60 fps at 1080p".  Such linearization requires choices, and
   the choices should be made by the application, based on the user
   experience requirements of the application.

   The relays will not understand all the variation of what the media is



   but the applications will need a way to indicate to the relays the
   information they will need to correctly order which data is sent
   first.

4.2.  Linear ordering using priorities

   We propose to express dependencies using a combination of object
   number and object priority.

   Let's consider our example of an encoding providing both spatial
   enhancement and frame rate enhancement options, and suppose that the
   application has expressed a preference for frame rate.  We can
   express that policy as follow:

   *  the frames are ordered first by time and when the time is the same
      by resolution.  This determines the "object number" property.

   *  the frame priority will be set to 1 for the 720p 30 fps frame, 2
      for the 720p 60 fps frames, and 3 for all the enhancement frames.

   If the application did instead express a preference for definition,
   object numbers will be assigned in the same way, but the priorities
   will be different:

   *  the frame priority will be set to 1 for the 720p 30 fps I frames
      and 2 for the 720p 30 fps P and B frames, 3 and 4 for the 1080p
      enhancements of the 60 fps frames, and 5 and 6 for the 60 fps
      frames and their enhancements.

   Object numbers and priorities will be set by the publisher of the
   track, and will not be modified by the relays.

4.3.  Relay behavior

   In case of congestion, the relay will use the priorities to
   selectively drop the "least important" objects:

   *  if congestion is noticed, the relay will drop first the lesser
      priority layer.  In our example, that would mean the objects
      marked at priority 6.  The relay will drop all objects marked at
      that priority, from the first dropped object to the end of the
      group.

   *  if congestion persists despite dropping a first layer, the relay
      will start dropping the next layer, in our example the objects
      marked at priority 5.

   *  if congestion still persist after dropping all but the highest
      priority layer, the relay will have to close the group, and start
      relaying the next group.

   When dropping objects within the same priority:



   *  higher object numbers in the same group, which are later in the
      group, are "less important" and more likely to be dropped than
      objects in the same group with a lower object number.  Objects in
      a previous group are "less important" than objects in the current
      group and MAY be dropped ahead of objects in the current group.

   The specification above assumes that the relay can detect the onset
   of congestion, and has a way to drop objects.  There are several ways
   to achieve that result, such as sending all objects of a group in a
   single QUIC stream and making explicit action at the time of
   relaying, or mapping separate priority layers into different QUIC
   streams and marking these streams with different priorities.  The
   exact solution will have to be defined in a draft that specifies
   transport priorities.

5.  High Loss Networks

   Web conferencing systems are used on networks with well over 20%
   packet loss and when this happens, it is often on connections with a
   relatively large round trip times.  In these situtation, forward
   error correction or redundant transmitions are used to provide a
   reasonable user experience.  Often video is turned off in.  There are
   multiple machine learning based audio codecs in development that
   targeting a 2 to 3 Kbps rate.

   This can result in scenarios where very small audio objects are sent
   at a rate of several hundreds packets per second with a high network
   loss rate.

6.  Security and Privacy Considerations

   This document provides an abstract analysis of MoQ scenarios, but
   does not detail any security considerations.

7.  IANA Considerations

   This document makes no request of IANA.

8.  Acknowledgments

   The IETF MoQ mailing lists and discussion groups.

Authors' Addresses

   Suhas Nandakumar
   Cisco
   Email: snandaku@cisco.com

   Christian Huitema
   Private Octopus Inc.



   Email: huitema@huitema.net

   Cullen Jennings
   Cisco
   Email: fluffy@iii.ca


