
Independent Submission S. Nandakumar
Internet-Draft Cisco
Intended status: Informational C. Huitema
Expires: 14 September 2023 Private Octopus Inc.
 W. Law
 Akamai
 13 March 2023

MoQ Transport (moqt) - Unified Media Delivery Protocol over QUIC
draft-nandakumar-moq-transport-00

Abstract

 This specification defined MoqTransport (moqt), an unified media
 delivery protocol over QUIC. It aims at supporting multiple
 application classes with varying latency requirements including ultra
 low latency applications such as interactive communication and
 gaming. It is based on a publish/subscribe metaphor where entities
 publish and subscribe to data that is sent through, and received
 from, relays in the cloud. The data is delivered in the strict
 priority order. The information subscribed to is named such that
 this forms an overlay information centric network. The relays allow
 for efficient large scale deployments.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 September 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction
 1.1. Terms and definitions
 2. Object Model
 2.1. Tracks
 2.2. Objects
 2.3. Object Groups
 3. Concepts
 3.1. Emission
 3.2. Catalog
 3.3. MoQ Session
 4. Protocol Design
 4.1. Control Stream and Messages
 4.1.1. Subscribe Message
 4.1.2. SUBSCRIBE_REPLY Message
 4.1.3. PUBLISH REQUEST Message
 4.1.4. PUBLISH_REPLY Message.
 4.1.5. RELAY_REDIRECT MESSAGE
 4.1.6. Catalog Message
 4.2. Stream Considerations
 4.2.1. Group Header
 4.2.2. Object header
 4.3. Datagram considerations
 4.3.1. Fragment Message
 5. Drop Priority
 5.1. Applying drop-priorities through the QUIC stack
 5.2. Applying drop-priorities through active scheduling
 5.3. Tracking drops
 5.4. Marking objects with priorities
 6. Relays
 6.1. Relay - Subscriber Interactions
 6.2. Relay - Publisher Interactions
 6.3. Relay Discovery and Failover
 6.4. Restoring connections through relays
 6.5. Examples
 7. Transport Usages
 7.1. MoQ over QUIC
 7.2. MoQ over WebTransport
 7.2.1. Catalog Retrieval
 7.2.2. Subscribing to Media
 7.2.3. Publishing Media
 8. Normative References

Appendix A. TODO
Appendix B. Security Considerations
Appendix C. IANA Considerations
Appendix D. References

https://trustee.ietf.org/license-info

 D.1. Normative References
 D.2. Informative references

Appendix E. Acknowledgments
 Authors' Addresses

1. Introduction

 Recently new use cases have emerged requiring higher scalability of
 delivery for interactive realtime applications and much lower latency
 for streaming applications and a combination thereof. On one side
 are use cases such as normal web conferences wanting to distribute
 out to millions of viewers and allow viewers to instantly move to
 being a presenter. On the other side are uses cases such as
 streaming a soccer game to millions of people including people in the
 stadium watching the game live. Viewers watching an e-sports event
 want to be able to comment with minimal latency to ensure the
 interactivity aspects between what different viewers are seeing is
 preserved. All of these uses cases push towards latencies that are
 in the order of 100ms over the natural latency the network causes.

 Interactive realtime applications, such as web conferencing systems,
 require ultra low latency (< 150ms) delivery. Such applications
 create their own application specific delivery network over which
 latency requirements can be met. Realtime transport protocols such
 as RTP over UDP provide the basic elements needed for realtime
 communication, both contribution and distribution, while leaving
 aspects such as resiliency and congestion control to be provided by
 each application. On the other hand, media streaming applications
 are much more tolerant to latency and require highly scalable media
 distribution. Such applications leverage existing CDN networks, used
 for optimizing web delivery, to distribute media. Streaming
 protocols such as HLS and MPEG-DASH operates on top of HTTP and gets
 transport-level resiliency and congestion control provided by TCP.

 This specification defines MOQTransport, a publish and subscribe
 based media delivery protocol over QUIC, where the principal idea is
 entities publish unique named objects that are end-to-end encrypted
 and consume data by subscribing to the named objects. The names used
 are scoped and authorized to the domain operating the application
 server (referred to as Origin/Provider in this specification).

 The published data carry metadata identifying relative priority,
 time-to-live and other useful metadata that's authenticated for
 components implementing Relay functions to make drop/forwarding
 decisions. MoQTransport is designed to make it easy to implement
 relays so that fail over could happen between relays with minimal
 impact to the clients and relays can redirect a client to a different
 relay.

1.1. Terms and definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Commonly used terms in this document are described below:

 * Provider/Origin: Entity capable of hosting media application
 session based on the MoQTransport. It is responsible for
 authorizing the publishers/subscribers, managing the names used
 for Tracks and is scoped under domain for a specific application.
 In certain deployments, a provider is also responsible for
 establishing trust between clients and relays for delivering
 media.

 * Emitter: Authorized entities that participate in a MoQTransport
 Session under an Provider. Emitters are trusted with E2E
 encryption keys. They operate on one or more uncompressed media
 inputs, compress and possible encrypt it and send over Data
 Streams. Each such encoded and/or encrpyted stream corresponds to
 a Track within the MoQTransport.

 * Catalog Maker: Entities performing Catalog Maker role compose or
 aggregate tracks from multiple emissions to form a new emission.
 Akin to the role of entities with the Relay role, Catalog Maker
 role entities are not trusted with the E2E keys and they perform
 publisher and subscriber roles. Catalog Makers are allowed to
 publish tracks with a new name without changing the media content
 of the received tracks.

 * Control Stream: QUIC Stream to exchange control message to setup
 appropriate context for media delivery and is scoped to a given
 QUIC Connection. Functionally, Control Messages enable
 authorization of names for tracks, setting up media properties and
 starting/terminating media sessions.

 * Data Stream: QUIC Stream or QUIC Datagram based transport for
 delivering end to end encrypted application media objects. Such
 objects shall carry metadata (unencrypted) for Relays to make
 store/forwarding decisions along with the application payload.

2. Object Model

 This section define various concepts that make up the object model
 enabling media delivery over QUIC.

2.1. Tracks

 Tracks form the central concept within the MoQ Transport protocol for
 delivering media. A Track identifies the namespace and the
 authorization scope under which MoQTransport objects Section 2.2 are

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

 delivered.

 A track is a transform of a uncompresss media using a specific
 encoding process, a set of parameters for that encoding, and possibly
 an encryption process.

 The MoQTransport is designed to transport tracks.

 Tracks have the following properties:

 * Tracks MUST be owned by a single authorized MoQ Entity, such as an
 Emitter or a Catalog Maker, under a single provider domain.

 * Tracks MUST have a single encoding configuration.

 * Tracks MUST have a single security configuration.

 Tracks are identified by a globally unique identifier, called "Track
 ID". Track ID MUST identify its owning provider by a standardized
 identifier, such as domain name or equivalent, then followed by the
 application context specific "Track Name", encoded a opaque string.

2.2. Objects

 The binary content of a track is composed of a sequence of objects.
 An Object is the smallest unit that makes sense to decode and may not
 be independently decodable. An Object MUST belong to a group

Section 2.3

 Few examples include, for video media an object could be an H.264 P
 frame or could be just a single slice from inside the P Frame. For
 audio media, it could be a single audio frame. Or a catalog payload.

 Objects are not partially decodable. The end to end encryption and
 authentication operations are performed across the whole object, thus
 rendering partial objects unusable.

 Objects MUST be uniquely identifiable within the MoQ delivery system.
 Objects carry associated header/metadata containining priority, time
 to live, and other information aiding the caching/forwarding decision
 at the Relays. Objects MAY be optionally cached at Relays. The
 content of the Objects are opaque to Relays and delivered on the
 strict priority order Section 5

2.3. Object Groups

 An Object MUST belong to a group. Groups are composition of objects
 and the objects within the group carry the necessary dependecy
 information needed to process the objects in the group. Objects that
 carry information required to resolve dependencies are marked
 appropriately in their headers. In cases where such information MAY
 NOT be available, the first object in the group MUST have all the

 dependency information needed to processs therest of the objects.

 A group shall provide following utilities

 * A way for subscribers to specifiy the appropriate consumption
 point for enabling joins, rewinds and replay the objects, for
 certain media usecases.

 * A way to specify refresh points within a group, serving as decode
 points, points of switching between qualties for audio/video media

 * Serve as checkpoint for relays to implement appropriate congestion
 responses.

3. Concepts

3.1. Emission

 An Emission represents a collection of tracks sourced by an emission
 source (Emitter or Catalog Maker) and owned by an application
 Provider. An Emitter MUST be authorized to publish objects of the
 tracks in a Emission. An Emitter can have one or more emissions.

 Few example of Emissions include,

 * Collection of audio and video tracks that makes up a broadcast for
 a live stream by OBS client, the Emitter, to the provider, say
 Twitch.

 * Tracks from different participants (emitters) in a interactive
 video conference

3.2. Catalog

 Catalog is a MOQ Object scoped to a MoQ Session Section 3.3 that
 provides information about tracks from one of more Emissions and is
 used by the subscribers for consuming tracks and for publishers to
 advertise the tracks. The content of "Catalog" is opaque to the
 Relays and may be end to end encrypted in certain scenarios.

3.3. MoQ Session

 A MoQ Session is a top level container under an application Provider
 that represents one or more emissions, optionally a set of
 participating relays, and set of publisher publishing content and
 subscribers that are interested in consuming the content being
 published.

4. Protocol Design

 Media delivery is started by the publisher/subscriber setting up a
 "Control Stream" for one or more Tracks. The control stream, which

 is based on QUIC stream, is used to configure and setup properties
 for the "Data Stream". Track media objects is delivered over one or
 more "Data Streams" which can be unidirectional QUIC streams or over
 QUIC Datagrams. The Control Channel can also be used to configure
 in-session parameters.

4.1. Control Stream and Messages

 The client starts by opening a new bilateral stream, acting as the
 "control stream" for the exchange of data, carrying a series of
 control messages in both directions.

 The control stream is created for one or more tracks to be published
 or subscribed to and will remain open as long as the peers are still
 sending or receiving the media. If either peer closes the control
 stream, the other peer will close its end of the stream and discard
 the state associated with the media transfer.

 Streams are "one way". If a peer both sends and receive media, there
 will be different control streams for sending and receiving.

 The control channel carry series of messages, encoded as a length
 followed by a message value:

 message {
 length(16),
 value(...)
 }

 The length is encoded as a 16 bit number in big endian network order.

 Below sub-sections define various control messages defined in this
 specification.

4.1.1. Subscribe Message

 Entities that intend to receive media will do so via subscriptions to
 one or more Tracks.

 enum subscribe_intent
 {
 immediate(0),
 catch_up(1),
 wait_up(2),
 }

 track_info {
 track_id_length(i),
 track_id(...)...,
 subscribe_intent intent
 }

 subscribe_message {
 message_type(i),
 tracks_length(i),
 track_info tracks (...),
 }

 The message type will be set to SUBSCRIBE (1). tracks identifies the
 list of tracks as defined by the track_info type.

 The track_id captures the Track ID and the intent field specifies the
 intended consumption point.

 Following options are defined for the intent

 * immediate: Deliver any new objects it receives for a given track.

 * catch_up: Deliver any new objects it receives and in addition send
 any previous objects it has received, beginning from the most
 recent group and matching the given track.

 * wait_up: Wait until next group before delivering the objects.

 Subscriptions are typically long-lived transactions and they stay
 active until one of the following happens

 * a client local policy dictates expiration of a subscription.

 * optionally, a server policy dictates subscription expiration.

 * the underlying transport is disconnected.

 The subscribe message is sent over the associated control stream and
 the same is closed when the subscriptions for the tracks included are
 no longer required. This implies the termination of all associated
 data streams.

4.1.1.1. Aggregating Subscriptions

 Subscriptions are aggregated at entities that perform Relay Function.
 Aggregating subscriptions helps reduce the number of subscriptions
 for a given track in transit and also enables efficient distribution
 of published media with minimal copies between the client and other
 relays, as well as reduce the latencies when there are multiple
 subscribers for a given track behind a Relay or the provider.

4.1.2. SUBSCRIBE_REPLY Message

 A subscribe_reply provides results of the subscription and is sent on
 the control stream over which the subscribe control message was
 received.

 enum response

 {
 ok(0),
 expired(1),
 fail(2)
 }

 track_response {
 Response response,
 track_id_length(i),
 track_id(...)...,
 [Reason Phrase Length (i)],
 [Reason Phrase (...)],
 [media_id(i)]
 }

 subscribe_reply
 {
 message_type(i),
 track_response tracks(...)
 }

 The message type will be set to SUBSCRIBE_REPLY (2). tracks capture
 the result of subscription per track included in the subscribe
 message.

 For each track, the track_response provides result of subscription in
 the response field, where a response of ok indicates successful
 subscription. For failed or expired responses, the "Reason Phrase"
 shall be populated with appropriate reason code.

 The media_id for a given track is populated for a successful
 subscription and represents an handle to the subscription to be
 provided by the peer over the data streams(s). Given that the media
 corresponding to a track can potentially arrive over multiple data
 streams, the media_id provides the necessary mapping between the
 control stream and the corresponding data streams. It also serves as
 compression identifier for containing the size of object headers
 instead of carrying complete track identifier information in every
 object message.

 While the subscription is active for a given name, the Relay(s) must
 send objects for tracks it receives to all the matching subscribers.
 Optionally, a client can refresh its subscriptions at any point by
 sending a new subscribe_message.

4.1.3. PUBLISH REQUEST Message

 The publish_request message provides one or more tracks that the
 publisher intends to publish data.

 track_info {

 track_id_length(i),
 track_id(...)...,
 media_id(i),
 }

 publish_request {
 message_type(i),
 track_info tracks(...),
 }

 The message type will be set to PUBLISH_REQUEST (3). tracks
 identifies the list of tracks. The media_id represents an handle to
 the track to be used over the data streams(s). Given that media
 corresponding to the track can potentially be sent over multiple data
 streams, the media_id provides the necessary mapping between the
 control stream and the associated data streams. media_id also serves
 as compression identifier for containing the size of object headers
 instead of carrying full formed Track Id in every object.

 The publish_request message is sent on its own control stream and
 akin to subscribes, the control stream's lifecycle bounds the media
 transfer state. Terminating the control stream implies closing of
 all the associated data streams for the tracks included in the
 request.

4.1.4. PUBLISH_REPLY Message.

 publish_reply provides the result of request to publish on the
 track(s) in the publish_request. The publish_reply control message
 is sent over the same control stream the request was received on.

 publish_reply {
 message_type(i),
 track_response tracks(...),
 }

 The message_type is set to PUBLISH_REPLY (4).

 tracks capture the result of publish request per track included in
 the publish_request message. The semantics of track_response is same
 as defined in Section 4.1.2 except the media_id is optionally
 populated in the case where the media_id in the request cannot be
 used.

4.1.5. RELAY_REDIRECT MESSAGE

 relay_redirect control message provides an explicit signal to
 indicate relay failover scenarios. This message is sent on all the
 control streams that would be impacted by reduced operations of the
 Relay.

 relay_redirect

 {
 message_type(i),
 relay_address_length(i),
 relay_address(...)...
 }

 The message_type is set to RELAY_REDIRECT (5). relay_address
 identifies the address of the relay to setup the new subscriptions or
 publishes to.

4.1.6. Catalog Message

 Catalog message provides information on tracks for a given MoQ
 Session.

 catalog {
 message_type(i),
 catalog_length(i),
 data(...)...
 }

 The message_type is set to CATALOG (6). data is container specific
 encoding of catalog information.

4.2. Stream Considerations

 Certain applications can choose to send each group in their own
 unidirectional QUIC stream. In such cases, stream will start with a
 "group header" message specifying the media ID and the group ID,
 followed for each object in the group by an "object header"
 specifying the object ID and the object length and then the content
 of the objects (as depicted below)

 +--------+------------+-------+------------+-------+------
 | Group | Object | Bytes | Object | Bytes |
 | header | header (0) | (0) | header (1) | (1) | ...
 +--------+------------+-------+------------+-------+------

 The first object in the stream is object number 0, followed by 1,
 etc. Arrival of objects out of order will be treated as a protocol
 error.

 TODO: this strict "in order" arrival is not verified if there is one
 stream per drop-priority level. Add text to enable that.

 Alternatively, certain applications can choose to send each object in
 its own unidirectional QUIC stream. In such cases, each stream will
 start with a "group header" message specifying the media ID and the
 group ID, followed by a single "object header" and then the content
 of the objects (as depicted below).

 +--------+------------+-------+

 | Group | Object | Bytes |
 | header | header (n) | (n) |
 +--------+------------+-------+

 The MOQTransport doesn't enforce a rule to follow for the
 applications, but instead aims to provide tools for the applications
 to make the choices appropriate for their use-cases.

4.2.1. Group Header

 The group header message is encoded as:

 group_header {
 message_type(i),
 media_id(i),
 group_id(i)
 }

 The message type is set to GROUP_HEADER, 11. media_id MUST correspond
 to the one that was setup as part of publish_request control message
 exchange Section 4.1.3. group_id always starts at 0 and increases
 sequentially at the original media publisher.

4.2.2. Object header

 Each object in the stream is encoded as an Object header, followed by
 the content of the object. The Object header is encoded as:

 object_header {
 message_type(i),
 object_id(i),
 [nb_objects_previous_group(i),]
 flags[8],
 object_length(i)
 }

 The message type is set to OBJECT_HEADER, 12. object_id is identified
 by a sequentially increasing integer, starting at 0.

 The nb_objects_previous_group is present if and only if this is the
 first fragment of the first object in a group, i.e., object_id and
 offset are both zero. The number indicates how many objects were
 sent in the previous group. It enables the receiver to check whether
 all these objects have been received.

 The flags field is used to maintain low latency by selectively
 dropping objects in case of congestion. The flags field is encoded
 as:

 {
 maybe_dropped(1),
 drop_priority(7)

 }

4.3. Datagram considerations

 MoQ objects can be transmitted as QUIC datagrams, if the datagram
 transmission option has been validated during the subscribe or
 publish transaction. Such a option is chosen for non-relaible media
 delivery scenarios.

 When sent as datagrams, the object is split into a set of fragments.
 Each fragment is sent as a separate datagram. The fragment header
 contains enough information to enable reassembly. If the complete
 set of fragments is not received in a reasonable time, the whole
 object shall be considered lost.

4.3.1. Fragment Message

 In the datagram variants, instead of sending a series of whole
 objects on a stream, objects are sent as series of fragments, using
 the Fragment message:

 fragment {
 message_type(i),
 [media_id(i)],
 [group_id(i)],
 [object_id(i)],
 fragment_offset(i),
 object_length(i),
 fragment_length(i),
 data(...)
 }

 The message type will be set to FRAGMENT (13). The optional fields
 media_id, group_id and object_id are provided in the cases where they
 cannot be obtained from the context where the fragment message is
 published. For typical cases, the group_header and the object_header
 messages preceed the series of fragment messages and thus provide the
 necessary context to tie the data to the object.

 The fragment_offset value indicates where the fragment data starts in
 the object designated by group_id and object_id. Successive messages
 are sent in order, which means one of the following three conditions
 must be verified:

 * The group id and object id match the group id and object id of the
 previous fragment, the previous fragment is not a last fragment,
 and the offset matches the previous offset plus the previous
 length.

 * The group id matches the group id of the previous message, the
 object id is equal to the object id of the previous fragment plus
 1, the offset is 0, and the previous message is a last fragment.

 * The group id matches the group id of the previous message plus 1,
 the object id is 0, the offset is 0, and the previous message is a
 last fragment.

 The nb_objects_previous_group is present if and only if this is the
 first fragment of the first object in a group, i.e., object_id and
 offset are both zero. The number indicates how many objects were
 sent in the previous groups. It enables the receiver to check
 whether all these objects have been received.

 The flags field is used to maintain low latency by selectively
 dropping objects in case of congestion. The value must be the same
 for all fragments belonging to the same object.

 The flags field is encoded as:

 {
 maybe_dropped(1),
 drop_priority(7)
 }

 The high order bit maybe_dropped indicates whether the object can be
 dropped. The drop_priority allows nodes to selectively drop objects.
 Objects with the highest priority as dropped first.

 When an object is dropped, the relays will send a placeholder, i.e.,
 a single fragment message in which:

 * offset_and_fin indicates offset=0 and fin=1

 * the length is set to zero

 * the flags field is set to the all-one version 0xff.

 Sending a placeholder allows node to differentiate between a
 temporary packet loss, which will be soon corrected, and a deliberate
 object drop.

5. Drop Priority

 In case of congestion, the MoQ nodes may have to drop some traffic in
 order to avoid building large queues. The drop algorithm must
 respect the relative importance of objects within a track, as well as
 the relative importance of tracks within an MoQ connection. Relays
 base their decisions on two properties of objects:

 * a "droppable" flag, which indicates whether the application would
 rather see the object queued (droppable=False) or dropped
 (droppable=True) in case of congestion.

 * a "drop-priority" value, which indicates the relative priority of

 this object versus other objects in the track or other tracks in
 the connection.

 Higher values of the drop-priority field indicate higher drop
 priorities: objects mark with priority 0 would be the last to be
 dropped, objects marked with priority 3 would be dropped before
 dropping objects with priority 2, etc. Nodes support up to 8 drop-
 priority levels, numbered 0 to 7.

 Nodes may use drop-priorities in two ways: either by delegating to
 the QUIC stack, or by monitoring the state of congestion and
 performing their own scheduling.

5.1. Applying drop-priorities through the QUIC stack

 Many QUIC stack allow application to associate a priority with a
 stream. The MoQ transports can use that feature to delegate priority
 enforcement to the QUIC stack. The actual delegation depends on the
 transport choice.

 If the MoQ transport uses the strategy where each object is
 transmitted on a separate unidirectional QUIC stream, then that
 stream should be marked with the object's priority. The QUIC API
 should be set to request FIFO ordering of streams within a priority
 layer.

 If all the objects of a given group, say GOP, within a track are sent
 in a single unidirectional QUIC stream. This strategy can be
 modified to be priority aware. In a priority aware strategy, there
 will be one unidirectional stream per group and per priority level,
 and the priority of the unidirectional stream will match that level.

 In both cases, if congestion happens, objects marked as "droppable"
 will have be dropped by resetting the corresponding unidirectional
 streams. This decision will happen separately for each track,
 typically at the end of a group. At that point, the decision depends
 on whether the content of the unidirectional streams have been sent
 or not:

 * if all objects have been sent, the stream can be closed normally.

 * if some objects have not been sent, or not acknowledged, the
 stream shall be reset, causing the corresponding objects to be
 dropped.

 These policies will normally ensure that for any congestion state,
 only the most urgent objects are sent.

5.2. Applying drop-priorities through active scheduling

 Some transport strategies prevent delegation of priority enforcement
 to the QUIC stack. For example, if the policy is to use a single

 QUIC stream or a single stream carrying objects of different
 priorities. In such cases, nodes react to congestion by scheduling
 some objects for transmission and explicitly dropping other objects.

 Node should schedule objects as follow:

 * if congestion is noticed, the node will delay or drop first the
 numerically higher priority level. The node will drop all objects
 marked at that priority, from the first dropped object to the end
 of the group.

 * if congestion persists despite dropping or delaying the "bottom"
 level, the node will start dropping the next level, and continue
 doing so until the end of the group.

 * if congestion eases, the node will increase the delay or drop
 level.

 While the "drop level" is computed per connection, specific actions
 will have to be performed at the "track" level:

 * for a given track, the node remembers the highest priority level
 for which objects were dropped in the current group. That level
 will be maintained for that track until the end of the group.

 * at the beginning of a group, the priority level is set to the
 currently computed value for the connection.

5.3. Tracking drops

 For management purposes, it is important to indicate which objects
 have been dropped, as in "there was supposed to be here an object
 number X or priority P but it has been dropped." In the scheduling
 approach, this can be achieved by inserting a small placeholder for
 the missing object. In the delegating approach, we need another
 solution. One possibility would be to send a "previous group
 summary" at the beginning of each group, stating the expected content
 of the previous group.

5.4. Marking objects with priorities

 The publishers mark objects with sequence numbers within groups and
 with drop and priority values according to the need of the
 application. This marks must be consistent with the encoding
 requirements, making sure that:

 * objects can only have encoding dependencies on other objects in
 the same group,

 * objects can only have encoding dependencies on other objects with
 equal or or numerically lower priority levels.

 With these constraints, applications have broad latitude to pick
 priorities in order to match the desired user experience. When using
 scalable video codecs, this could mean for example chosing between
 "frame rate first" or "definition first" priorities, or some
 compromise.

6. Relays

 The Relays play an important role for enabling low latency media
 delivery within the MoQ architecture. This specification allows for
 a delivery protocol based on a publish/subscribe metaphor where some
 endpoints, called publishers, publish media objects and some
 endpoints, called subscribers, consume those media objects. Some
 relays can leverage this publish/subscribe metaphor to form an
 overlay delivery network similar/in-parallel to what CDN provides
 today. While this type of overlay is expected to be a major
 application of relays, other types of relays can also be defined to
 offer various types of services.

 Objects are received by "subscribing" to it. Objects are identified
 such that it is unique for the relay/delivery network.

 Relays provide several benefits including

 * Scalability - Relays provide the fan-out necessary to scale up
 streams to production levels (millions) of concurrent subscribers.

 * Reliability - relays can improve the overall reliability of the
 delivery system by providing alternate paths for routing content.

 * Performance - Relays are usually positioned as close to the edge
 of a network as possible and are well-connected to each other and
 to the Origin via high capacity managed networks. This topography
 minimizes the RTT over the unmanaged last mile to the end-user,
 improving the latency and throughput compared to the client
 connecting directly to the origin.'

 * Security - Relays act to shield the origin from DDOS and other
 malicious attacks.

6.1. Relay - Subscriber Interactions

 Subscribers interact with the "Relays" by sending a "subscribe"
Section 4.1.1 command for the tracks of interest.

 Relays MUST be willing to act on behalf of the subscriptions before
 they can forward the media, which implies that the subscriptions MUST
 to be authorized and it is done as follows:

 1. Provider serving the tracks MUST be authorized. Track IDs
 provide the necessary information to identify the Origin/
 Provider.

 2. Subscriptions MUST be authorized. This is typically done by
 either subscriptions carrying enough authorization information or
 subscriptions being forwarded to the Origin for obtaining
 authorization. The mechanics of either of these approaches are
 out of scope for this specification.

 In all the scenarios, the end-point client making the subscribe
 request is notified of the result of the subscription.

6.2. Relay - Publisher Interactions

 Publishers MAY be configured to publish the objects to a relays based
 on the application configuration and topology. Publishing set of
 tracks through the relay starts with a "publish_request" transaction
 that describes the track identifiers. That transaction will have to
 be authorized by the Origin, using mechanisms similar to authorizing
 subscriptions.

 As specified with subscriber interactions, Relays MUST be authorized
 to serve the provider and the publish_request MUST be authorized
 before the Relays are willing to forward the published data for the
 tracks.

 Relays makes use of priority order and other metadata properties from
 the published objects to make forward or drop decisions when reacting
 to congestion as indicated by the underlying QUIC stack. The same
 can be used to make caching decisions.

6.3. Relay Discovery and Failover

 Relays are discovered via application defined ways that are out of
 scope of this document. A Relay that wants to shutdown can send a
 message to the client with the address of new relay. Client moves to
 the new relay with all of its Subscriptions and then Client
 unsubscribes from old relay and closes connection to it.

6.4. Restoring connections through relays

 The transmission of a track can be interrupted by various events,
 such as loss of connectivity between subscriber and relay. Once
 connectivity is restored, the subscriber will want to resume
 reception, ideally with as few visible gaps in the transmission as
 possible, and certainly without having to "replay" media that was
 already presented.

 There is no guarantee that the restored connectivity will have the
 same characteristics as the previous instance. The throughput might
 be lower, forcing the subscriber to select a media track with lower
 definition. The network addresses might be different, with the
 subscriber connecting to a different relay.

6.5. Examples

 Let’s consider the example as show in the picture below, where a
 large number of subscribers are interested in media streams from the
 publisher Alice. In this scenario, the publisher Alice has a live
 broadcast on channel8 with video streams at 3 different quality (HD,
 4K and SD)

 More specifically,

 1. Subscriber - S1 is interested in the just the low quality version
 of the media, and asks for the all the media groups/objects under
 the specific representation for "sd" quality.

 2. Subscriber - S2 is fine with receiving highest quality video
 streams published by Alice, hence asks for the all the media
 objects under these representations 4k.

 3. Rest of the Subscribers (say Sn,...) are fine with getting just
 the Hi-def and low quality streams of the video from Alice, and
 asks for the representations "sd" and "hd" qualities.

 The Relay must forward all these subscription requests to the ingest
 server in order to receive the content.

 Note: The notation for identifying the resources for subscription are
 for illustration purposes only.

 sub: acme.tv/brodcasts/channel8/alice/sd
 .─────.
 ┌──────(S1)
 │ `─────'
 │
 sub: acme.tv/broadcasts/channel8/alice/4 |
 sub: acme.tv/brodcasts/channel8/alice/sd |
 sub: acme.tv/brodcasts/channel8/alice/hd |
 │ | sub: acme.tv/
 ┌──────────────┐ ┌──────────────┐ │ broadcasts/
 │ │ │ │ | channel8/
 | | | | | alice/4k
 │ Ingest │ ◀────────| Relay-Edge │◀─┘ .─────.
 │ │ │ │◀────(S2)
 └──────▲─────── └────────────── ◀──┐ `─────'
 │ │ ◉
 │ │ ◉
 .─────. │ ◉
 (Alice) │
 `─────' │ .─────.
 pub: acme.tv/broadcasts/channel8/alice/hd └─(SN)
 pub: acme.tv/broadcasts/channel8/alice/sd `─────'
 pub: acme.tv/broadcasts/channel8/alice/4k

 sub: acme.tv/brodcasts/channel8/alice/sd
 sub: acme.tv/brodcasts/channel8/alice/hd

 The relay does not intercept and parse the CATALOG messages,
 therefore it does not know the entireity of the content being
 produced by Alice. It simply aggregates and forwards all
 subscription requests that it receives.

 Similarly, below example shows an Interactive media session

 pub: acme.com/meetings/m123/bob/video
 pub: acme.com/meetings/m123/bob/audio

 .─────. sub:acme.com/meetings/m123/alice/audio
 (Bob)
 `─────' sub:acme.com/meetings/m123/alice/video
 │
 │ sub:acme.com/meetings/m123/bob/audio
 │
 │ sub:acme.com/meetings/m123/bob/video
 │
 ┌──────▼───────┐ ┌──────────────┐
 │ │ │ │
 │ Relay │ ◀─────────┤ Relay │◀───┐
 │ │ │ │ |
 └──────▲───────┘ └──────────────┘ |
 │ │
 │ │
 │ │
 │ │
 .─────. │
 (Alice) │
 `─────' │ .─────.
 └────(S1)
 pub: acme.com/meetings/m123/alice/video `─────'
 pub: acme.com/meetings/m123/alice/audio
 sub:acme.com/meetings/m123/alice/audio
 sub:acme.com/meetings/m123/alice/video
 sub:acme.com/meetings/m123/bob/audio
 sub:acme.com/meetings/m123/bob/video

 The above picture shows as sample media delivery, where a tree
 topography is formed with multiple relays in the network. The
 example has 4 participants with Alice and Bob being the publishers
 and S1 being the subscribers. Both Alice and Bob are capable of
 publishing audio and video identified by their appropriate names. S1
 subscribes to all the streams being published. The edge Relay
 forwards the unique subscriptions to the downstream Relays as needed,
 to setup the delivery network.

7. Transport Usages

 Following subsections define usages of the MoQTransport over
 WebTransport and over raw QUIC.

7.1. MoQ over QUIC

 MoQ can run directly over QUIC. In that case, the following apply:

 * Connection setup corresponds to the establishment of a QUIC
 connection, in which the ALPN value indicates use of MoQ. For
 versions implementing this draft, the ALPN value is set to "moq-
 n00".

 * Bilateral and unilateral streams are mapped directly to equivalent
 QUIC streams

 * Datagrams, when used, are mapped directly to QUIC datagram frames.

7.2. MoQ over WebTransport

 MoQ can benefit from an infrastructure designed for HTTP3 by running
 over WebTransport.

 WebTransport provides protocol framework that enables clients
 constrained by the Web security model to communicate with a remote
 server using a secure multiplexed transport. WebTransport protocol
 also provides support for unidirectional streams, bidirectional
 streams and datagrams, all multiplexed within the same HTTP/3
 connection.

 Clients (publishers and subscribers) setup WebTransport Session via
 HTTP CONNECT request for the application provided MoQSession and
 provide the necessary authentication information (in the form of
 authentication token). The ":protocol" value indicates use of MoQ.
 For versions implementing this draft, the :protocol value is set to
 "moq-n00".

 In case of any errors, the session is terminated and reported to the
 application.

 Bilateral and unilateral streams are opened and used through the
 WebTransport APIs.

7.2.1. Catalog Retrieval

 On a successful connection setup, subscribers proceed by retrieving
 the catalog (if not already retrieved), subscribing to the tracks of
 their interest and consuming the data published as detailed below.

 Catalog provides the details of tracks such as Track IDs and
 corresponding configuration details (audio/video codec detail,
 gamestate encoding details, for example).

 Catalogs are identified as a special track, with its track name as
 "catalog". Catalog objects are retrieved by subscribing to its
 TrackID over its own control channel and the TrackID is formed as
 shown below

 Catalog TrackID :=<provider-domain>/<moq-session-id>/catalog

 Ex: streaming.com/emission123/catalog

 A successfull subscription will lead to one or more catalog objects
 being published on a single unidirectional data stream. Successfull
 subscriptions implies authorizaiton for subscribing to the tracks in
 the catalog.

 Unsuccessful subscriptions MUST result in closure of the WebTransport
 session, followed by reporting the error obtained to the application.

 Catalog Objects obtained MUST parse successfully, otherwise MUST be
 treated as error, thus resulting the closure of the WebTransport
 session.

7.2.2. Subscribing to Media

 Once a catalog is successfully parsed, subscribers proceed to
 subscribe to the tracks listed in the catalog. Applications can
 choose to use the same WebTransport session or multiple of them to
 perform the track subscriptions based on the application
 requirements.

 Also, It is typical for certain applications to group set of tracks
 in to a single prioritization relationship and transmit them over a
 single WebTransport Session.

 Tracks subscription is done by sending subscribe message as definedin
Section 4.1.1

 On successful subscription, subscribers should be ready to consume
 media on one or more Data Streams as identified by their media_ids.

 Failure to subscribe MUST result on closure of the control stream
 associated with the track whose subscription failed and the error
 MUST be reported to the application.

7.2.3. Publishing Media

 On successful setup of the WebTransport session, publishers send
 publish_request message listing the tracks they intend to publish
 data on. Publisher MUST be authorized to publish on the tracks and
 Relays MUST be willing to participate in the media delivery.

 A sucessfull publish_reply allows publishers to publish on the tracks

 advertised.

 Publishing objects on the tracks follow the procedures defined in
Section 4.2 and Section 4.3.

8. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Appendix A. TODO

 1. Add authorization details for the protocol messages.

Appendix B. Security Considerations

 This section needs more work

Appendix C. IANA Considerations

 TODO: fill this section. Register ALPN. Register WebTransport
 protocol. Open new registry for MoQ message types. Possibly, open
 registry for MoQ errors.

Appendix D. References

D.1. Normative References

 [RFC XXX] Nandakumar, S "MoQ Base Protocol" Work in progress

D.2. Informative references

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126,
 DOI 10.17487/RFC8126, June 2017, %gt;https://www.rfc-editor.org/info/

rfc8126>.

 [QUIC] Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", RFC 9000, DOI 10.17487/RFC9000,
 May 2021, %gt;https://www.rfc-editor.org/rfc/rfc9000>.

 [WebTransport] Frindell, A., Kinnear, E., and V. Vasiliev,
 "WebTransport over HTTP/3", Work in Progress, Internet-Draft, draft-

ietf-webtrans-http3-04, 24 January 2023,

 >https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-04>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc8126
https://datatracker.ietf.org/doc/html/rfc9000
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-04
https://datatracker.ietf.org/doc/html/draft-ietf-webtrans-http3-04

Appendix E. Acknowledgments

 Cullen Jennings, the IETF MoQ mailing lists and discussion groups.

Authors' Addresses

 Suhas Nandakumar
 Cisco
 Email: snandaku@cisco.com

 Christian Huitema
 Private Octopus Inc.
 Email: huitema@huitema.net

 Will Law
 Akamai
 Email: wilaw@akamai.com

