
Network Working Group C. Newman
Internet Draft: SCRAM-SHA1 SASL Mechanism Innosoft
Document: draft-newman-auth-scram-00.txt September 1997
 Expires in six months

 Salted Challenge Response Authentication Mechanism (SCRAM)

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

Abstract

 SCRAM is a simple passphrase-based authentication mechanism which
 uses only a publicly available cryptographic hash function to
 provide authentication for protocols. It is designed to replace
 plaintext password mechanisms without significant additional
 complexity, loss of performance or plaintext equivalent verifiers.

 CRAM-MD5 [CRAM-MD5], a similar mechanism, has the drawback that the
 password verifier stored on the server can be used to impersonate
 the user. Current plaintext password mechanisms do not have this
 drawback and it is a serious issue for servers which allow remote
 login or sites which distribute the authentication database to
 multiple servers via an insecure protocol. SCRAM-SHA1 corrects
 this drawback with minimal additional complexity.

 This document defines the SCRAM-SHA1 SASL mechanism [SASL] using
 the SHA1 [SHA1] and HMAC-SHA1 [HMAC] algorithms.

Newman [Page 1]

https://datatracker.ietf.org/doc/html/draft-newman-auth-scram-00.txt

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

0. Open Issues

 (1) Although this mechanism has no new concepts, it has not had
 extensive review. Advice on the completeness of the security
 considerations is appreciated.

 (2) The TWEKE proposal (appendix B) is more secure and more
 complex. Is it an acceptable or desirable tradeoff? Perhaps SCRAM
 could get 40% penetration into the plaintext market and TWEKE could
 get 30%, would it be worthwhile to do TWEKE instead of SCRAM in
 this case? What if there's a bigger difference?

1. Conventions Used in this Document

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

2. Client Implementation of SCRAM-SHA1

 This section includes a step-by-step guide for client implementors.
 Although section 7 contains the formal definition of the syntax and
 is the authoritative reference in case of errors here, this section
 should be sufficient to build a correct implementation.

 When used with SASL the mechanism name is "SCRAM-SHA1". The
 mechanism does not provide a security layer.

 The client begins by sending a message to the server containing
 three pieces of information:

 (1) An authorization identity. When the empty string is used, this
 defaults to the authentication identity. This is used by system
 administrators or proxy servers to login with a different user
 identity. This field may be up to 255 octets and is terminated by
 a NUL (0) octet. US-ASCII printable characters are preferred,
 although UTF-8 [UTF-8] printable characters are permitted to
 support international names. Use of character sets other than
 US-ASCII and UTF-8 is forbidden.

 (2) An authentication identity. The identity whose passphrase will
 be used. This field may be up to 255 octets and is terminated by a
 NUL (0) octet. US-ASCII printable characters are preferred,
 although UTF-8 [UTF-8] printable characters are permitted to
 support international names. Use of character sets other than
 US-ASCII and UTF-8 is forbidden.

Newman [Page 2]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 (3) A "client nonce" of 8 to 256 octets. It is important that this
 be globally unique and somewhat random. It can be generated by
 appending the system clock to a random number (advice for
 generating good random numbers can be found in [RANDOM]) and the
 client's IP address or domain name.

 The server responds by sending a message containing three pieces of
 information:

 (4) An 8-octet salt value, specific to the authentication identity.

 (5) A server id consisting of the service name of the protocol's
 SASL profile followed by a "." followed by the domain name of the
 server followed by an "@" and optional extension data terminated by
 NUL. This will not be longer than 512 octets. The client SHOULD
 verify this is correct.

 (6) A "server nonce" of 8 to 32 octets.

 The client then does the following:

 (A) Create a buffer containing the user's passphrase. The client
 MUST support passphrases of at least 64 octets. US-ASCII
 characters are preferred, although UTF-8 characters are permitted.
 Character sets other than UTF-8 MUST NOT be used.

 (B) Apply the SHA1 function to (A), producing a 20 octet result.
 Once this is done, (A) SHOULD be erased from memory.

 (C) Apply the HMAC-SHA1 function with the result of (B) as the key
 and the 8-octet salt (4) value as the data. This produces a 20
 octet result.

 (D) Create a buffer containing the server's response (4)-(6),
 immediately followed by the initial client message (1)-(3).

 (E) Apply the HMAC-SHA1 function with the result of (C) as the key
 and the buffer from (D) as the data. This produces a 20-octet
 result.

 (F) Create a 20-octet buffer containing the exclusive-or of (B) and
 (E).

 The client then sends a message to the server containing the
 following:

 (7) The 20-octet result of step (F).

Newman [Page 3]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 If authentication is successful, then the server responds with the
 following:

 (8) A 20-octet mutual authentication verifier.

 The client SHOULD verify this with the following procedure:

 (G) Create a buffer containing the initial client message (1)-(3)
 immediately followed by the initial server response (4)-(6).

 (H) Apply the HMAC-SHA1 function with the result of (C) as the key
 and the buffer from (G) as the data.

 (I) If the result of (H) matches (8), the server is authenticated.

 A secured client MAY store the result of (B) to re-authenticate.
 Permanent storage of (B) by the client is discouraged although it
 is preferable to storing the actual passphrase.

3. Server Implementation of SCRAM-SHA1.

 The section includes a step-by-step guide for server implementors.
 Although section 7 contains the formal definition of the syntax and
 is the authoritative reference in case of errors here, this section
 in conjunction with section 2 should be sufficient to build a
 correct implementation.

 The server's authentication database contains an 8-octet salt and
 20-octet verifier for each local user. The server MAY support
 remote users using the syntax "user@host" for the authentication
 identity, but if it doesn't it MUST truncate the authentication
 identity at the "@" sign prior to lookup in the authentication
 database.

 The authentication verifier is equal to the result of step (C)
 above. To create its initial response, the server simply looks up
 the authentication identity to fetch the salt, and generates an 8
 to 32 octet nonce. This nonce MUST be unique to prevent replay
 attacks. It can be generated by appending a system clock to a
 random number [RANDOM]. To verify the client's credentials, the
 server preforms the following steps:

 (a) Generate a buffer identical to step (D) for the client.

 (b) Apply the HMAC-SHA1 function with the stored verifier as the
 key and the result of (a) as the data. This produces a 20-octet
 result equal to step (E) above.

Newman [Page 4]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 (c) Exclusive-or the result of (b) with message (7) from the
 client. This produces a 20-octet result which should be equal to
 the output of step (B) above.

 (d) Apply the HMAC-SHA1 function with (c) as the key and the stored
 salt as the data. This produces a 20-octet result.

 (e) if the result of (d) is equal to the stored verifier, then the
 user is authenticated.

 (f) Generate a buffer identical to step (G) above.

 (g) Apply the HMAC-SHA1 function with the stored verifier as the
 key and the buffer from (f) as the data. This produces a 20-octet
 result.

 The result of (g) is sent to the client as the mutual
 authentication step.

4. Example

 XXX: to be done

5. System Administrator Advice

 This section includes advice for system administrators using this
 mechanism.

 Although the verifiers used by SCRAM-SHA1 are probably more secure
 than those used by current plaintext mechanisms (such as Unix
 /etc/password), it is still very important to keep them secret.
 Just as tools exist to try common passwords against Unix
 /etc/password files, it is also possible to build such tools for
 SCRAM-SHA1. In addition, once a SCRAM-SHA1 verifier is stolen, a
 passive (undetectable) snoop of that user logging in will result in
 the output of step (B) above, which is sufficient to impersonate a
 user. This is far better than current plaintext mechanisms where a
 passive snoop always recovers the user's password, but is still a
 serious concern.

 Verifiers SHOULD be kept hidden from all users on the server.
 Sites which distribute verifiers among multiple servers, SHOULD
 encrypt them when distributing them.

 SCRAM-SHA1 is only a good mechanism if passphrases are well chosen.
 For this reason, implementations should use the term "passphrase"

Newman [Page 5]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 rather than "password" and when a user's passphrase is set, site
 policy restrictions should be applied. A reasonable site policy
 would require passphrases of at least 10 characters with at least
 one non-alphanumeric character.

 SCRAM-SHA1 doesn't protect the integrity or privacy of data
 exchanged after authentication. Use of an external encryption
 layer or a stronger authentication mechanism such as Kerberos is
 encouraged if this functionality is needed.

6. SCRAM-SHA1 Functional Notation

 This section is designed to provide a quick understanding of
 SCRAM-SHA1 for the mathematically inclined.

 + octet concatenation
 XOR the exclusive-or function
 AU is the authentication user identity (NUL terminated)
 AZ is the authorization user identity (NUL terminated)
 if AZ would be the same as AU, a single NUL is used instead.
 SV is the name of the service and server
 p is the plaintext passphrase
 H(x) is a one-way hash function applied to "x", such as SHA-1
 M(x,y) is a message authentication code (MAC) such as HMAC-SHA1
 "y" is the key and "x" is the text signed by the key.
 V is a per-user verifier the server stores
 s is a per-user salt value the server stores
 P is the proof the client sends the server
 Us is a unique nonce the server sends to the client
 Uc is a unique nonce the client sends to the server

 The verifier (V) is computed by applying the hash function to the
 plaintext passphrase, then using the result to sign the salt.
 Thus:

 V = M(s, H(p))

 The proof (P) is computed as follows:

 P = H(p) XOR M(s + SV + Us + AZ + AU + Uc, V)

 The SCRAM exchange is as follows:

 client -> server: AZ + AU + Uc
 server -> client: s + SV + Us
 client -> server: P
 server -> client: M(AZ + AU + Uc + s + SV + Us, V)

Newman [Page 6]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 The server verifies P by checking that the following is equal to V:

 M(s, P XOR M(s + SV + Us + AZ + AU + Uc, V))

 The client verifies the server's identity by performing the same
 computation the server does and comparing it to the server's
 result.

7. Formal Syntax of SCRAM-SHA1 Messages

 This is the formal syntactic definition of the client and server
 messages. This uses the ABNF [ABNF] notation.

 client-msg-1 = [authorize-id] NUL authenticate-id NUL client-nonce

 server-msg-1 = salt server-id NUL server-nonce

 client-msg-2 = proof

 server-msg-2 = mutual-auth

 passphrase = 8*UTF8-SAFE
 ;; At least 64 octets MUST be supported

 authorize-id = *UTF8-PRINT
 ;; No more than 255 octets

 authenticate-id = *UTF8-PRINT
 ;; No more than 255 octets

 server-id = service-name "." server-domain
 "@" [server-ext-data]
 ;; No more that 511 octets total

 service-name = *USASCII-PRINT
 ;; a GSSAPI service name

 server-domain = *USASCII-PRINT
 ;; an internet domain name

 server-ext-data = *UTF8-SAFE
 ;; extension data

 server-id = *UTF8-PRINT
 ;; No more than 511 octets

Newman [Page 7]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 client-nonce = 8*256OCTET

 server-nonce = 8*32OCTET

 salt = 8OCTET

 proof = 20OCTET

 mutual-auth = 20OCTET

 NUL = %x00 ;; US-ASCII NUL character

 US-ASCII-SAFE = %x01-09 / %x0B-0C / %x0E-7F
 ;; US-ASCII except CR, LF, NUL

 US-ASCII-PRINT = %x20-7E
 ;; printable US-ASCII including SPACE

 UTF8-SAFE = US-ASCII-SAFE / UTF8-1 / UTF8-2 / UTF8-3
 / UTF8-4 / UTF8-5

 UTF8-PRINT = US-ASCII-PRINT / UTF8-1 / UTF8-2 / UTF8-3
 / UTF8-4 / UTF8-5

 UTF8-CONT = %x80..BF

 UTF8-1 = %xC0..DF UTF8-CONT

 UTF8-2 = %xE0..EF 2UTF8-CONT

 UTF8-3 = %xF0..F7 3UTF8-CONT

 UTF8-4 = %xF8..FB 4UTF8-CONT

 UTF8-5 = %xFC..FD 5UTF8-CONT

8. Security Considerations

 Security considerations are discussed throughout this document.
 The security considerations of SHA1 [SHA1] and HMAC [HMAC] also
 apply.

 SCRAM-SHA1 is conjectured to be a reasonably strong mechanism as
 long as passphrases are well chosen and verifiers are kept secret.
 Making a SCRAM-SHA1 verifier public is believed to be no worse than
 making a Unix /etc/password verifier public when a plaintext-only
 mechanism is used.

Newman [Page 8]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 There are two particularly dangerous attacks against SCRAM-SHA1.
 The first is to passively record an authentication session (or
 steal the verifier) and perform an offline dictionary attack to
 find the passphrase. This type of attack is estimated to be about
 40% effective at typical sites with current behavior patterns
 [SCHNEIER]. Use of the term "passphrase", enforcement of site
 policy when passphrases are changed and user education may improve
 this to acceptable levels for many sites.

 The second attack is to both steal the verifier for a user and
 passively record an authentication session by that user. This
 results in the ability to impersonate that user and more than
 doubles the speed of a dictionary attack or brute-force attack to
 recover the actual passphrase. For this reason, verifiers should
 be kept well-protected.

 This mechanism provides no protection for the session after
 authentication. A passive observer can see information
 transmitted, and an active attacker can hijack the session. Use of
 an external encryption layer such as TLS [TLS] can address this
 problem.

 This mechanism uses a hash-function combined with exclusive-or as a
 simple single-block cipher. [SCHNEIER] expresses reservations
 about ciphers built using one-way hash functions, although not all
 of his reservations may apply to this limited use.

9. Intellectual Property Issues and Prior Art

 The author is not aware of any patents which apply to this
 mechanism.

 This is primarily a derivative of simple hash-based challenge
 response systems. The hash-based challenge response idea has
 existed since at least 1992, when the RIPE project published the
 SKID algorithm according to [SCHNEIER].

 The repeated-hash idea used to verify the client's authenticator is
 derived from S/KEY [SKEY].

 The idea of using a hash function to construct a cipher (with
 exclusive-or) was originally invented by Peter Gutmann in 1993
 according to [SCHNEIER].

 The idea of using salt to protect against global dictionary attacks
 dates back to the unix /etc/password system or before. There is
 some discussion of this in [SCHNEIER].

Newman [Page 9]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 SCRAM combines these four techniques. The author of this
 specification first proposed this publicly on a mailing list July
 16, 1997. There is nothing new about this mechanism beyond the
 idea of combining these existing techniques.

 The SCRAM algorithm includes a single-block cipher capable of
 encrypting 20 octets of authentication data. The author does not
 believe this will cause problems for export restrictions, but
 checking with the appropriate government(s) should be considered.
 Computer readable source code for cryptographic hash functions such
 as MD5 and SHA1 have been exported from the United States without
 problems.

10. References

 [ABNF] Crocker, D., "Augmented BNF for Syntax Specifications:
 ABNF", Work in progress: draft-ietf-drums-abnf-xx.txt

 [CRAM-MD5] Klensin, Catoe, Krumviede, "IMAP/POP AUTHorize Extension
 for Simple Challenge/Response", RFC 2095, MCI, January 1997.

 <ftp://ds.internic.net/rfc/rfc2095.txt>

 [HMAC] Krawczyk, Bellare, Canetti, "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104, IBM, UCSD, February 1997.

 <ftp://ds.internic.net/rfc/rfc2104.txt>

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, University of Washington, December 1996.

 <ftp://ds.internic.net/rfc/rfc2060.txt>

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

 <ftp://ds.internic.net/rfc/rfc2119.txt>

 [RANDOM] Eastlake, Crocker, Schiller, "Randomness Recommendations
 for Security", RFC 1750, DEC, Cybercash, MIT, December 1994.

 <ftp://ds.internic.net/rfc/rfc1750.txt>

 [SASL] Myers, "Simple Authentication and Security Layer (SASL)",
 work in progress.

https://datatracker.ietf.org/doc/html/draft-ietf-drums-abnf-xx.txt
https://datatracker.ietf.org/doc/html/rfc2095
ftp://ds.internic.net/rfc/rfc2095.txt
https://datatracker.ietf.org/doc/html/rfc2104
ftp://ds.internic.net/rfc/rfc2104.txt
https://datatracker.ietf.org/doc/html/rfc2060
ftp://ds.internic.net/rfc/rfc2060.txt
https://datatracker.ietf.org/doc/html/rfc2119
ftp://ds.internic.net/rfc/rfc2119.txt
https://datatracker.ietf.org/doc/html/rfc1750
ftp://ds.internic.net/rfc/rfc1750.txt

Newman [Page 10]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 [SCHNEIER] Schneier, "Applied Cryptography: Protocols, Algorithms
 and Source Code in C," John Wiley and Sons, Inc., 1996.

 [SHA1] NIST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

 [SKEY] Haller, Neil M. "The S/Key One-Time Password System", RFC
1760, Bellcore, February 1995.

 <ftp://ds.internic.net/rfc/rfc1760.txt>

 [TLS] Dierks, Allen, "The TLS Protocol Version 1.0", Work in
 progress.

 [UTF8] Yergeau, F. "UTF-8, a transformation format of Unicode and
 ISO 10646", RFC 2044, Alis Technologies, October 1996.

 <ftp://ds.internic.net/rfc/rfc2044.txt>

11. Author's Address

 Chris Newman
 Innosoft International, Inc.
 1050 Lakes Drive
 West Covina, CA 91790 USA

 Email: chris.newman@innosoft.com

A. Appendix - Sample Source Code

 XXX: to be done

B. Appendix - TWEKE Proposal

 Tom Wu has proposed adding a Diffie-Hellman key exchange to this
 mechanism. Diffie-Hellman works roughly as follows:

 Server picks g, n and x. Server computes X = g^x mod n.

 server -> client: g, n, X

 Client picks y and computes Y = g^y mod n and K = X^y mod n.

 client -> server: Y

 Server computes K = Y^x mod n (which is the same as the client's
 K).

 If g, n, x and y are sufficiently big and have the right

https://datatracker.ietf.org/doc/html/rfc1760
https://datatracker.ietf.org/doc/html/rfc1760
ftp://ds.internic.net/rfc/rfc1760.txt
https://datatracker.ietf.org/doc/html/rfc2044
ftp://ds.internic.net/rfc/rfc2044.txt

Newman [Page 11]

Internet Draft SCRAM-SHA1 SASL Mechanism September 1997

 characteristics, then both the client and server share K which is
 very difficult for a passive evesdropper to obtain.

 The TWEKE proposal would add the following steps:

 (4.5) Server sends g, n, X.

 (7.5) Client sends Y.

 and would modify steps (D) and (a) to include the value K. This
 would result in a protocol safe from passive attacks. The expense
 would be reduced performance, the need for a bignum math library
 and a requirement that an export license be obtained from certain
 governments (included the United States). This would not defend
 against active attacks, but should be free of patent restrictions
 after October 6th, 1997.

 TWEKE might be harder to deploy than SCRAM due to the higher math
 and the use of public key technology.

C. Appendix - Additional Services

 Several additional services are needed to make SCRAM useful in
 various usage scenarios. These include remote authentication
 database support for servers, authentication database APIs for
 servers, remote passphrase change support for clients, single-
 sign-on APIs for clients and management tools. The server-id is
 included to facilite the remote authentication database service.
 Otherwise these issues are deferred for future work.

Newman [Page 12]

