
Network Working Group Abhijit Menon-Sen
Internet-Draft Oryx Mail Systems GmbH
Intended Status: Proposed Standard Chris Newman
Expires: September 2009 Sun Microsystems
 Alexey Melnikov
 Isode Ltd
 Simon Josefsson
 SJD AB
 March 9, 2009

Salted Challenge Response Authentication Mechanism (SCRAM)
as a GSS-API Mechanism

draft-newman-auth-scram-gs2-01.txt

Status of this Memo

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79. This document may contain
 material from IETF Documents or IETF Contributions published or made
 publicly available before November 10, 2008. The person(s)
 controlling the copyright in some of this material may not have
 granted the IETF Trust the right to allow modifications of such
 material outside the IETF Standards Process. Without obtaining an
 adequate license from the person(s) controlling the copyright in
 such materials, this document may not be modified outside the IETF
 Standards Process, and derivative works of it may not be created
 outside the IETF Standards Process, except to format it for
 publication as an RFC or to translate it into languages other than
 English.

 This Internet-Draft is submitted to IETF in full conformance with
 the provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

Menon-Sen & Co Expires August 2009 [Page 1]

https://datatracker.ietf.org/doc/html/draft-newman-auth-scram-gs2-01.txt
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/1id-abstracts.html

Internet-draft March 2009

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft expires in September 2009.

Copyright Notice

 Copyright (c) 2009 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document.

Abstract

 The secure authentication mechanism most widely deployed and used by
 Internet application protocols is the transmission of clear-text
 passwords over a channel protected by Transport Layer Security
 (TLS). There are some significant security concerns with that
 mechanism, which could be addressed by the use of a challenge
 response authentication mechanism protected by TLS. Unfortunately,
 the challenge response mechanisms presently on the standards track
 all fail to meet requirements necessary for widespread deployment,
 and have had success only in limited use.

 This specification describes an authentication mechanism called the
 Salted Challenge Response Authentication Mechanism (SCRAM), which
 addresses the security concerns and meets the deployability
 requirements. When used in combination with TLS or an equivalent
 security layer, SCRAM could improve the status-quo for application
 protocol authentication and provide a suitable choice for a
 mandatory-to-implement mechanism for future application protocol
 standards.

 The purpose of this document is to describe the general SCRAM
 protocol, and how it is used in the GSS-API environment. Through
 GS2, this makes the protocol available in the SASL environment as
 well.

http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Menon-Sen & Co Expires August 2009 [Page 2]

Internet-draft March 2009

1.0. Conventions Used in This Document

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Formal syntax is defined by [RFC5234] including the core rules
 defined in Appendix B of [RFC5234].

 Example lines prefaced by "C:" are sent by the client and ones
 prefaced by "S:" by the server. If a single "C:" or "S:" label
 applies to multiple lines, then the line breaks between those lines
 are for editorial clarity only, and are not part of the actual
 protocol exchange.

1.1. Terminology

 This document uses several terms defined in [RFC4949] ("Internet
 Security Glossary") including the following: authentication,
 authentication exchange, authentication information, brute force,
 challenge-response, cryptographic hash function, dictionary attack,
 eavesdropping, hash result, keyed hash, man-in-the-middle, nonce,
 one-way encryption function, password, replay attack and salt.
 Readers not familiar with these terms should use that glossary as a
 reference.

 Some clarifications and additional definitions follow:

 - Authentication information: Information used to verify an identity
 claimed by a SCRAM client. The authentication information for a
 SCRAM identity consists of salt, iteration count, the "StoredKey"
 and "ServerKey" (as defined in the algorithm overview) for each
 supported cryptographic hash function.

 - Authentication database: The database used to look up the
 authentication information associated with a particular identity.
 For application protocols, LDAPv3 (see [RFC4510]) is frequently
 used as the authentication database. For network-level protocols
 such as PPP or 802.11x, the use of RADIUS is more common.

 - Base64: An encoding mechanism defined in [RFC4648] which converts
 an octet string input to a textual output string which can be
 easily displayed to a human. The use of base64 in SCRAM is
 restricted to the canonical form with no whitespace.

 - Octet: An 8-bit byte.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc5234#appendix-B
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc4648

Menon-Sen & Co Expires August 2009 [Page 3]

Internet-draft March 2009

 - Octet string: A sequence of 8-bit bytes.

 - Salt: A random octet string that is combined with a password
 before applying a one-way encryption function. This value is used
 to protect passwords that are stored in an authentication
 database.

1.2. Notation

 The pseudocode description of the algorithm uses the following
 notations:

 - ":=": The variable on the left hand side represents the octet
 string resulting from the expression on the right hand side.

 - "+": Octet string concatenation.

 - "[]": A portion of an expression enclosed in "[" and "]" may not
 be included in the result under some circumstances. See the
 associated text for a description of those circumstances.

 - HMAC(key, str): Apply the HMAC keyed hash algorithm (defined in
 [RFC2104]) using the octet string represented by "key" as the key
 and the octet string "str" as the input string. The size of the
 result is the hash result size for the hash function in use. For
 example, it is 20 octets for SHA-1 (see [RFC3174]).

 - H(str): Apply the cryptographic hash function to the octet string
 "str", producing an octet string as a result. The size of the
 result depends on the hash result size for the hash function in
 use.

 - XOR: Apply the exclusive-or operation to combine the octet string
 on the left of this operator with the octet string on the right of
 this operator. The length of the output and each of the two inputs
 will be the same for this use.

 - Hi(str, salt):

 U0 := HMAC(str, salt + INT(1))
 U1 := HMAC(str, U0)
 U2 := HMAC(str, U1)
 ...
 Ui-1 := HMAC(str, Ui-2)
 Ui := HMAC(str, Ui-1)

 Hi := U0 XOR U1 XOR U2 XOR ... XOR Ui

https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc3174

Menon-Sen & Co Expires August 2009 [Page 4]

Internet-draft March 2009

 where "i" is the iteration count, "+" is the string concatenation
 operator and INT(g) is a four-octet encoding of the integer g,
 most significant octet first.

 This is, essentially, PBKDF2 [RFC2898] with HMAC() as the PRF and
 with dkLen == output length of HMAC() == output length of H().

2. Introduction

 This specification describes an authentication mechanism called the
 Salted Challenge Response Authentication Mechanism (SCRAM) which
 addresses the requirements necessary to deploy a challenge-response
 mechanism more widely than past attempts. When used in combination
 with Transport Layer Security (TLS, see [TLS]) or an equivalent
 security layer, a mechanism from this family could improve the
 status-quo for application protocol authentication and provide a
 suitable choice for a mandatory-to-implement mechanism for future
 application protocol standards.

 <<For simplicity, this mechanism does not presently include
 negotiation of a security layer. It is intended to be used with an
 external security layer such as that provided by TLS or SSH.>>

 SCRAM provides the following protocol features:

 - The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.
 The information is salted to prevent a pre-stored dictionary
 attack if the database is stolen.

 - The server does not gain the ability to impersonate the client to
 other servers (with an exception for server-authorized proxies).

 - The mechanism permits the use of a server-authorized proxy without
 requiring that proxy to have super-user rights with the back-end
 server.

 - A standard attribute is defined to enable storage of the
 authentication information in LDAPv3 (see [RFC4510]).

 - Both the client and server can be authenticated by the protocol.

 For an in-depth discussion of why other challenge response
 mechanisms are not considered sufficient, see appendix A. For more
 information about the motivations behind the design of this
 mechanism, see appendix B.

https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc4510

Menon-Sen & Co Expires August 2009 [Page 5]

Internet-draft March 2009

 Comments regarding this draft may be sent either to the ietf-
 sasl@imc.org mailing list or to the authors.

3. SCRAM Algorithm and Protocol Overview

 Note that this section omits some details, such as client and server
 nonces. See Section 5 for more details.

 To begin with, the client is in possession of a username and
 password. It sends the username to the server, which retrieves the
 corresponding authentication information, i.e. a salt, StoredKey,
 ServerKey and the iteration count i. (Note that a server
 implementation may chose to use the same iteration count for all
 account.) The server sends the salt and the iteration count to the
 client, which then computes the following values and sends a
 ClientProof to the server:

 SaltedPassword := Hi(password, salt)
 ClientKey := H(SaltedPassword)
 StoredKey := H(ClientKey)
 AuthMessage := client-first-message + "," +
 server-first-message + "," +
 client-final-message-without-proof
 ClientSignature := HMAC(StoredKey, AuthMessage)
 ClientProof := ClientKey XOR ClientSignature
 ServerKey := HMAC(SaltedPassword, salt)
 ServerSignature := HMAC(ServerKey, AuthMessage)

 ScramKey := HMAC(ClientKey, AuthMessage)
 MicKey := HMAC(ScramKey, "SCRAM MIC constant")
 ClientMic := HMAC(MicKey, client-gs2-to-be-protected)
 ServerMic := HMAC(MicKey, server-gs2-to-be-protected)

 The server authenticates the client by computing the
 ClientSignature, exclusive-ORing that with the ClientProof to
 recover the ClientKey and verifying the correctness of the ClientKey
 by applying the hash function and comparing the result to the
 StoredKey. If the ClientKey is correct, this proves that the client
 has access to the user's password.

 Similarly, the client authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server.
 If the two are equal, it proves that the server had access to the
 user's ServerKey.

 Once authentication is successful both the client and the server are
 in possesion of the ClientKey. The ClientKey is used to construct

Menon-Sen & Co Expires August 2009 [Page 6]

Internet-draft March 2009

 the shared SCRAM key (ScramKey), which is then used to produce the
 MicKey. The MicKey is used to verify channel binding and
 authorization identity by the server, and to confirm that the
 channel binding information was verified by the client.

 The AuthMessage is computed by concatenating messages from the
 authentication exchange. client-gs2-to-be-protected and server-
 gs2-to-be-protected are also parts of the authentication exchange.
 The format of these messages is defined in the Formal Syntax
 section.

4. Use of SCRAM in GSS-API and SASL

 The SCRAM protocol defined in this document is not specific to a
 particular authentication framework, such as GSS-API, SASL or EAP.
 The purpose of this section is to describe how the SCRAM protocol is
 implemented within a particular framework. The focus here is on
 GSS-API and SASL. If desirable, it may be possible to write similar
 mappings for other authentication frameworks in the future (e.g.,
 EAP).

4.1 Use of SCRAM in GSS-API

 Context establishment consists of sending and receiving the SCRAM
 Authentication Exchange protocol. The GSS-API OID allocated for
 SCRAM is 1.3.6.1.4.1.11591.4.2. The PROT_READY should be set after
 the authentication exchange completed. When the context has been
 established, message integrity services through GSS_Wrap/GSS_Unwrap
 are implemented by using the ClientMic and ServerMic keys derived
 from the authentication protocol.

 <<describe syntax of gss_wrap/gss_unwrap output better>>

4.2 Use of SCRAM in SASL via GS2.

 Through GS2, each GSS-API mechanism is supported in SASL. To use
 SCRAM in SASL, we must derive the SASL mechanism name using the
 algorithm described in GS2. The DER encoding of the OID is (in hex)
 06 09 2B 06 01 04 01 DA 47 04 02. The SHA-1 hash is 29 06 29 12 AB
 25 83 CD 02 92 1B 4E 2D D8 6A 40 CD D0 5D C2. Convert the first ten
 octets to binary, and re-group them in groups of 5, and convert them
 back to decimal, which results in these computations:

Menon-Sen & Co Expires August 2009 [Page 7]

Internet-draft March 2009

 hex:
 29 06 29 12 AB 25 83 CD 02 92

 binary:
 00101001 00000110 00101001 00010010 10101011
 00100101 10000011 11001101 00000010 10010010

 binary in groups of 5:
 00101 00100 00011 00010 10010 00100 10101 01011
 00100 10110 00001 11100 11010 00000 10100 10010

 decimal of each group:
 5 4 3 2 18 4 21 11 4 22 1 28 26 0 20 18

 base32 encoding:
 F E D C S E V L E W B 4 2 A U S

 The last step translate each decimal value using table 3 in Base32
 [RFC4648]. Thus the SASL mechanism name for SCRAM is
 "GS2-FEDCSEVLEWB42AUS".

 The wire syntax of SCRAM in SASL is described normatively in [GS2],
 based on the wire format describe above for GSS-API.

5. SCRAM Authentication Exchange

 SCRAM is a text protocol where the client and server exchange
 messages containing one or more attribute-value pairs separated by
 commas. Each attribute has a one-letter name. The messages and their
 attributes are described in section 5.1, and defined in the Formal
 Syntax section.

 This is a simple example of a authentication exchange:
 C: n=Chris Newman,r=ClientNonce[^A]
 S: r=ClientNonceServerNonce,s=PxR/wv+epq,i=128[^A]
 C: r=ClientNonceServerNonce,p=WxPv/siO5l+qxN4[^A]mic=<<base64>>,
 d=qop=none
 S: v=WxPv/siO5l+qxN4[^A]mic=<<base64>>,d=qop=none

 << oidgunk required at the beginning of the first client message?
 However we can assume GS2 compression as discuss on the mailing list
 >>

 <<+cbgood in the last server step implies that the channel binding
 was verified. But is it optional?>>

https://datatracker.ietf.org/doc/html/rfc4648

Menon-Sen & Co Expires August 2009 [Page 8]

Internet-draft March 2009

 With channel bindings this might look like:

 C: n=Chris Newman,r=ClientNonce[^A]
 S: r=ClientNonceServerNonce,s=PxR/wv+epq,i=128[^A]
 C: r=ClientNonceServerNonce,p=WxPv/siO5l+qxN4[^A]mic=<<base64>>,
 d=qop=none,cbqop=none,c=<<base64>>
 S: v=WxPv/siO5l+qxN4[^A]mic=<<base64>>,d=qop=none+cbgood

 Note that [^A] here represents 1 octet with value %x01.

 <<This text needs to be updated to match ABNF:>>

 First, the client sends a message containing the username, and a
 random, unique nonce. In response, the server sends the user's
 iteration count i, the user's salt, and appends its own nonce to the
 client-specified one. The client then responds with the same nonce
 and a ClientProof computed using the selected hash function as
 explained earlier. In this step the client can also include an
 optional authorization identity. <<The server verifies the nonce
 and the proof, verifies that the authorization identity (if supplied
 by the client in the second message) is authorized to act as the
 authentication identity, and, finally, it responds with a
 ServerSignature, concluding the authentication exchange>>. <<The
 client then authenticates the server by computing the
 ServerSignature and comparing it to the value sent by the server.>>
 If the two are different, the client MUST consider the
 authentication exchange to be unsuccessful and it might have to drop
 the connection.

5.1 SCRAM attributes

 This section describes the permissible attributes, their use, and
 the format of their values. All attribute names are single US-ASCII
 letters and are case-sensitive.

 - a: This optional attribute specifies an authorization identity. A
 client may include it in its second message to the server if it
 wants to authenticate as one user, but subsequently act as a
 different user. This is typically used by an administrator to
 perform some management task on behalf of another user, or by a
 proxy in some situations (<<see appendix A for more details>>).

 Upon the receipt of this value the server verifies its correctness
 and makes the authorization decision. Failed verification results
 in failed authentication exchange.

Menon-Sen & Co Expires August 2009 [Page 9]

Internet-draft March 2009

 If this attribute is omitted (as it normally would be), or
 specified with an empty value, the authorization identity is
 assumed to be derived from the username specified with the
 (required) "n" attribute.

 The server always authenticates the user specified by the "n"
 attribute. If the "a" attribute specifies a different user, the
 server associates that identity with the connection after
 successful authentication and authorization checks.

 The syntax of this field is the same as that of the "n" field with
 respect to quoting of %x01, '=' and ','.

 - n: This attribute specifies the name of the user whose password is
 used for authentication. A client must include it in its first
 message to the server. If the "a" attribute is not specified
 (which would normally be the case), this username is also the
 identity which will be associated with the connection subsequent
 to authentication and authorization.

 Before sending the username to the server, the client MUST prepare
 the username using the "SASLPrep" profile [SASLPrep] of the
 "stringprep" algorithm [RFC3454]. If the preparation of the
 username fails or results in an empty string, the client SHOULD
 abort the authentication exchange (*).

 (*) An interactive client can request a repeated entry of the
 username value.

 Upon receipt of the username by the server, the server SHOULD
 prepare it using the "SASLPrep" profile [SASLPrep] of the
 "stringprep" algorithm [RFC3454]. If the preparation of the
 username fails or results in an empty string, the server SHOULD
 abort the authentication exchange.

 The characters %x01, ',' or '=' in usernames are sent as '=01',
 '=2C' and '=3D' respectively. If the server receives a username
 which contains '=' not followed by either '01', '2C' or '3D', then
 the server MUST fail the authentication.

 - m: This attribute is reserved for future extensibility. In this
 version of SCRAM, its presence in a client or a server message
 MUST cause authentication failure when the attribute is parsed by
 the other end.

 - r: This attribute specifies a sequence of random printable
 characters excluding ',' which forms the nonce used as input to
 the hash function. No quoting is applied to this string (unless

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3454

Menon-Sen & Co Expires August 2009 [Page 10]

Internet-draft March 2009

 the binding of SCRAM to a particular protocol states otherwise).
 As described earlier, the client supplies an initial value in its
 first message, and the server augments that value with its own
 nonce in its first response. It is important that this be value
 different for each authentication. The client MUST verify that the
 initial part of the nonce used in subsequent messages is the same
 as the nonce it initially specified. The server MUST verify that
 the nonce sent by the client in the second message is the same as
 the one sent by the server in its first message.

 - c: This optional attribute specifies base64-encoded channel-
 binding data. It is sent by the client in the second step. If
 specified by the client, if the server supports the specified
 channel binding type and if the server can't verify it, then the
 server MUST fail the authentication exchange. Whether this
 attribute is included, and the meaning and contents of the
 channel-binding data depends on the external security layer in
 use. This is necessary to detect a man-in-the-middle attack on the
 security layer.

 - s: This attribute specifies the base64-encoded salt used by the
 server for this user. It is sent by the server in its first
 message to the client.

 - i: This attribute specifies an iteration count for the selected
 hash function and user, and must be sent by the server along with
 the user's salt.

 Servers SHOULD announce a hash iteration-count of at least 128.

 - p: This attribute specifies a base64-encoded ClientProof. The
 client computes this value as described in the overview and sends
 it to the server.

 - v: This attribute specifies a base64-encoded ServerSignature. It
 is sent by the server in its final message, and may be used by the
 client to verify that the server has access to the user's
 authentication information. This value is computed as explained in
 the overview.

6. Formal Syntax

 The following syntax specification uses the Augmented Backus-Naur
 Form (ABNF) notation as specified in [RFC5234]. "UTF8-2", "UTF8-3"
 and "UTF8-4" non-terminal are defined in [UTF-8].

 attr-val = ALPHA "=" value

https://datatracker.ietf.org/doc/html/rfc5234

Menon-Sen & Co Expires August 2009 [Page 11]

Internet-draft March 2009

 value = *(value-char)

 value-safe-char = %02-2B / %2D-3C / %3E-7F /
 UTF8-2 / UTF-3 / UTF8-4
 ;; UTF8-char except NUL, %x01 (CTRL+A), "=",
 ;; and ",".

 value-char = value-safe-char / "="

 base64-char = ALPHA / DIGIT / "/" / "+"

 base64-4 = 4*4(base64-char)

 base64-3 = 3*3(base64-char) "="

 base64-2 = 2*2(base64-char) "=="

 base64 = *(base64-4) [base64-3 / base64-2]

 posit-number = (%x31-39) *DIGIT
 ;; A positive number

 saslname = 1*(value-safe-char / "=01" / "=2C" / "=3D")
 ;; Conforms to <value>

 authzid = "a=" saslname
 ;; Protocol specific.

 username = "n=" saslname
 ;; Usernames are prepared using SASLPrep.

 reserved-mext = "m=" 1*(value-char)
 ;; Reserved for signalling mandatory extensions.
 ;; The exact syntax will be defined in
 ;; the future.

 channel-binding = "c=" base64

 proof = "p=" base64

 nonce = "r=" c-nonce [s-nonce]
 ;; Second part provided by server.

 c-nonce = value

 s-nonce = value

 salt = "s=" base64

Menon-Sen & Co Expires August 2009 [Page 12]

Internet-draft March 2009

 verifier = "v=" base64
 ;; base-64 encoded ServerSignature.

 iteration-count = "i=" posit-number

 delim = %x01

 client-first-message =
 scram-client-first-message delim

 server-first-message =
 scram-server-first-message delim

 client-final-message =
 scram-client-final-message-without-proof ","
 proof delim
 gss-mic client-gss-wrap
 ;; <<GS2 extensions omitted after "gss-mic">>

 server-final-message =
 scram-server-final-message delim
 gss-mic server-gss-wrap
 ;; <<GS2 extensions omitted after "gss-mic">>

 gss-mic = "mic=" base64 ","
 ;; base-64 encoding of ClientMic
 ;; for the client and ServerMic
 ;; for the server

 client-gss-wrap = "d=" client-gs2-to-be-protected
 ;; A particular case of <gss-wrap>

 client-gs2-to-be-protected = "qop=none" [",cbqop=none," channel-
 binding]
 ["," authzid]
 ;; A particular case of <gs2-to-be-protected>

 server-gss-wrap = "d=" server-gs2-to-be-protected
 ;; A particular case of <gss-wrap>

 server-gs2-to-be-protected = "qop=none" ["+cbgood"]
 ;; A particular case of <gs2-to-be-protected>
 ;; Note that "+cbgood" is included if
 ;; channel binding verification succeeded.

 gss-wrap = "d=" gs2-to-be-protected

Menon-Sen & Co Expires August 2009 [Page 13]

Internet-draft March 2009

 gs2-to-be-protected = qop ["," maxbuf]
 ["," cbqop "," channel-binding] ["," authzid]
 ;; <<GS2- specific extensions -
 ;; "["," extensions]"
 ;; omitted at the end>>

 qop = "qop=" qopvalue *("+" qopvalue)

 qopvalue = "none" ; no security layer
 / "integ" ; integrity protection
 / "conf" ; confidentiality protection
 / "cbgood" ; channel binding validated
 ; (server to client)

 maxbuf = "maxbuf=" posit-number

 cbqop = "cbqop=" qopvalue *("+" qopvalue)
 ;; QOPs that can be used if channel binding
 ;; succeeds

 scram-client-first-message =
 [reserved-mext ","] username "," nonce
 ["," extensions]

 scram-server-first-message =
 [reserved-mext ","] nonce "," salt ","
 iteration-count ["," extensions]

 scram-client-final-message-without-proof =
 nonce ["," extensions]
 ;; <<Note, we used to have GSS-API
 ;; channel-binding here, but the GS2
 ;; spec says it MUST be NULL>>

 scram-server-final-message =
 verifier ["," extensions]

 extensions = attr-val *("," attr-val)
 ;; All extensions are optional,
 ;; i.e. unrecognized attributes
 ;; not defined in this document
 ;; MUST be ignored.

Menon-Sen & Co Expires August 2009 [Page 14]

Internet-draft March 2009

7. Security Considerations

 If the authentication exchange is performed without a strong
 security layer, then a passive eavesdropper can gain sufficient
 information to mount an offline dictionary or brute-force attack
 which can be used to recover the user's password. The amount of time
 necessary for this attack depends on the cryptographic hash function
 selected, the strength of the password and the iteration count
 supplied by the server. An external security layer with strong
 encryption will prevent this attack.

 If the external security layer used to protect the SCRAM exchange
 uses an anonymous key exchange, then the SCRAM channel binding
 mechanism can be used to detect a man-in-the-middle attack on the
 security layer and cause the authentication to fail as a result.
 However, the man-in-the-middle attacker will have gained sufficient
 information to mount an offline dictionary or brute-force attack.
 For this reason, SCRAM includes the ability to increase the
 iteration count over time.

 If the authentication information is stolen from the authentication
 database, then an offline dictionary or brute-force attack can be
 used to recover the user's password. The use of salt mitigates this
 attack somewhat by requiring a separate attack on each password.
 Authentication mechanisms which protect against this attack are
 available (e.g., the EKE class of mechanisms), but the patent
 situation is presently unclear.

 If an attacker obtains the authentication information from the
 authentication repository and either eavesdrops on one
 authentication exchange or impersonates a server, the attacker gains
 the ability to impersonate that user to all servers providing SCRAM
 access using the same hash function, password, iteration count and
 salt. For this reason, it is important to use randomly-generated
 salt values.

 If the server detects (from the value of the client-specified "h"
 attribute) that both endpoints support a stronger hash function that
 the one the client actually chooses to use, then it SHOULD treat
 this as a downgrade attack and reject the authentication attempt.

 A hostile server can perform a computational denial-of-service
 attack on clients by sending a big iteration count value.

Menon-Sen & Co Expires August 2009 [Page 15]

Internet-draft March 2009

8. IANA considerations

 None.

9. Acknowedgements

 The authors would like to thank Dave Cridland for his contributions
 to this document.

10. Normative References

 [RFC4648] Josefsson, "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, SJD, October 2006.

 [UTF-8] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC2104] Krawczyk, Bellare, Canetti, "HMAC: Keyed-Hashing for
 Message Authentication", IBM, February 1997.

 [RFC2119] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March
 1997.

 [RFC3174] Eastlake, Jones, "US Secure Hash Algorithm 1 (SHA1)", RFC
3174, Motorola, September 2001

 [RFC5234] Crocker, Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 5234, January 2008.

 [RFC4422] Melnikov, Zeilenga, "Simple Authentication and Security
 Layer (SASL)", RFC 4422, Isode Limited, June 2006.

 [SASLPrep] Zeilenga, K., "SASLprep: Stringprep profile for user
 names and passwords", RFC 4013, February 2005.

 [RFC3454] Hoffman, P., Blanchet, M., "Preparation of
 Internationalized Strings ("stringprep")", RFC 3454,
 December 2002.

 [SASL-GS2] Josefsson, S., "Using GSS-API Mechanisms in SASL: The GS2
 Mechanism Family", work in progress, draft-ietf-sasl-

gs2-10.txt, July 2008. <<Can we avoid making this a
 normative reference?>>

https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc3174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc4422
https://datatracker.ietf.org/doc/html/rfc4013
https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-gs2-10.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-gs2-10.txt

Menon-Sen & Co Expires August 2009 [Page 16]

Internet-draft March 2009

11. Informative References

 [RFC2195] Klensin, Catoe, Krumviede, "IMAP/POP AUTHorize Extension
 for Simple Challenge/Response", RFC 2195, MCI, September
 1997.

 [RFC2202] Cheng, Glenn, "Test Cases for HMAC-MD5 and HMAC-SHA-1",
RFC 2202, IBM, September 1997

 [RFC2898] Kaliski, B., "PKCS #5: Password-Based Cryptography
 Specification Version 2.0", RFC 2898, September 2000.

 [TLS] Dierks, Rescorla, "The Transport Layer Security (TLS)
 Protocol, Version 1.2", RFC 5246, August 2008.

 [RFC4949] Shirey, "Internet Security Glossary, Version 2", RFC
4949, FYI 0036, August 2007.

 [RFC4086] Eastlake, Schiller, Crocker, "Randomness Requirements for
 Security", RFC 4086, BCP 0106, Motorola Laboratories,
 June 2005.

 [RFC4510] Zeilenga, "Lightweight Directory Access Protocol (LDAP):
 Technical Specification Road Map", RFC 4510, June 2006.

 [DIGEST-MD5] Leach, P. and C. Newman , "Using Digest Authentication
 as a SASL Mechanism", RFC 2831, May 2000. <<Also draft-

ietf-sasl-rfc2831bis-12.txt>>

 [DIGEST-HISTORIC] Melnikov, "Moving DIGEST-MD5 to Historic", work in
 progress, draft-ietf-sasl-digest-to-historic-00.txt, July
 2008

 [CRAM-HISTORIC] Zeilenga, "CRAM-MD5 to Historic", work in progress,
draft-ietf-sasl-crammd5-to-historic-00.txt, November

 2008.

 [PLAIN] Zeilenga, "The PLAIN Simple Authentication and Security
 Layer (SASL) Mechanism" RFC 4616, August 2006.

12. Authors' Addresses

 Abhijit Menon-Sen
 Oryx Mail Systems GmbH

 Email: ams@oryx.com

https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc2202
https://datatracker.ietf.org/doc/html/rfc2898
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4949
https://datatracker.ietf.org/doc/html/rfc4086
https://datatracker.ietf.org/doc/html/bcp0106
https://datatracker.ietf.org/doc/html/rfc4510
https://datatracker.ietf.org/doc/html/rfc2831
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-12.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2831bis-12.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-digest-to-historic-00.txt
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-crammd5-to-historic-00.txt
https://datatracker.ietf.org/doc/html/rfc4616

Menon-Sen & Co Expires August 2009 [Page 17]

Internet-draft March 2009

 Alexey Melnikov
 Isode Ltd

 EMail: Alexey.Melnikov@isode.com

 Chris Newman
 Sun Microsystems
 1050 Lakes Drive
 West Covina, CA 91790
 USA

 Email: chris.newman@sun.com

 Simon Josefsson
 Email: simon@josefsson.org

Appendix A: Other Authentication Mechanisms

 The DIGEST-MD5 [DIGEST-MD5] mechanism has proved to be too complex
 to implement and test, and thus has poor interoperability. The
 security layer is often not implemented, and almost never used;
 everyone uses TLS instead. For a more complete list of problems
 with DIGEST-MD5 which lead to the creation of SCRAM see [DIGEST-
 HISTORIC].

 The CRAM-MD5 SASL mechanism, while widely deployed has also some
 problems, in particular it is missing some modern SASL features such
 as support for internationalized usernames and passwords, support
 for passing of authorization identity, support for channel bindings.
 It also doesn't support server authentication. For a more complete
 list of problems with CRAM-MD5 see [CRAM-HISTORIC].

 The PLAIN [PLAIN] SASL mechanism allows a malicious server or
 eavesdropper to impersonate the authenticating user to any other
 server for which the user has the same password. It also sends the
 password in the clear over the network, unless TLS is used. Server
 authentication is not supported.

Appendix B: Design Motivations

 The following design goals shaped this document. Note that some of
 the goals have changed since the initial version of the document.

 The SASL mechanism has all modern SASL features: support for

Menon-Sen & Co Expires August 2009 [Page 18]

Internet-draft March 2009

 internationalized usernames and passwords, support for passing of
 authorization identity, support for channel bindings.

 Both the client and server can be authenticated by the protocol.

 The authentication information stored in the authentication
 database is not sufficient by itself to impersonate the client.

 <<The server does not gain the ability to impersonate the client
 to other servers (with an exception for server-authorized
 proxies).>>

 The mechanism is extensible, but [hopefully] not overengineered in
 this respect.

 Easier to implement than DIGEST-MD5 in both clients and servers.

 On the wire compatibility with GS2 [SASL-GS2].

Appendix C: SCRAM Examples

 <<To be written.>>

Menon-Sen & Co Expires August 2009 [Page 19]

Internet-draft March 2009

 (RFC Editor: Please delete everything after this point)

Open Issues

 - The appendices need to be written.

 - Should the server send a base64-encoded ServerSignature for the
 value of the "v" attribute, or should it compute a ServerProof the
 way the client computes a ClientProof?

Menon-Sen & Co Expires August 2009 [Page 20]

