
Network Working Group C. Newman
Internet Draft: PASS-DSS-SHA-3DES-1 SASL Mechanism Innosoft
Document: draft-newman-sasl-passdss-00.txt January 1998
 Expires in six months

 DSS Secured Password Authentication Mechanism

Status of this memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-Drafts
 as reference material or to cite them other than as "work in
 progress."

 To view the entire list of current Internet-Drafts, please check
 the "1id-abstracts.txt" listing contained in the Internet-Drafts
 Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
 (Europe), munnari.oz.au (Pacific Rim), ds.internic.net (US East
 Coast), or ftp.isi.edu (US West Coast).

Abstract

 Some system administrators are faced with a choice between
 deploying a new authentication infrastructure or sending
 unencrypted passwords in the clear over the Internet. Deploying a
 new authentication infrastructure often involves modifying
 operating system services or keeping parallel authentication
 databases up to date and is thus unacceptable to many
 administrators.

 Solutions which encrypt the entire session are often crippled with
 weak keys (due to government restrictions) which are unsuitable for
 passwords. In addition, such solutions often reduce performance of
 the entire session to an unacceptable level. This specification
 defines a SASL [SASL] mechanism which is compatible with existing
 password-based authentication databases and does not require a
 security layer for the remainder of the session.

 [NOTE: Public discussion of this mechanism may take place on the

Newman [Page 1]

https://datatracker.ietf.org/doc/html/draft-newman-sasl-passdss-00.txt

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 ietf-sasl@imc.org mailing list with a subscription address of
 ietf-sasl-request@imc.org. Private comments may be sent to the
 author].

1. How to Read This Document

 This document is intended primarily for a programmer. If
 successful, it should be possible for a competent programmer to
 write a client implementation using this specification, the SASL
 [SASL] specification, an understanding of how to generate random
 numbers [RANDOM], a description or implementation of the DES and
 SHA1 [SHA1] algorithms and a multiprecision integer math library.
 A cryptographic library or a copy of "Applied Cryptography"
 [SCHNEIER] or similar reference is helpful for any implementation
 and necessary for server DSS key generation.

 The key words "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY"
 in this document are to be interpreted as defined in "Key words for
 use in RFCs to Indicate Requirement Levels" [KEYWORDS].

1.1. Data Types Used in this Document

 A list of data types used in this document follows. Note that the
 majority of this section is copied from the secure shell
 specification [SSH-ARCH].

 octet A basic 8-bit unit of data.

 uint32 A 32-bit unsigned integer. Stored as four octets in
 network byte order (also known as big endian or most
 significant byte [MSB] first). For example, the decimal
 value 699921578 (hexidecimal 29b7f4aa) is represented with
 the hexidecimal octet sequence 29 b7 f4 aa.

 string A string is a length-prefixed octet string. The length is
 represented as a uint32 with the data immediately
 following. A length of 0 indicates an empty string. The
 string MAY contain NUL or 8-bit octets. When used to
 represent textual strings, the characters are interpreted
 in UTF-8 [UTF-8]. Other character encoding schemes MUST
 NOT be used.

 mpint Represents multiple precision integers in two's complement
 format, stored as a string, most signficant octet first.
 Negative numbers have one in the most significant bit of
 the first octet of the string data. If the most significant
 bit would be set for a positive number, the number MUST be
 preceded by a zero byte. Unnecessary leading zero or 255

Newman [Page 2]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 bytes MUST NOT be included. The value zero MUST be stored
 as a string with zero bytes of data.

 By convention, a number that is used in modular
 computations in the field of integers mod n SHOULD be
 represented in the range 0 <= x < n.

 Examples:

 value (hex) representation (hex)

 0 00 00 00 00
 9a378f9b2e332a7 00 00 00 08 09 a3 78 f9 b2 e3 32 a7
 80 00 00 00 02 00 80
 -1234 00 00 00 02 ed cc
 -deadbeef 00 00 00 05 ff 21 52 41 11

1.2. Glossary

 This section includes some acronyms used in this document.

 DES The U.S. Government Data Encryption Standard is a symmetric
 encryption algorithm introduced in 1975 which uses a 56 bit
 key. The algorithm is documented in [SCHNEIER].

 DSA The U.S. Government Digital Signature Algorithm standard. A
 public key signature algorithm available for unrestricted use
 without a license.

 DSS The U.S. Government Digital Signature Standard [DSS] which
 employs the DSA algorithm.

 HMAC A hash-based message authentication code [HMAC] summarized in
Appendix A.4. Test cases are available in [HMAC-TEST].

 SHA The Secure Hash Algorithm (version 1) which is part of the DSS
 standard.

 triple-DES
 Use of the DES algorithm three times in an encrypt-decrypt-
 encrypt mode with three independent keys as described in

appendix A.3.

2. Overview

 This section includes a brief discussion of design goals, intended
 use and an overview for this SASL mechanism. An overview of some
 of the algorithms used is in Appendix A.

Newman [Page 3]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

2.1. Design Goals

 The ideal authentication mechanism would be simple, fast, fully
 secure, freely distributable without restrictions and backwards
 compatible with deployed back-end authentication databases.
 Unfortunately, it is not possible to achieve all these goals so
 priorities and tradeoffs are necessary. This mechanism has
 compatibility with deployed back-end authentication databases and
 protection from passive and active attacks on the underlying
 connection as primary design goals. Simplicity and unrestricted
 binary distribution are secondary design goals.

 Backwards compatibility is achived by using plaintext passphrases.
 Protection from passive and active attacks is achieved by using
 public and symmetric key technology to encrypt the passphrase and
 optionally protect the remainder of the ession. Some simplicity is
 achieved by avoiding complicated public key certification issues
 and formats as well as making the SASL session security layer and
 certification by the client optional. Unrestricted binary
 distribution is achieved by using unencumbered algorithms and
 making the SASL privacy layer optional.

2.2. Intended Use

 This is intended as a plug-and-play mechanism for services layered
 on top of deployed passphrase-based back-end authentication
 databases. When no security layer is implemented it can be added
 to a SASL-based protocol without modifying or substituting network
 read and write APIs. When the optional session privacy protection
 is omitted, the author speculates that it may be possible to make a
 binary implementation which could be exportable from the United
 States.

 For cases where simplicity, speed or unrestricted source code
 distribution is more desirable than backwards compatibility or
 security, a mechanism such as CRAM-MD5 [CRAM-MD5] or SCRAM [SCRAM]
 is preferred.

 The optional SASL integrity and privacy protection is provided as a
 simple alternative to full service security layers such as TLS
 [TLS] or Secure Shell [SSH-ARCH]. However, there are many
 advantages to full service security layers such as compression,
 faster symmetric cipher options, and the ability to leverage other
 public key infrastructures. An implementation which supports TLS
 may have no incentive to support SASL security layers at all. The
 complexity verses functionality tradeoff is significant enough that
 these mechanisms do not compete.

Newman [Page 4]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

2.3. Mechanism Overview

 The PASS-DSS-SHA-3DES-1 mechanism uses three components to perform
 a secure authentication against a legacy passphrase database.

 In order to protect against active attacks, a DSS public key in a
 format compatible with Secure Shell [SSH-TRANS] is used to
 authenticate the server to the client. The client is presumed to
 have the server's public key or a SHA-1 hash thereof stored locally
 in a secure database. If the client is willing to risk exposure to
 active attacks, it may skip the public key certification step
 altogether or do a one-time initialization of its local database,
 perhaps with user interaction.

 In addition to the DSS public key, a Diffie-Hellman key exchange is
 used to generate a key for encrypting the passphrase. The "PASS-
 DSS-SHA-3DES-1" variant of this mechanism uses the same fixed
 Diffie-Hellman group used by Secure Shell's diffie-hellman-group1-
 sha1 key exchange [SSH-TRANS]. If more groups are necessary, they
 will be assigned to mechanism variants "PASS-DSS-SHA-3DES-2" and so
 forth.

 Finally, the triple-DES algorithm is used to encrypt the client's
 passphrase and send it to the server.

2.4. Message Format Overview

 This section provides a quick overview of the format of the
 messages. The formal definition of the syntax for these messages
 is in section 6. A detailed discussion of their implementation on
 clients and servers is in sections 3 and 4 respectively.

 First message from client to server:
 string azname ; the user name to login as, may be empty if
 same as authentication name
 string authname ; the authentication name
 mpint X ; Diffie-Hellman parameter X

 The challenge from server to client is as follows:
 uint32 pklength ; length of SSH-style DSA server public key
 string "ssh-dss" ; constant string "ssh-dss" (lower case)
 mpint p ; DSA public key parameters
 mpint q
 mpint g
 mpint y
 mpint Y ; Diffie-Hellman parameter Y
 OCTET ssecmask ; SASL security layers offered
 3 OCTET sbuflen ; maximum server security layer block size

Newman [Page 5]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 uint32 siglength ; length of SSH-style dss signature
 string "ssh-dss" ; constant string "ssh-dss" (lower case)
 mpint r ; DSA signature parameters
 mpint s

 The client then sends the following message encrypted with
 triple-DES:
 OCTET csecmask ; SASL security layer selection
 3 OCTET cbuflen ; maximum client block size
 string passphrase ; the user's passphrase
 20 OCTET cli-hmac ; a client HMAC-SHA-1 signature

3. Client Implementation of PASS-DSS-SHA-3DES-1

 This section includes a step-by-step guide for client implementors.
 Although section 6 contains the formal definition of the syntax and
 is the authoritative reference in case of errors here, this section
 should be sufficient to build a correct implementation.

 The SASL mechanism name is "PASS-DSS-SHA-3DES-1".

 The value of n used for the Diffie-Hellman exchange is as follows
 (represented as an unsigned hexidecimal integer):

 FFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE65381
 FFFFFFFF FFFFFFFF.

 When represented as an "mpint", this would have a prefix of
 "0000008100." The value of g is 2. This group was taken from the
 ISAKMP/Oakley specification, and was originally generated by
 Richard Schroeppel at the University of Arizona. Properties of
 this prime are described in [Orm96].

 The client begins by doing the following:

 (A) Generate the Diffie-Hellman private value "x". This can be
 generated as a random integer between (n - 1)/4 and (n - 1)/2. It
 is important to generate a good random number [RANDOM].

 (B) Compute the Diffie-Hellman public value "X" as follows. If X
 has a value of 0, repeat step (A).
 x
 X = 2 mod n

Newman [Page 6]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 The client then sends the following three pieces of information to
 the server:

 (1) An authorization identity represented as a string. When the
 empty string is used, this defaults to the authentication identity.
 This is used by system administrators or proxy servers to login
 with a different user identity.

 (2) An authentication identity represented as a string. This is
 the identity whose passphrase will be used.

 (3) The "X" result from step (B) represented as an mpint.

 The server responds by sending a message containing the following
 information:

 (4) An "ssh-dss" public key compatible with Secure Shell, including
 the 32-bit length prefix in network byte order, the Secure Shell
 string "ssh-dss" and mpints for "p", "q", "g" and "y" (see Appendix

A.1).

 (5) The mpint "Y" as defined for the Diffie-Hellman key exchange
 (see Appendix A.2).

 (6) A single octet bitmask representing the security layers
 available in the same format used by the KERBEROS_V4 mechanism
 [SASL]. Bit 0 (value 1) indicates it is permissible to have no
 security layer. Bit 1 (value 2) indicates integrity protection is
 permissible. Bit 2 (value 4) indicates privacy protection for the
 rest of the session is available. The remaining bits are reserved
 for future use.

 (7) A three octet unsigned integer in network byte order
 representing the maximum cipher-text buffer size the server is able
 to receive. If this is less than 32, it indicates that a SASL
 security layer is not supported.

 (8) A DSA signature, including a 32-bit length, the Secure Shell
 string "ssh-dss" and mpints for "r" and "s".

 The client then does the following:

 (C) Verify that "Y" is between 1 and n - 1 inclusive. If "Y" is
 outside this range, the client MUST cancel the authentication.

 (D) Verify that the public key from step (4) belongs to the server.
 This can be done either with a database of SSH public keys or with
 a database of SHA1 hashes of such public keys. If the client does

Newman [Page 7]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 not have a matching entry for the server or does not have a public
 key database, it MAY skip this step although it SHOULD alert the
 user that the connection is susceptible to active attacks if it
 does so. It MAY also record the public key (or SHA1 hash thereof)
 in its database with permission from the user.

 (E) Compute the Diffie-Hellman key K as follows:
 x
 K = Y mod n

 (F) Create a buffer containing data from steps (1) through (7) in
 order immediately followed by K represented as an mpint.

 (G) Compute the SHA1 hash of the buffer from (F). This produces a
 20 octet result.

 (H) If the public key from step (4) was not certified, this step
 MAY be skipped. Otherwise, verify that the DSS signature is a
 signature of (G). This computation is done as defined in appendix

A.1 where the output of step (G) represents the message "m" (note
 that this results in SHA1 being applied twice).

 (I) Compute the following 20-octet values. K represents the output
 of step (E) in mpint format. H represents the output of step (G).
 The || symbol represents string concatenation. "A" represents a
 single octet containing the US-ASCII value of capital letter A.
 cs-encryption-iv = SHA1(K || "A" || H)
 sc-encryption-iv = SHA1(K || "B" || H)
 cs-encryption-key-1 = SHA1(K || "C" || H)
 cs-encryption-key-2 = SHA1(K || cs-encryption-key-1)
 cs-encryption-key = cs-encryption-key-1 || cs-encryption-key-2
 sc-encryption-key-1 = SHA1(K || "D" || H)
 sc-encryption-key-2 = SHA1(K || sc-encryption-key-1)
 sc-encryption-key = sc-encryption-key-1 || sc-encryption-key-2
 cs-integrity-key = SHA1(K || "E" || H)
 sc-integrity-key = SHA1(K || "F" || H)

 (J) Create a buffer beginning with a bitmask for the selected
 security layer (it MUST be one offered in 6) followed by three
 octets representing the maximum cipher-text buffer size (at least
 32) the client can accept in network byte order. This is followed
 by a string containing the passphrase. Note that integrity
 protection is pointless unless the public key was certified in
 step (D) and the signature was verified in step (H).

 (K) Create a buffer containing items (1) through (7) immediately
 followed by the first four octets of (J).

Newman [Page 8]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 (L) Compute HMAC-SHA-1 with (K) as the data and the cs-integrity-
 key from step (I) as the key. This produces a 20 octet result. A
 summary of the HMAC-SHA-1 algorithm [HMAC] is in appendix A.4.

 (M) Create a buffer containing (J) followed by (L) followed by an
 arbitrary number of zero octets as necessary to reach the block
 size of DES and conceal the passphrase length from an eavesdropper.

 (N) Apply the triple-DES algorithm to (M) with the first 8 octets
 of cs-encryption-iv from step (I) as the initialization vector and
 the first 24 octets of cs-encryption-key as the key. If optional
 privacy protection is negotiated on, the triple-DES state is not
 reset.

 The client then sends a message to the server containing the
 following:

 (9) The output of step (N).

 If a SASL security layer is negotiated on, the following steps are
 used when sending a message:

 (O) Create a buffer containing a uint32 client packet number
 (starting from 0) immediately followed by the cs-integrity-key from
 step (I).

 (P) Compute HMAC-SHA-1 with (O) as the key and the data to transmit
 as the data.

 (Q) Create a buffer containing the data to transmit followed by the
 20-octet output of (P). If privacy was negotiated on, this is
 followed by zero to seven padding octets followed by one more octet
 indicating the number of padding octets. The total size MUST be a
 multiple of the DES blocksize.

 (R) The result of step (Q) is encrypted with triple-DES if privacy
 was negotiated and is sent prefixed by a uint32 length, as required
 by SASL.

 If a SASL security layer was negotiated on, the following steps are
 taken when receiving a message:

 (S) If privacy was negotiated on, the message is decrypted using
 triple-DES with the first 24 octets of sc-encryption-key as the
 key. The value of the last octet plus one indicates the number of
 octets to ignore at the end of the output. The sc-encryption-iv is
 used to initialize triple-DES state the first time this is done.

Newman [Page 9]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 (T) Create a buffer containing a uint32 server packet number
 (starting from 0) immediately followed by the sc-integrity-key.

 (U) Compute HMAC-SHA-1 with (T) as the key over the portion of the
 data excluding the 20 octet signature and any encryption padding.
 If this is the same as the 20 octet signature, then the data is not
 corrupted.

4. Server Implementation of PASS-DSS-SHA-3DES-1

 The section includes a step-by-step guide for server implementors.
 It is intended to be read in conjunction with section 3.

 The server MUST have a persistant DSS-SSH public key. Mechanisms
 for generating such keys are described in [SCHNEIER] and [DSS].

 IMPORTANT NOTE: The server MUST be able to process any message from
 the client, including messages of any size, messages with invalid
 content and messages with NULs in the middle of strings. When
 input is illegal, the server MUST gracefully reject authentication
 or in extreme cases gracefully terminate the connection.
 Particular care to avoid buffer overruns is important if the user
 name or passphrase strings are copied.

 The server performs the following computations prior to or during
 the connection by the client:

 (a) Select a random number k from (p - 1)/4 to (p - 1)/2. It is
 important to generate a good random number [RANDOM].

 (b) Compute signature component "r" as follows:
 k
 r = (g mod p) mod q

 (c) Optionally pre-compute the group inverse of k, mod q and the
 value xr.

 (d) Select a random number y from (n - 1)/4 to (n - 1)/2. It is
 important to generate a good random number [RANDOM].

 (e) Compute the Diffie-Hellman public value Y as follows:
 y
 Y = 2 mod n

 (f) Verify that the value X from the client is between 1 and (n -
 1). If it isn't, fail the authentication.

 (g) Compute the Diffie-Hellman shared key K as follows:

Newman [Page 10]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 y
 K = X mod n

 (h) Create a buffer containing items (1) through (7) above followed
 by K represented as an mpint.

 (i) Compute the SHA-1 hash of the buffer from (h). This produces a
 20 octet result.

 (j) Generate a DSS signature of (i). The signature is made up of
 "r" from step (b) and the result following computation (partially
 completed in step c):
 -1
 s = (k (SHA1(h) + xr)) mod q

 (k) Create a buffer containing items (4) through (8) and send it to
 the client.

 (l) Perform the computations as described in step (I) where K is
 the result of step (g) in mpint format and H is the result of step
 (i).

 (m) Decrypt message (9) from the client using triple-DES with cs-
 encryption-iv as the initialization vector and the first 24 octets
 of cs-encryption-key as the key.

 (n) Verify the passphrase from the output of step (m) against the
 authentication database. Fail the authentication if verification
 fails.

 (o) Verify that the selected security layer is permitted and the
 cipher text buffer size is at least 32. If not, fail the
 authentication.

 (p) Create a buffer containing steps (1) through (7) followed by
 the first four octets of the result from (m).

 (q) Compute the HMAC-SHA-1 of (p) with cs-integrity-key as the key.
 This produces a 20-octet result.

 (r) Compare the output of (q) with the 20 octet signature after the
 passphrase in the output of (m). If they don't match, fail the
 authentication.

 If a SASL security layer is negotiated on, sending and receiving
 procedures are similar to steps (O)-(U), with client and server
 roles exchanged (and thus sc-* values and cs-* value exchanged).
 Note that triple-DES state from step (m) is not reset.

Newman [Page 11]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

5. Example

 The following is an example of the PASS-DSS-SHA-3DES-1 mechanism
 using the IMAP [IMAP4] profile of SASL. Note that base64 encoding
 and the lack of an initial client reponse with the first command
 are characteristics of the IMAP profile of SASL and not
 characteristics of SASL or this mechanism.

 In this example, "C:" represents lines sent from the client to the
 server and "S:" represents lines sent from the server to the
 client. The wrapped lines are for editorial clarity -- there are
 no actual newlines in the middle of the messages.

 C: a001 AUTHENTICATE PASS-DSS-SHA-3DES-1
 S: +
 C: AAAAAAAAAAVjaHJpcwAAAIByNdmAm3TWjyEeKfuyLoGUaojr5moPVU6p92/r
 5QDUAgO9A81wvQH5RbljV7DBONObjlkjfDGbQp3MsmUbtOiNDZrNczUMlCvd
 oNsWtQQtU48WrTIL+UP6EQn2Xblw2TgPCFmSHS66p/VILI5BsQsrx31BHnnn
 YVwKz6S7KkYyDA==
 S: AAAA8gAAAAdzc2gtZHNzAAAAQQDPVlO6nFefrq6fA/dQKIoNj75JjppkVv3D
 kyILABCox2dMql0bnO48rHFuo167y6oukT/ocKupIw6bgKmdofgdAAAAFQDR
 pB6FrxemUGRuLjY/oiH/Qef14QAAAEEAkVr9rOlB58k5XoqmPNYTrVGZKWbC
 PcYtaL92ANxgWyjyRo49+m0+fHPNhNibQoLddEZF8lHPKWgb7z7qz0QMdgAA
 AEARcIEiMz5jTZo8COf2njL3BTWRND5NGAgZY7s1YOm2BfjVyf1/MkOiQMiX
 eonrsfMc0sWQGgpRYRtJWpe56cc2AAAAgQDa/kF4dHlBpgYew6u/10sFJP8G
 QgSE4YdFUl2yJKW4S9azMmqSVsoiAHzeslZogV25yQE3vdsIjtqjVwhcCwu2
 nb0kt/Rfu5gOTCygUWsRD0yuiKeOpbiakCLQe1jtjIS2tgLRKQ66Z+q7HI9R
 YUqqxFUu53L/iGNf1cbVokepOgEAAAAAAAA7AAAAB3NzaC1kc3MAAAAUMkWf
 YSZlk0bJI4BKiA8Ju6Yh0DAAAAAUScKvxfqPCm2cdnNyzD7sgmUxC1E=
 C: XTs/rtmZ6uYpK8A90hRN5NrdoEAXrzWISOb080+EOFEDd6Gg2Ci720Pw8kRe
 VY6I
 S: a001 OK Authentication Completed

 In this example, the client private "x" value, represented as an
 mpint in hexidecimal is:

 00000080 4bb82066 70638c78 059368d3 8430006c 02e8a05b 708cb774
 55b5263b 366f7825 4feaba0d 2e0191c0 411b8ca9 58421a61 26d5a1a1
 246797de 7527d020 f0190df0 6939b4fd bf70ea68 4c7f7100 e930008e
 4feaba0d 2e0191c0 411b8ca9 58421a61 4feaba0d 2e0191c0 411b8ca9
 58421a61 4feaba0d 2e0191c0 411b8ca9 58421a61

 The server private "y" value represented as an mpint in hexidecimal
 is:

 00000080 4340eba3 631a0fe9 224bdd5c 8d660535 6c290c1d 446e8122
 768c6298 2cfa2d6c 057ab971 80cd57d1 c51ff528 0884cbf8 057ab971
 80cd57d1 c51ff528 0884cbf8 057ab971 80cd57d1 c51ff528 0884cbf8

Newman [Page 12]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 057ab971 80cd57d1 c51ff528 0884cbf8 057ab971 80cd57d1 c51ff528
 0884cbf8 057ab971 80cd57d1 c51ff528 0884cbf8

 The Diffie-Hellman shared secret represented as an mpint in
 hexidecimal is:

 00000080 7a81b3c2 702168d8 cce24ccc ae0b938e 84cf27c9 2b192c20
 4ab821f5 fa7b0120 26c45066 c8af8839 4ea186f9 0972d80e 2ff2341a
 ba3e8f99 36c10574 c27989fe 719c42ff 2ec45d87 87bba1f5 e9bd2dbf
 fbfdf72b b1eee8f3 109e9a3c 40168785 ed4f3ba7 118a864c ebd6dea3
 96d93250 821197c4 40a3f13a d0f7ad5f cf22664b

 The DSA private key value represented as an mpint in hexidecimal
 is:

 00000040 11708122 333e634d 9a3c08e7 f69e32f7 05359134 3e4d1808
 1963bb35 60e9b605 f8d5c9fd 7f3243a2 40c8977a 89ebb1f3 1cd2c590
 1a0a5161 1b495a97 b9e9c736 00000014 252bcbfa 5634d706 6ed43128
 972e181e 66bf9c30

 And the SHA-1 hash value used to compute the keys is:

 a5567b02 0f5abe1a b8aa9040 08404432 71744e6a

6. Formal Syntax of PASS-DSS-SHA-3DES-1 Messages

 This is the formal syntactic definition of the client and server
 messages. This uses ABNF [ABNF] notation including the core rules.
 The first three rules define the formal exchange. The later rules
 define the elements of the exchange.

 client-msg-1 = [azname] authname diffie-hellman-X

 server-msg-1 = dss-public-key diffie-hellman-Y
 ssecmask sbuflen dss-signature

 client-msg-2 = client-blob

 authname = string
 ;; interpreted as UTF-8 [UTF-8]

 azname = string
 ;; interpreted as UTF-8 [UTF-8]

 cbuflen = 3OCTET
 ;; Big endian binary unsigned integer
 ;; max length of client read buffer

Newman [Page 13]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 cli-hmac = 20OCTET

 client-blob = 8*OCTET
 ;; encrypted version of client-encrypted

 client-encrypted = csecmask cbuflen passphrase cli-hmac *NUL
 ;; MUST be multiple of DES block size

 csecmask = OCTET
 ;; client selected protection layer

 diffie-hellman-X = mpint

 diffie-hellman-Y = mpint

 dss-g = mpint

 dss-p = mpint

 dss-public-key = length NUL NUL NUL %x07 "ssh-dss"
 dss-p dss-q dss-g dss-y
 ;; length is total length of remainder
 ;; as defined in [SSH-TRANS]

 dss-q = mpint

 dss-r = mpint

 dss-signature = length NUL NUL NUL %x07 "ssh-dss"
 dss-r dss-s
 ;; length is total length of remainder

 dss-s = mpint

 dss-y = mpint

 length = 4OCTET
 ;; binary number, big endian format (MSB first)

 mpint = length *OCTET
 ;; length specifies number of octets
 ;; see section 1 for detailed mpint definition

 passphrase = string
 ;; At least 64 octets MUST be supported

Newman [Page 14]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 sbuflen = 3OCTET
 ;; Big endian binary unsigned integer
 ;; max length of server read buffer

 ssecmask = OCTET
 ;; server protection layer mask

 string = length *OCTET
 ;; the length determines the number of octets
 ;; OCTETs are interpreted as UTF-8

 NUL = %x00 ;; US-ASCII NUL character

7. Security Considerations

 Security considerations are discussed throughout this memo.

 This mechanism supplies the server with the plaintext passphrase,
 so the server gains the ability to masquerade as the user to any
 other services which share the same passphrase.

 If the public key certification step is skipped, then an active
 attacker can gain the client's passphrase and thus the ability to
 masquerade as the user to any other services which share the same
 passphrase. Negotiating a security layer will fail to provide
 protection from an active attacker in this case.

 If no security layer is negotiated, the rest of the protocol
 session is subject to active and passive attacks.

 If an integrity-only layer is negotiated, the rest of the protocol
 is subject to passive eavesdropping.

 The quality of this mechanism depends on the quality of the random
 number generator used. See [RANDOM] for more information.

8. Multinational Considerations

 As remote access is a crucial service, users are encouraged to
 restrict user names and passphrases to the US-ASCII character set.
 However, if characters outside the US-ASCII chracter set are used
 in user names and passphrases, then they are interpreted according
 to UTF-8 [UTF-8] and it is a protocol error to include any octet
 sequences not legal for UTF-8. Servers are encourged to enforce
 this restriction to discourage clients which use unlabelled
 character sets in this context.

9. Intellectual Property Issues and Acknowledgements

Newman [Page 15]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 David Kravitz holds U.S. Patent #5,231,668 on the DSA algorithm.
 NIST [NIST] has made this patent available world-wide on a
 royalty-free basis.

 Diffie-Hellman was the first public-key algorithm ever invented.
 It was first published in 1976 [DIFFIE-HELLMAN]. U.S. Patent
 #4,200,770 granted April 1980 has expired. Canada Patent
 #1,121,480 was granted April 6, 1982 and may still apply at this
 time.

 DES is covered under U.S. Patent #3,962,539 granted June 1978,
 which has expired.

 The majority of the constructions in this specification were copied
 from the Secure Shell specifications [SSH-ARCH, SSH-TRANS].
 Additional information is paraphrased from "Applied Cryptography"
 [SCHNEIER].

10. References

 [ABNF] Crocker, Overell, "Augmented BNF for Syntax Specifications:
 ABNF", RFC 2234, Internet Mail Consortium, Demon Internet Ltd,
 November 1997.

 [CRAM-MD5] Klensin, Catoe, Krumviede, "IMAP/POP AUTHorize Extension
 for Simple Challenge/Response", RFC 2195, MCI, September 1997.

 [DIFFIE-HELLMAN] Diffie, W., Hellman, M.E., "Privacy and
 Authentication: An introduction to Cryptography," Proceedings of
 the IEEE, v. 67, n. 3, March 1979, pp. 397-427.

 [DSS] National Institute of Standards and Technology, "Digital
 Signature Standard," NIST FIPS PUB 186, U.S. Department of
 Commerce, May 1994.

 [HMAC] Krawczyk, Bellare, Canetti, "HMAC: Keyed-Hashing for Message
 Authentication", RFC 2104, IBM, UCSD, February 1997.

 [HMAC-TEST] Cheng, Glenn, "Test Cases for HMAC-MD5 and HMAC-SHA-1",
RFC 2202, IBM, NIST, September 1997.

 [IMAP4] Crispin, M., "Internet Message Access Protocol - Version
 4rev1", RFC 2060, University of Washington, December 1996.

 [KEYWORDS] Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", RFC 2119, Harvard University, March 1997.

https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2195
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc2202
https://datatracker.ietf.org/doc/html/rfc2060
https://datatracker.ietf.org/doc/html/rfc2119

Newman [Page 16]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 [NIST] "Proposed Federal Information Processing Standard for Secure
 Hash Standard," Federal Register, v. 57, n. 21, January 1992, pp.
 3747-3749.

 [Orm96] Orman, H., "The Oakley Key Determination Protocol", version
 1, TR97-92, Department of Computer Science Technical Report,
 University of Arizona.

 [RANDOM] Eastlake, Crocker, Schiller, "Randomness Recommendations
 for Security", RFC 1750, DEC, Cybercash, MIT, December 1994.

 [SASL] Myers, "Simple Authentication and Security Layer (SASL)",
RFC 2222, Netscape Communications, October 1997.

 [SCHNEIER] Schneier, B., "Applied Cryptography: Protocols,
 Algorithms and Source Code in C," John Wiley and Sons, Inc., 1996.

 [SCRAM] Newman, "Salted Challenge Response Authentication Mechanism
 (SCRAM)", work in progress, October 1997.

 [SHA1] See [DSS].

 [SSH-ARCH] Ylonen, Kivinen, Saarinen, "SSH Protocol Architecture",
 Work in progress, SSH, October 1997.

 [SSH-TRANS] Ylonen, Kivinen, Saarinen, "SSH Transport Layer
 Protocol", Work in progress, SSH, October 1997.

 [TLS] Dierks, Allen, "The TLS Protocol Version 1.0", Work in
 progress.

 [UTF8] Yergeau, F. "UTF-8, a transformation format of Unicode and
 ISO 10646", RFC 2044, Alis Technologies, October 1996.

11. Author's Address

 Chris Newman
 Innosoft International, Inc.
 1050 Lakes Drive
 West Covina, CA 91790 USA

 Email: chris.newman@innosoft.com

Appendix A. Algorithm Overview

 This section provides a quick overview of the algorithms used. For

https://datatracker.ietf.org/doc/html/rfc1750
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2044

Newman [Page 17]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 a full understanding, the reader is encouraged to read "Applied
 Cryptography" [SCHNEIER]. The follow descriptions are paraphrased
 from that source.

 Note that an overview of the DES algorithm is not included as
 publicly available implementations and descriptions are very
 common.

Appendix A.1. DSA Algorithm

 The DSA algorithm is a public key algorithm which can be used to
 sign messages such that the source can be verified using a public
 key. The algorithm has the following parameters:

 p is a prime number L bits long. Implementations MUST support L
 between 512 and 1024 bits.

 q is a 160-bit prime factor of (p - 1).

 (p - 1)/q
 g = h mod p where h is any number less than p - 1 such

 (p - 1)/q
 that h is greater than 1.

 x is a number less than q and represents the private key.

 x
 y = g mod p and represents the public key.

 To sign a message m, the client generates a random number k less
 than q and computes:

 k
 r = (g mod p) mod q

 -1
 s = (k (SHA1(m) + xr)) mod q

 The signature is represented as r and s, and is verified as
 follows:

 -1
 w = s mod q

 u1 = (SHA1(m) * w) mod q

Newman [Page 18]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 u2 = (rw) mod q

 u1 u2
 v = ((g * y) mod p) mod q

 If v = r then the signature is verified.

Appendix A.2. Diffie-Hellman Algorithm

 The Diffie-Hellman algorithm is a key-exchange algorithm. It
 allows two ends of a communications channel to establish a shared
 secret which a passive eavesdropper can not easily determine. This
 key can then be used in a symmetric algorithm such as triple-DES.
 The two ends have a prior agreement on two numbers:

 n a large prime number

 g a primiative mod n.

 The client chooses a random large integer x and computes:

 x
 X = g mod n

 and sends X to the server. The server chooses a random large
 integer y and computes:

 y
 Y = g mod n

 y
 K = X mod n

 The server sends Y to the client. The client computes:

 x
 K = Y mod n

 At this point, the client and server share the same secret K.

Appendix A.3. Triple-DES Algorithm in EDE/outer-CBC Mode

 The DES algorithm uses an 8 octet (64 bit) key of which 56 bits are
 significant. The triple-DES EDE algorithm uses a 24 octet (192
 bit) key of which roughly 112 bits are significant see [SCHNEIER]
 for more details. The "EDE" refers to encrypt-decrypt-encrypt, and

Newman [Page 19]

Internet Draft PASS-DSS-SHA-3DES-1 SASL Mechanism January 1998

 the "CBC" refers to cipher-block-chaining where each cipher block
 affects future cipher blocks. If E() is the DES encryption
 function, D() is the DES decryption function, C is a cipher text
 block and P is a plaintext block, then triple-DES EDE in CBC mode
 with outer chaining is:

 C = E (D (E (P XOR C)))
 i K3 K2 K1 i i-1

 NOTE: C is the initialization vector
 0

 and the decryption function is:

 P = C XOR D (E (D (C)))
 i i-1 K3 K2 K1 i

 K1 is the first 8 octets of the triple-DES key, K2 is the second 8
 octets and K3 is the final 8 octets.

Appendix A.4. HMAC-SHA-1 Keyed hash function

 HMAC-SHA-1 uses the SHA-1 hash function to create a keyed hash
 function suitable for use as an integrity protection function. A
 more complete description is in [HMAC]. A brief summary of the
 algorithm follows:

 (A) If the key is longer than 64 octets, it is run through the
 SHA-1 function to produce a 20 octet key.

 (B) The key is exclusive-ored with a 64 octet buffer filled with
 the octet value 0x36.

 (C) SHA-1 is computed over (B) followed by the input text.

 (D) The key is exclusive-ored with a 64 octet buffer filled with
 the octet value 0x5C.

 (E) SHA-1 is computed over (D) followed by (C).

Newman [Page 20]

