
Network Working Group A. Newton
Internet-Draft ARIN
Intended status: Standards Track P. Cordell
Expires: September 22, 2016 Codalogic
 March 21, 2016

A Language for Rules Describing JSON Content
draft-newton-json-content-rules-06

Abstract

 This document describes a language for specifying and testing the
 expected content of JSON structures found in JSON-using protocols,
 software, and processes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 22, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Newton & Cordell Expires September 22, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft JSON Content Rules March 2016

1. Introduction

 This document describes JSON Content Rules (JCR), a language for
 specifying and testing the interchange of data in JSON [RFC7159]
 format used by computer protocols and processes. The syntax of JCR
 is not JSON but is "JSON-like", possessing the conciseness and
 utility that has made JSON popular.

1.1. A First Example: Specifying Content

 The following JSON data describes a JSON object with two members,
 "line-count" and "word-count", each containing an integer.

 { "line-count" : 3426, "word-count" : 27886 }

 This is also JCR that describes a JSON object with a member named
 "line-count" that is an integer that is exactly 3426 and a member
 named "word-count" that is an integer that is exactly 27886.

 For a protocol specification, it is probably more useful to specify
 that each member is any integer and not specific, exact integers:

 { "line-count" : integer, "word-count" : integer }

 Since line counts and word counts should be either zero or a positive
 integer, the specification may be further narrowed:

 { "line-count" : 0.. , "word-count" : 0.. }

1.2. A Second Example: Testing Content

 Building on the first example, this second example describes the same
 object but with the addition of another member, "file-name".

 {
 "file-name" : "rfc7159.txt",
 "line-count" : 3426,
 "word-count" : 27886
 }

 The following JCR describes objects like it.

 {
 "file-name" : string,
 "line-count" : 0..,
 "word-count" : 0..
 }

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Newton & Cordell Expires September 22, 2016 [Page 2]

Internet-Draft JSON Content Rules March 2016

 For the purposes of writing a protocol specification, JCR may be
 broken down into named rules to reduce complexity and to enable re-
 use. The following example takes the JCR from above and rewrites the
 members as named rules.

 {
 fn,
 lc,
 wc
 }

 fn "file-name" : string
 lc "line-count" : 0..
 wc "word-count" : 0..

 With each member specified as a named rule, software testers can
 override them locally for specific test cases. In the following
 example, the named rules are locally overridden for the test case
 where the file name is "rfc4627.txt".

 fn "file-name" : "rfc4627.txt"
 lc "line-count" : 2102
 wc "word-count" : 16714

 In this example, the protocol specification describes the JSON object
 in general and an implementation overrides the rules for testing
 specific cases.

2. Overview of the Language

 JCR is composed of rules (as the name suggests). A collection of
 rules that is processed together is a ruleset. There are five types
 of rules: value rules, member rules, array rules, object rules, and
 group rules. The first four types describe corresponding aspects of
 JSON, respectively.

 Except for an optional root rule, each rule has two components, a
 rule name and a rule definition:

 <rule name> <rule definition>

 Rule definitions may in turn contain child rule definitions or
 reference other rules by their rule name.

 This is an example of a value rule:

 v1 : 0..3

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc4627

Newton & Cordell Expires September 22, 2016 [Page 3]

Internet-Draft JSON Content Rules March 2016

 It specifies a rule named "v1" that has a definition of ": 0..3"
 (value rule definitions begin with a ':' character). This defines
 values of type "v1" to be integers in the range 0 to 3 (minimum value
 of 0, maximum value of 3). Value rules can define the limits of JSON
 values, such as stating that numbers must fall into a certain range
 or that strings must be formatted according to certain patterns or
 standards (i.e. URIs, IP addresses, etc...).

 Member rules specify JSON object members. The following example
 member rule states that the rule's name is 'm1' with a value defined
 by the rule named 'v1':

 m1 "m1name" v1

 Since rule names are substituted by rule definitions, this member
 rule can also be written as follows (to define a member rule named m1
 for JSON member named "m1name" that has a value that is an integer
 between 0 and 3):

 m1 "m1name" : 0..3

 Object rules are composed of member rules, since JSON objects are
 composed of members. Object rules can specify members that are
 mandatory, optional, and even choices between members. In this
 example, the rule 'o1' defines an object that must contain a member
 as defined by member rule 'm1' and optionally a member defined by the
 rule 'm2':

 o1 { m1, ?m2 }

 Array rules are composed of value, object, and other array rules.
 Like object rules, array rules can specify the cardinality of the
 contents of an array. The following array rule defines an array that
 must contain value rule 'v1' and zero or more objects as defined by
 rule 'o1':

 a1 [v1, *o1]

 Finally, group rules designate a collection of rules.

 Putting it all together, Figure 2 describes the JSON in Figure 1.

Newton & Cordell Expires September 22, 2016 [Page 4]

Internet-Draft JSON Content Rules March 2016

 Example JSON shamelessly lifted from RFC 4627

 {
 "Image": {
 "Width": 800,
 "Height": 600,
 "Title": "View from 15th Floor",
 "Thumbnail": {
 "Url": "http://www.example.com/image/481989943",
 "Height": 125,
 "Width": "100"
 },
 "IDs": [116, 943, 234, 38793]
 }
 }

 Figure 1

 Rules describing Figure 1

 { image }

 image "Image" {
 width,
 height,
 "Title" : string,
 thumbnail,
 "IDs" [*: integer]
 }

 width "Width" width_v
 height "Height" height_v

 width_v : 0..1280
 height_v : 0..1024

 thumbnail "Thumbnail" {
 width, height, "Url" : uri
 }

 Figure 2

 The rules from Figure 2 can be written more compactly (see Figure 3).

https://datatracker.ietf.org/doc/html/rfc4627

Newton & Cordell Expires September 22, 2016 [Page 5]

Internet-Draft JSON Content Rules March 2016

 Compact rules describing Figure 1

 {
 "Image" {
 width,
 height,
 "Title" :string,
 "Thumbnail" {
 width, height, "Url" :uri
 },
 "IDs" [*:integer]
 }
 }

 width "Width" : 0..1280
 height "Height" : 0..1024

 Figure 3

3. Lines and Comments

 There is no statement terminator and therefore no need for a line
 continuation syntax. Rules may be defined across line boundaries.
 Blank lines are allowed.

 Comments are very similar to comments in ABNF [RFC4234]. They start
 with a semi-colon (';') and continue to the end of the line or
 another semi-colon.

4. Rules

 Rules are composed of two parts, a rule name and a rule definition:

 <rule name> <rule definition>

 Rule names allow a rule to be identified by a name. A rule
 definition describes the constraints upon which the content is to be
 assessed. Rule definitions can use rule names to refer to other
 rules.

4.1. Rule Names

 Rule names must start with an alphabetic character (a-z,A-Z) and must
 contain only alphabetic characters, numeric characters, the hyphen
 character ('-') and the underscore character ('_').

 Rule names are case sensitive. Rule names identifying rule
 definitions must be unique within a ruleset.

https://datatracker.ietf.org/doc/html/rfc4234

Newton & Cordell Expires September 22, 2016 [Page 6]

Internet-Draft JSON Content Rules March 2016

4.2. Rule Definitions

 The syntax of each type of rule definition varies depending on the
 type:

 : string
 ; value rules start with a colon

 "member_name" target_rule_name
 ; member rules start by defining the member name

 { mem1, mem2 }
 ; object rules start and end with "curly braces", like JSON objects

 [item1, item2]
 ; array rules start and end with square brackets, like JSON arrays

 (rule1, rule2)
 ; group rules start and end with parenthesis

 A rule definition may embed other rule definitions, either explicitly
 or by referencing a rule name that identifies a rule definition.

4.3. Annotations

 Rule definitions may start with zero or more annotations. Each
 annotation begins with the character sequence "@{" and ends with "}".
 The following is an example of a rule definition with the root
 annotation (explained in the next section):

 @{root} [nuts, bolts]

 This specification defines the annotations "root", "reject", and
 "unordered", but other annotations may be defined.

4.4. Starting Points and Root Rules

 Careful readers will have noticed that although rules have been
 defined as having rule names and rule definitions, examples from the
 introduction have one rule without a rule name. Within each ruleset,
 a name on the first rule is optional. When the first rule is defined
 without a name, it is considered a root rule.

 Root rules are a starting point for the evaluation of JSON against a
 ruleset. Or in other words, a root rule is the first rule processed.

 Rules may also be declared a root rule with the @{root} annotation.
 A ruleset may have more than one root rule, in which case the root

Newton & Cordell Expires September 22, 2016 [Page 7]

Internet-Draft JSON Content Rules March 2016

 rule to use for validating JSON should be explicitly specified
 locally.

4.5. Value Rules

 Value rules define content for JSON values. JSON allows values to be
 objects, arrays, numbers, booleans, strings, and null. Arrays and
 objects are handled by the array and object rules, and the value
 rules define the rest.

4.5.1. Numbers, Booleans and Null

 The rules for booleans and null are the simplest and take the
 following forms:

 rule_name : true

 rule_name : false

 rule_name : boolean

 rule_name : null

 Rules for numbers can specify the number be either an integer or
 floating point number:

 rule_name : integer

 rule_name : float

 Numbers may also be specified as an absolute value or a range of
 possible values, where a range may be specified using a minimum,
 maximum, or both:

 rule_name : n

 rule_name : n..m

 rule_name : ..m

 rule_name : n..

 rule_name : n.f..m.f

 rule_name : ..m.f

 rule_name : n.f..

Newton & Cordell Expires September 22, 2016 [Page 8]

Internet-Draft JSON Content Rules March 2016

 When specifying a minimum and a maximum, both must either be an
 integer or a floating point number. Thus to specify a floating point
 number between zero and ten a definition of the following form is
 used:

 : 0.0..10.0

4.5.2. Strings

 String values may be specified generically as:

 rule_name : string

 However, the content of strings can be narrowed in the following
 ways:

 A quoted string: A rule can specify that the value must be a
 specific string:

 rule_name : "a constant string"

 Regular Expression: A rule can state that a string must match a
 regular expression by giving the regular expression:

 rule_name : /regex/

 URIs and URI templates: A rule can state that a string must be a
 URI [RFC3986]:

 rule_name : uri

 URIs may be further scoped to a specific URI pattern by using a
 URI template [RFC6570]:

 rule_name : uri..http://{stuff}

 rule_name : uri..http://{authority}/{thing1}?q={thing2}

 When using URI templates, the variable names are ignored for
 pattern matching, but they should be provided for construction of
 a valid URI template. Providing the variable names also aids in
 the description of what is to be matched.

 IP Addresses: Narrowing the content of strings down to IP addresses
 can be done with either the 'ip4' (see [RFC1166]) or 'ip6' (see
 [RFC5952]) literals:

 rule_name : ip4

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc1166
https://datatracker.ietf.org/doc/html/rfc5952

Newton & Cordell Expires September 22, 2016 [Page 9]

Internet-Draft JSON Content Rules March 2016

 rule_name : ip6

 Domain Names: Fully qualified A-label and U-label domain names can
 be specified with the 'fqdn' and 'idn' literals:

 rule_name : fqdn

 rule_name : idn

 Dates and Times: Dates and times are specified using the ABNF rules
 from RFC 3339 [RFC3339] as literals:

 rule_name : date-time

 rule_name : full-date

 rule_name : full-time

 Email Addresses: A string can be scoped to the syntax of email
 addresses using the literal 'email':

 rule_name : email

 Email addresses must conform to the syntax of RFC 5322 [RFC5322].

 Phone Numbers: Strings conforming to E.123 phone number format can
 be specified as follows:

 rule_name : phone

 Base 64: Strings containing base 64 data, as described by RFC 4648
 [RFC4648], can be specified as follows:

 rule_name : base64

4.5.3. Any Value

 It is possible to specify that a value can be of any type allowable
 by JSON using the 'any' value rule. This is done with the 'any'
 literal in a value rule:

 rule_name : any

 However, unlike other value rules which define primitive data types,
 this rule defines a value of any kind, either primitive (null,
 boolean, number, and string), object, or array.

https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc5322
https://datatracker.ietf.org/doc/html/rfc4648
https://datatracker.ietf.org/doc/html/rfc4648

Newton & Cordell Expires September 22, 2016 [Page 10]

Internet-Draft JSON Content Rules March 2016

4.6. Member Rules

 Member rules define members of JSON objects. Member rules follow the
 format:

 rule_name member_name type

 where rule_name is the name of the rule being defined, member_name is
 the name of the JSON object member, and type is a value rule, array
 rule, or object rule or a reference to a value rule, array rule, or
 object rule specifying the allowable content of the JSON object
 member.

 Member names may be specified either explicitly as a quoted string:

 some_member_rule "some_member_name" some_member_target

 or a family of member names may be specified as a regular expression:

 some_member_rule /some\.[a-z]+\.names/ some_member_target

 Member rules may also be written in this form:

 rule_name "member_rule" target_rule_definition

 The following are examples:

 location_uri "locationURI" : uri

 iface_mappings /eth[0-9]/ :ip4

 Member rules cannot be used as a root rule.

4.7. Object Rules

 Object rules define the allowable members of a JSON object, and their
 rule definitions contain the member rules of the object. They take
 the following form:

 rule_name { member_rule_1, member_rule_2 }

 The following rule example defines an object composed of two member
 rules:

 response { location_uri, status_code }

Newton & Cordell Expires September 22, 2016 [Page 11]

Internet-Draft JSON Content Rules March 2016

 Given that where a rule name is found a rule definition of an
 appropriate type may be used, the above example might also be written
 as:

 response { "locationUri" : uri, "statusCode" : integer }

 Rules given in the rule definition of an object rule do not imply
 order. Given the example object rule above both

 { "locationUri" : "http://example.com", "statusCode" : 200 }

 and

 { "statusCode" : 200, "locationUri" : "http://example.com" }

 are JSON objects that match the rule.

 Each member rule of an object rule is evaluated in the order in which
 they appear in the object rule. Thus where there is potential
 conflict between rule names defined using regular expressions, the
 rules with the most constrained name should be defined first.
 Otherwise, for example, a rule definition of:

 { /p\d+/ : int, "p0" : string }

 would fail to match the JSON object:

 { "p1" : 12, "p0" : "Fred" }

 because the "p0" member name would match the regular expression
 despite the presence of the subsequently defined "p0" member rule.

4.8. Array Rules

 Array rules define the allowable content of JSON arrays. Their rule
 definitions are composed of the other rule types with the exception
 of member rules and have the following form:

 rulename [rule_1, rule_2]

 The following example defines an array where the first element is
 defined by the width_value rule and the second element is defined by
 the height_value rule:

 size [width_value, height_value]

 By default, unlike object rules, order is implied by the array rule
 definition. That is, the first rule referenced or defined within an

Newton & Cordell Expires September 22, 2016 [Page 12]

Internet-Draft JSON Content Rules March 2016

 array rule specifies that the first element of the array will match
 that rule, the second rule given with the array rule specifies that
 the second element of the array will match that rule, and so on.

 Take for example the following array rule definition:

 person [: string, : integer]

 This JSON array matches the above rule:

 ["Bob Smurd", 24]

 while this one does not:

 [24, "Bob Smurd"]

 Finally, if an array has more elements than can be matched from the
 array rule, the array does not match the array rule. Or stated
 differently, an array with unmatched elements does not validate.
 Using the example array rule above, the following array does not
 match because the last element of the array does not match any rule
 contained in the array rule:

 ["Bob Smurd", 24, "http://example.com/bob-smurd"]

4.8.1. Unordered Array Rules

 Array rules can be made to behave in a similar fashion to object
 rules with regard to the order of matching with the @{unordered}
 annotation:

 person @{unordered} [:string, :integer]

 This rule matches both of theses JSON arrays.

 ["Bob Smurd", 24]

 [24, "Bob Smurd"]

 Like ordered array rules, the rules contained in an unordered array
 rule are evaluated in the order they are specified. The difference
 is that they need not match an element of the array in the same
 position as given in the array rule.

 Like ordered array rules, unordered array rules also require that all
 elements of the array be matched by a subordinate rule. If the array
 has more elements than can be matched, the array rule does not match
 the array.

Newton & Cordell Expires September 22, 2016 [Page 13]

Internet-Draft JSON Content Rules March 2016

4.9. Group Rules

 Unlike the other types of rules, group rules have no direct tie with
 JSON syntax. Group rules simply group together other rules. They
 take the form:

 rule_name (target_rule_1, target_rule_2)

 Group rule definitions and any nesting of group rule definitions,
 must conform to the allowable set of rules of the rule containing
 them. A group rule referenced inside of an array rule may not
 contain a member rule since member rules are not allowed in array
 rules directly. Likewise, a group rule referenced inside an object
 rule must only contain member rules.

 The following is an example of a group rule:

 the_bradys [parents, children]
 children (:"Greg", :"Marsha", :"Bobby", :"Jan")
 parents (:"Mike", :"Carol")

 Like the subordinate rules of array and object rules, the subordinate
 rules of a group rule are evaluated in the order they appear.

4.10. Ordered and Unordered Groups in Arrays

Section 4.8.1 specifies that arrays can be evaluated by the order of
 the items in the array or can be evaluated without order.

Section 4.9 specifies that arrays may have group rules as
 subordinates.

 The evaluation of a group rule inside an array rule inherits the
 ordering property of the array rule. If the array rule is unordered,
 then the items of the group rule are also considered to be unordered.
 And if the array rule is ordered, then the items of the group rule
 are also considered to be ordered.

4.11. Sequence and Choice Combinations in Array, Object, and Group
 Rules

 Combinations of subordinate rules in array, object, and group rules
 can be specified as either a sequence ("and") or a choice ("or"). A
 sequence is a rule followed by the comma character (',') followed by
 another rule.

 [this, that]

Newton & Cordell Expires September 22, 2016 [Page 14]

Internet-Draft JSON Content Rules March 2016

 A choice is a rule followed by a pipe character ('|') followed by
 another rule.

 [this | that]

 Sequence and choice combinations cannot be mixed, and group rules
 must be used to explicitly declare precedence between a sequence and
 a choice. Therefore, the following is illegal:

 [this, that | the_other]

 The example above should be expressed as:

 [this, (that | the_other)]

4.12. Repetition in Array, Object, and Group Rules

 Evaluation of subordinate rules in array, object, and group rules may
 be preceded by a repetition expression denoting how many times the
 subordinate rule should be evaluated.

 Repetition is expressed as a minimum number of repetitions and a
 maximum number of repetitions. When no repetition expression is
 present, both the minimum and maximum are 1.

 A minimum and maximum can be expressed by giving the minimum followed
 by an asterisk ('*') character followed by the maximum: min*max.

 [1*13 name_servers] ; 1 to 13 name servers

 If the minimum is not given, it is assumed to be zero.

 { *99 /eth.*/ mac_addr }; 0 to 99 ethernet addresses

 If the maximum is not given, it is assumed to be infinity.

 [2* octets] ; two or more bytes

 If neither the minimum nor the maximum are given with the asterisk,
 this denotes "zero or more".

 error_set (* error) ; zero or more errors

 Repetition may also be expressed with a question mark character ('?')
 or a plus character ('+'). '?' is equivalent to '0*1'.

 { name, ?age } ; age is optional

Newton & Cordell Expires September 22, 2016 [Page 15]

Internet-Draft JSON Content Rules March 2016

 '+' is equivalent to '1*'

 [+ status] ; 1 or more status values

4.13. Rejecting Rules

 The evaluation of a rule can be changed with the @{reject}
 annotation. With this annotation, a rule that would otherwise match
 does not, and a rule that would not have matched does.

 not_two @{reject} : 2
 ; match anything that isn't the integer 2

 @{reject} @{unordered} [:"fail", *:string]
 ; error if one of the status values is "fail"

4.14. Repetitions, Annotations, and Target Rules

 With regard to syntax, repetition expressions are part of the syntax
 of array, object, and group rules with respect to the embedding of
 subordinate rules, whereas annotations are a component of every type
 of rule definition. Every type of rule definition may begin with a
 series of annotations.

 The significance is the placement of repetition expressions with
 respect to annotations: repetition expressions precede annotations.

 The following is correct:

 [* @{unordered} [foo]]

 The following is not:

 [@{unordered} * [foo]]

5. Directives

 Directives modify the processing of a ruleset. There are two forms
 of the directive, the single line directive and the multi-line
 directive.

 Single line directives appear on their own line in a ruleset, begin
 with a hash character ('#') and are terminated by the end of the
 line. They take the following form:

 # directive_name optional_directive_parameters

 Directives may have other qualifiers after the directive name.

Newton & Cordell Expires September 22, 2016 [Page 16]

Internet-Draft JSON Content Rules March 2016

 Multi-line directives also appear on their own lines, but may span
 multiple lines. The being with the character sequence "#{" and ends
 with "}". The take the following form:

 #{ directive_name
 directive_parameter_1 directive_paramter_2
 directive_parameter_3
 ...
 }

 This specification defines the directives "jcr-version", "ruleset-
 id", and "import", but other directives may be defined.

5.1. jcr-version

 This directive declares that the ruleset complies with a specific
 version of this standard. The version is expressed as a major
 integer followed by a period followed by a minor integer.

 # jcr-version 0.6

 The major.minor number signifying compliance with this document is
 "0.6". Upon publication of this specification as an IETF proposed
 standard, it will be "1.0".

 # jcr-version 1.0

 Ruleset authors are advised to place this directive as the first line
 of a ruleset.

5.2. ruleset-id

 This directive identifies a ruleset to rule processors. It takes the
 form:

 # ruleset-id identifier

 An identifier can be a URL (e.g. http://example.com/foo), an inverted
 domain name (e.g. com.example.foo) or any other form that conforms to
 the JCR ABNF syntax that a ruleset author deems appropriate. To a
 JCR processor the identifier is treated as an opague, case-sensitive
 string.

5.3. import

 The import directive specifies that another ruleset is to have its
 rules evaluated in addition to the ruleset where the directive
 appears.

Newton & Cordell Expires September 22, 2016 [Page 17]

Internet-Draft JSON Content Rules March 2016

 This directive has the following form:

 # import identifier as alias

 The following is an example:

 # import http://example.com/rfc9999 as rfc9999

 The rule names of the ruleset to be imported may be referenced by
 prepending the alias followed by a period character ('.') followed by
 the rule name (i.e. "alias.name"). To continue the example above, if
 the ruleset at http://example.com/rfc9999 were to have a rule named
 'encoding', rules in the ruleset importing it can refer to that rule
 as 'rfc9999.encoding'.

6. Tips and Tricks

6.1. Any Member with Any Value

 Because member names may be specified with regular expressions, it is
 possible to construct a member rule that matches any member name:

 rule_name /.*/ target_rule_name

 As an example, the following defines an object member with any name
 that has a value that is a string:

 user_data /.*/ : string

 Constructing an object member of any name with any type would
 therefore take the form:

 rule_name /.*/ : any

6.2. Restricting Objects

 By default, members of objects which do not match a rule are ignored.
 The reason for this validation model is due to the nature of the
 typical access model to JSON objects in many programming languages,
 where members of the object are obtained by referencing the member
 name. Therefore extra members may exist without harm.

 However, some specifications may need to restrict the members of a
 JSON object to a known set. To construct an object rule specifying
 that no extra members are expected, the @{reject} annotation may be
 used with a regular expression as the last subordinate rule of the
 object rule.

https://datatracker.ietf.org/doc/html/rfc9999
https://datatracker.ietf.org/doc/html/rfc9999

Newton & Cordell Expires September 22, 2016 [Page 18]

Internet-Draft JSON Content Rules March 2016

 { member1, member2, + @{reject} /.*/ : any }

 This works because subordinate rules are evaluated in the order they
 appear in the object rule, and the last rule accepts any member with
 any type but fails to validate if one ore more of those rules are
 found due to the @{reject} annotation.

6.3. Unrestricting Arrays

 Unlike object validation, array rules will not validate items of an
 array that do not match a subordinate rule of the array rule. This
 processing model is due to the nature of the typical access pattern
 of JSON arrays in many programming languages, which is to iterate
 over the array. Processes iterating over an array would need to take
 special steps for extra items of the array that are not specified,
 especially if the items were of a different type than those that are
 expected.

 Like object rules, the subordinate rules of an array rule are
 evaluated in the order they appear. To allow an array to contain any
 value after guaranteeing that it contains the necessary items, the
 last subordinate rule of the array rule should accept any item:

 [item1, item2, * :any]

6.4. Groups of Values

 In addition to specific primitive data types, value rules may contain
 a value choice rule. The value choice rule, and any subordinate rule
 within it, must evaluate to a single primitive data type.

 The following is an example of a value choice rule embedded in a
 value rule:

 address : (:ip4 | :ip6)

6.5. Groups in Arrays

 Groups may also be a subordinate rule of array rules:

 [(:ip4 | :ip6), :integer]

 Unlike value rules, subordinate group rules in array rules may have
 sequence combinations and contain any rule type with the exception of
 member rules.

 [(first_name, ? middle_name, last_name), age]

Newton & Cordell Expires September 22, 2016 [Page 19]

Internet-Draft JSON Content Rules March 2016

 Of course, the above is better written as:

 [name, age]

 name (first_name, ? middle_name, last_name)

6.6. Groups in Objects

 Groups may also be a subordinate rule of object rules:

 { (title, date, author), + paragraph }

 Subordinate group rules in object rules may have sequence
 combinations but must only contain member rules.

 { front_matter, + paragraph }
 front_matter (title, date, author)
 title "title" :string
 date "date" : full-date
 author "author" [*:string]
 paragraph /p[0-9]*/ :string

6.7. Group Rules as Macros

 The syntax for group rules accommodates one ore more subordinate
 rules and a repetition expression for each. Other than grouping
 multiple rules, a group rule can be used as a macro definition for a
 single rule.

 paragraphs (+ /p[0-9]*/ : string)

6.8. Comment Separated Rules

 Rules may be placed on the same line, but because they have no
 termination syntax this style of writing rules can be confusing to
 some readers:

 first_name "first name" :string last_name "last name" :string

 An empty comment can serve as a visual cue to denote the separation
 of the two rules:

 first_name "first name" :string ;; last_name "last name" :string

Newton & Cordell Expires September 22, 2016 [Page 20]

Internet-Draft JSON Content Rules March 2016

6.9. Object Mixins

 Group rules can be used to create object mixins, a pattern for
 writing data models similar in style to object derivation in some
 programming languages. In the example in Figure 4, both obj1 and
 obj2 have a members "foo" and "fob" with obj1 having the additional
 member "bar" and obj2 having the additional member "baz".

 mixin_group ("foo" : integer, "fob" : uri)

 obj1 { mixin_group, "bar" : string }

 obj2 { mixin_group, "baz" : string }

 Figure 4

6.10. Subordinate Rule Dependencies

 In object and array rules, there may be situations in which it is
 necessary to condition the existence of a subordinate rule on the
 existence of a sibling subordinate rule. In other words,
 example_rule_two should only be evaluated if example_rule_one
 evaluates positively. Or put another way, a member of an object or
 an item of an array may be present only on the condition that another
 member of item is present.

 In the following example, the referrer_uri member can only be present
 if the location_uri member is present.

 response { ?(location_uri, ?referrer_uri) }

6.11. Multiple Root Styles

 As stated in Section 4.4, the first rule in a ruleset is a root rule
 when it is unnamed. Group rules can be used as the root rule, such
 as in the following example:

 ({ "foo" : string } | { "bar" : string })

 This is the equivalent of the following:

 foo @{root} { "foo" : string }
 bar @{root} { "bar" : string }

 Either style is valid. However, explicitly naming root rules has the
 advantage of explicitly validating a JSON message against a specific
 rule.

Newton & Cordell Expires September 22, 2016 [Page 21]

Internet-Draft JSON Content Rules March 2016

6.12. JSON-like Object and Array Definitions

 JCR allows an optional colon character (":") to precede object and
 array rule definitions to give these definitions more of a JSON-like
 appearance. Consider the following example.

 {
 "foo" {
 "fuzz" : string
 },
 "bar" [
 "baz"
]
 }

 To appear more JSON-like, this may also be given as follows:

 {
 "foo" : {
 "fuzz" : string
 },
 "bar" : [
 "baz"
]
 }

7. ABNF Syntax

 The following ABNF describes the syntax for JSON Content Rules.

jcr = *(sp-cmt / directive) [root-rule]
 *(sp-cmt / directive / rule)

sp-cmt = spaces / comment
spaces = 1*(WSP / CR / LF)
comment = ";" *("\;" / comment-char) comment-end-char
comment-char = HTAB / %x20-3A / %x3C-10FFFF
 ; Any char other than ";" / CR / LF
comment-end-char = CR / LF / ";"

directive = "#" (one-line-directive / multi-line-directive)
one-line-directive = [spaces]
 (directive-def / one-line-tbd-directive-d) *WSP eol
multi-line-directive = "{" *sp-cmt
 (directive-def / multi-line-tbd-directive-d) *sp-cmt "}"
directive-def = jcr-version-d / ruleset-id-d / import-d
jcr-version-d = jcr-version-kw spaces major-version "." minor-version
major-version = p-integer

Newton & Cordell Expires September 22, 2016 [Page 22]

Internet-Draft JSON Content Rules March 2016

minor-version = p-integer
ruleset-id-d = ruleset-id-kw spaces ruleset-id
import-d = import-kw spaces ruleset-id
 [spaces as-kw spaces ruleset-id-alias]
ruleset-id = ALPHA *not-space
not-space = %x21-10FFFF
ruleset-id-alias = name
one-line-tbd-directive-d = directive-name [WSP one-line-directive-parameters]
directive-name = name
one-line-directive-parameters = *not-eol
not-eol = HTAB / %x20-10FFFF
eol = CR / LF
multi-line-tbd-directive-d = directive-name
 [spaces multi-line-directive-parameters]
multi-line-directive-parameters = multi-line-parameters
multi-line-parameters = *(comment / q-string / regex /
 not-multi-line-special)
not-multi-line-special = spaces / %x21 / %x23-2E / %x30-3A / %x3C-7C /
 %x7E-10FFFF ; not ", /, ; or }

root-rule = value-rule / group-rule

rule = rule-name *sp-cmt rule-def

rule-name = name
target-rule-name = annotations [ruleset-id-alias "."] rule-name
name = ALPHA *(ALPHA / DIGIT / "-" / "-")

rule-def = type-rule / member-rule / group-rule
type-rule = value-rule / type-choice-rule / target-rule-name
value-rule = primitive-rule / array-rule / object-rule
member-rule = annotations
 member-name-spec *sp-cmt type-rule
member-name-spec = regex / q-string
type-choice-rule = ":" *sp-cmt type-choice
type-choice = annotations "(" type-choice-items
 *(choice-combiner type-choice-items) ")"
type-choice-items = *sp-cmt (type-choice / type-rule) *sp-cmt

annotations = *("@{" *sp-cmt annotation-set *sp-cmt "}" *sp-cmt)
annotation-set = reject-annotation / unordered-annotation /
 root-annotation / tbd-annotation
reject-annotation = reject-kw
unordered-annotation = unordered-kw
root-annotation = root-kw
tbd-annotation = annotation-name [spaces annotation-parameters]
annotation-name = name
annotation-parameters = multi-line-parameters

Newton & Cordell Expires September 22, 2016 [Page 23]

Internet-Draft JSON Content Rules March 2016

primitive-rule = annotations ":" *sp-cmt primimitive-def
primimitive-def = null-type / boolean-type / true-value / false-value /
 string-type / string-range / string-value /
 float-type / float-range / float-value /
 integer-type / integer-range / integer-value /
 ip4-type / ip6-type / fqdn-type / idn-type /
 uri-range / uri-type / phone-type / email-type /
 full-date-type / full-time-type / date-time-type /
 base64-type / any
null-type = null-kw
boolean-type = boolean-kw
true-value = true-kw
false-value = false-kw
string-type = string-kw
string-value = q-string
string-range = regex
float-type = float-kw
float-range = float-min ".." [float-max] / ".." float-max
float-min = float
float-max = float
float-value = float
integer-type = integer-kw
integer-range = integer-min ".." [integer-max] / ".." integer-max
integer-min = integer
integer-max = integer
integer-value = integer
ip4-type = ip4-kw
ip6-type = ip6-kw
fqdn-type = fqdn-kw
idn-type = idn-kw
uri-range = uri-dotdot-kw uri-template
uri-type = uri-kw
phone-type = phone-kw
email-type = email-kw
full-date-type = full-date-kw
full-time-type = full-time-kw
date-time-type = date-time-kw
base64-type = base64-kw
any = any-kw

object-rule = annotations [":" *sp-cmt] "{" *sp-cmt [object-items *sp-
cmt] "}"
object-items = object-item (*(sequence-combiner object-item) /
 *(choice-combiner object-item))
object-item = [repetition *sp-cmt] object-item-types
object-item-types = member-rule / target-rule-name / object-group
object-group = "(" *sp-cmt [object-items *sp-cmt] ")"

array-rule = annotations [":" *sp-cmt] "[" *sp-cmt [array-items *sp-
cmt] "]"

Newton & Cordell Expires September 22, 2016 [Page 24]

Internet-Draft JSON Content Rules March 2016

array-items = array-item (*(sequence-combiner array-item) /
 *(choice-combiner array-item))
array-item = [repetition] *sp-cmt array-item-types
array-item-types = type-rule / array-group
array-group = "(" *sp-cmt [array-items *sp-cmt] ")"

group-rule = annotations "(" *sp-cmt [group-items *sp-cmt] ")"
group-items = group-item (*(sequence-combiner group-item) /
 *(choice-combiner group-item))
group-item = [repetition] *sp-cmt group-item-types
group-item-types = type-rule / member-rule / group-group
group-group = group-rule

sequence-combiner = *sp-cmt "," *sp-cmt
choice-combiner = *sp-cmt "|" *sp-cmt

repetition = optional / one-or-more / min-max-repetition /
 min-repetition / max-repetition /
 zero-or-more / specific-repetition
optional = "?"
one-or-more = "+"
zero-or-more = "*"
min-max-repetition = min-repeat *sp-cmt "*" *sp-cmt max-repeat
min-repetition = min-repeat *sp-cmt "*"
max-repetition = "*" *sp-cmt max-repeat
min-repeat = p-integer
max-repeat = p-integer
specific-repetition = p-integer

integer = ["-"] 1*DIGIT
p-integer = 1*DIGIT

float = [minus] int frac [exp]
 ; From RFC 7159 except 'frac' required
minus = %x2D ; -
plus = %x2B ; +
int = zero / (digit1-9 *DIGIT)
digit1-9 = %x31-39 ; 1-9
frac = decimal-point 1*DIGIT
decimal-point = %x2E ; .
exp = e [minus / plus] 1*DIGIT
e = %x65 / %x45 ; e E
zero = %x30 ; 0

q-string = quotation-mark *char quotation-mark
 ; From RFC 7159
char = unescaped /
 escape (

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Newton & Cordell Expires September 22, 2016 [Page 25]

Internet-Draft JSON Content Rules March 2016

 %x22 / ; " quotation mark U+0022
 %x5C / ; \ reverse solidus U+005C
 %x2F / ; / solidus U+002F
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX
escape = %x5C ; \
quotation-mark = %x22 ; "
unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

regex = "/" *(escape "/" / not-slash) "/" [regex-modifiers]
not-slash = HTAB / CR / LF / %x20-2E / %x30-10FFFF
 ; Any char except "/"
regex-modifiers = *("i" / "s" / "x")

uri-template = 1*ALPHA ":" 1*not-space

;; Keywords
any-kw = %x61.6E.79 ; "any"
as-kw = %x61.73 ; "as"
base64-kw = %x62.61.73.65.36.34 ; "base64"
boolean-kw = %x62.6F.6F.6C.65.61.6E ; "boolean"
date-time-kw = %x64.61.74.65.2D.74.69.6D.65 ; "date-time"
email-kw = %x65.6D.61.69.6C ; "email"
false-kw = %x66.61.6C.73.65 ; "false"
float-kw = %x66.6C.6F.61.74 ; "float"
fqdn-kw = %x66.71.64.6E ; "fqdn"
full-date-kw = %x66.75.6C.6C.2D.64.61.74.65 ; "full-date"
full-time-kw = %x66.75.6C.6C.2D.74.69.6D.65 ; "full-time"
idn-kw = %x69.64.6E ; "idn"
import-kw = %x69.6D.70.6F.72.74 ; "import"
integer-kw = %x69.6E.74.65.67.65.72 ; "integer"
ip4-kw = %x69.70.34 ; "ip4"
ip6-kw = %x69.70.36 ; "ip6"
jcr-version-kw = %x6A.63.72.2D.76.65.72.73.69.6F.6E ; "jcr-version"
null-kw = %x6E.75.6C.6C ; "null"
phone-kw = %x70.68.6F.6E.65 ; "phone"
reject-kw = %x72.65.6A.65.63.74 ; "reject"
root-kw = %x72.6F.6F.74 ; "root"
ruleset-id-kw = %x72.75.6C.65.73.65.74.2D.69.64 ; "ruleset-id"
string-kw = %x73.74.72.69.6E.67 ; "string"
true-kw = %x74.72.75.65 ; "true"
unordered-kw = %x75.6E.6F.72.64.65.72.65.64 ; "unordered"
uri-dotdot-kw = %x75.72.69.2E.2E ; "uri.."
uri-kw = %x75.72.69 ; "uri"

Newton & Cordell Expires September 22, 2016 [Page 26]

Internet-Draft JSON Content Rules March 2016

;; Referenced RFC 5234 Core Rules
ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
CR = %x0D ; carriage return
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
HTAB = %x09 ; horizontal tab
LF = %x0A ; linefeed
SP = %x20 ; space
WSP = SP / HTAB ; white space

 JSON Content Rules ABNF

8. Acknowledgements

 Andrew Biggs and Paul Jones provided feedback and suggestions which
 led to many changes in the syntax.

9. References

9.1. Normative References

 [RFC1166] Kirkpatrick, S., Stahl, M., and M. Recker, "Internet
 numbers", RFC 1166, DOI 10.17487/RFC1166, July 1990,
 <http://www.rfc-editor.org/info/rfc1166>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <http://www.rfc-editor.org/info/rfc3339>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, DOI 10.17487/RFC4234,
 October 2005, <http://www.rfc-editor.org/info/rfc4234>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <http://www.rfc-editor.org/info/rfc4648>.

 [RFC5322] Resnick, P., Ed., "Internet Message Format", RFC 5322,
 DOI 10.17487/RFC5322, October 2008,
 <http://www.rfc-editor.org/info/rfc5322>.

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc1166
http://www.rfc-editor.org/info/rfc1166
https://datatracker.ietf.org/doc/html/rfc3339
http://www.rfc-editor.org/info/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc4234
http://www.rfc-editor.org/info/rfc4234
https://datatracker.ietf.org/doc/html/rfc4648
http://www.rfc-editor.org/info/rfc4648
https://datatracker.ietf.org/doc/html/rfc5322
http://www.rfc-editor.org/info/rfc5322

Newton & Cordell Expires September 22, 2016 [Page 27]

Internet-Draft JSON Content Rules March 2016

 [RFC5952] Kawamura, S. and M. Kawashima, "A Recommendation for IPv6
 Address Text Representation", RFC 5952,
 DOI 10.17487/RFC5952, August 2010,
 <http://www.rfc-editor.org/info/rfc5952>.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570,
 DOI 10.17487/RFC6570, March 2012,
 <http://www.rfc-editor.org/info/rfc6570>.

 [RFC7159] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", RFC 7159, DOI 10.17487/RFC7159, March
 2014, <http://www.rfc-editor.org/info/rfc7159>.

9.2. Infomative References

 [I-D.cordell-jcr-co-constraints]
 Cordell, P. and A. Newton, "Co-Constraints for JSON
 Content Rules", draft-cordell-jcr-co-constraints-00 (work
 in progress), March 2016.

 [ARIN_JCR_VALIDATOR]
 American Registry for Internet Numbers, "JSON Content
 Rules Validator (Work In Progress)",
 <https://github.com/arineng/jcrvalidator>.

 [CODALOGIC_JCR_VALIDATOR]
 Codalogic, "cl-jcr-parser (Work In Progress)",
 <https://github.com/codalogic/cl-jcr-parser>.

Appendix A. Co-Constraints

 This specification defines a small set of annotations and directives
 for JCR, yet the syntax is extensible allowing for other annotations
 and directives. [I-D.cordell-jcr-co-constraints] ("Co-Constraints
 for JCR") defines further annotations and directives which define
 more detailed constraints on JSON messages, including co-constraints
 (constraining parts of JSON message based on another part of a JSON
 message).

Appendix B. Testing Against JSON Content Rules

 One aspect of JCR that differentiates it from other format schema
 languages are the mechanisms helpful to developers for taking a
 formal specification, such as that found in an RFC, and evolving it
 into unit tests, which are essential to producing quality protocol
 implementations.

https://datatracker.ietf.org/doc/html/rfc5952
http://www.rfc-editor.org/info/rfc5952
https://datatracker.ietf.org/doc/html/rfc6570
http://www.rfc-editor.org/info/rfc6570
https://datatracker.ietf.org/doc/html/rfc7159
http://www.rfc-editor.org/info/rfc7159
https://datatracker.ietf.org/doc/html/draft-cordell-jcr-co-constraints-00
https://github.com/arineng/jcrvalidator
https://github.com/codalogic/cl-jcr-parser

Newton & Cordell Expires September 22, 2016 [Page 28]

Internet-Draft JSON Content Rules March 2016

B.1. Locally Overriding Rules

 As mentioned in the introduction, one tool for testing would be the
 ability to locally override named rules. As an example, consider the
 following rule which defines an array of strings.

 statuses [* :string]

 Consider the specification where this rule is found does not define
 the values but references an IANA registry for extensibility
 purposes.

 If a software developer desired to test a specific situation in which
 the array must at least contain the status "accepted", the rules from
 the specification could be used and the statuses rule could be
 explicitly overridden locally as:

 statuses @{unordered} [:"accepted", * :string]

 Alternatively, the developer may need to ensure that the status
 "denied" should not be present in the array:

 statuses @{unordered} [? @{reject} :"denied", * :string]

B.2. Rule Callbacks

 In many testing scenarios, the evaluation of rules may become more
 complex than that which can be expressed in JCR, sometimes involving
 variables and interdependencies which can only be expressed in a
 programming language.

 A JCR processor may provide a mechanism for the execution of local
 functions or methods based on the name of a rule being evaluated.
 Such a mechanism could pass to the function the data to be evaluated,
 and that function could return to the processor the result of
 evaluating the data in the function.

Appendix C. Combining Multiple Rulesets (Experimental)

 This section is experimental and subject to further development.

 Many work items within the IETF are defined by a core specification
 which is later enhanced by extension specifications. JCR supports
 this pattern of working by using the (@augments) annotation.

 The parameters of the @{augments} annotation are a list of one or
 more target-rule-names that identify rules to be augmented. The
 augmentation process consists of logically adding a reference to the

Newton & Cordell Expires September 22, 2016 [Page 29]

Internet-Draft JSON Content Rules March 2016

 rule name of the rule that contains the @{augments} annotation into
 each of the rules identified by the target-rule-names in the
 @{augments} annotation.

 As an example, assume we have a core specification that contains the
 following JCR:

 #ruleset-id com.example.core
 core { core-item1, core-item2 }
 more { core-item3, core-item4 }
 ...

 And a subsequently defined extension with the following JCR:

 #ruleset-id com.example.extension
 #import com.example.core as core
 extension @{augments core.core core.more} ext-item1

 The resultant core specification is treated as:

 #ruleset-id com.example.core
 core { core-item1, core-item2, __alias1.extension }
 more { core-item3, core-item4, __alias1.extension }
 ...

 where '__alias1' is conceptually an automatically created alias that
 aliases 'com.example.extension'.

 Because multiple @{augments} annotations may specify the same target-
 rule-name, there can be no control over the order the augmentations
 are given in the target rule. Hence the specified target-rule-names
 are only allowed to correspond to (unordered) objects, unordered
 arrays, and value choices.

 If the non-nested rules in the target rule are all combined using the
 choice combiner, then the augmenting rule is also combined using the
 choice combiner. If the non-nested rules in the target rule are all
 combined using the sequence combiner, then the augmenting rule is
 also combined using the sequence combiner. If the non-nested rules
 in the target rule use a combination of the choice combiner and
 sequence combiner, then the existing rules within the target group
 are logically nested within a group and the augmenting rule is
 combined using the sequence combiner. For example, a target rule
 initially containing the following definition:

 core { core-item1, core-item2 | core-item3 }

 would be treated as follows after being augmented:

Newton & Cordell Expires September 22, 2016 [Page 30]

Internet-Draft JSON Content Rules March 2016

 core { (core-item1, core-item2 | core-item3), __alias1.extension }

 If it is desired to add more than one rule to a target rule then the
 augmenting rule can specify a group, for example:

 extension @{augments core.core core.more} (ext-item1, ext-item2)

Appendix D. JCR Implementations

 The following implementations, [ARIN_JCR_VALIDATOR] and
 [CODALOGIC_JCR_VALIDATOR] have influenced the development of this
 document.

Authors' Addresses

 Andrew Lee Newton
 American Registry for Internet Numbers
 3635 Concorde Parkway
 Chantilly, VA 20151
 US

 Email: andy@arin.net
 URI: http://www.arin.net

 Pete Cordell
 Codalogic
 PO Box 30
 Ipswich IP5 2WY
 UK

 Email: pete.cordell@codalogic.com
 URI: http://www.codalogic.com

http://www.arin.net
http://www.codalogic.com

Newton & Cordell Expires September 22, 2016 [Page 31]

