
Token Binding Working Group N. Harper
Internet-Draft Google Inc.
Intended status: Standards Track September 13, 2016
Expires: March 17, 2017

Token Binding for 0-RTT TLS 1.3 Connections
draft-nharper-0-rtt-token-binding-00

Abstract

 This document describes how Token Binding can be used in the 0-RTT
 data of a TLS 1.3 connection. This involves defining a 0-RTT
 exporter for TLS 1.3 and updating how Token Binding negotiation
 works. A TokenBindingMessage sent in 0-RTT data has different
 security properties than one sent after the TLS handshake has
 finished, which this document also describes.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on March 17, 2017.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Harper Expires March 17, 2017 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft 0-RTT Token Binding September 2016

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Requirements Language 2

2. Proposed Design . 2
2.1. 0-RTT Exporter . 3
2.2. TokenBinding Signature Definition 4
2.3. Negotiation TLS Extension 4

3. Implementation Challenges 5
4. Alternatives Considered 5
4.1. Use Both 0-RTT and 1-RTT Exporters on Same Connection . . 5
4.2. Don't Remember Key Parameter From Previous Connection . . 6
4.3. Token Binding and 0-RTT Data Are Mutually Exclusive . . . 6

5. Security Considerations 6
5.1. Exporter Weaknesses 6
5.2. Early Data Ticket Age Window 7

6. Acknowledgements . 8
7. Normative References . 8

 Author's Address . 8

1. Introduction

 Token Binding ([I-D.ietf-tokbind-protocol]) cryptographically binds
 security tokens (e.g. HTTP cookies, OAuth tokens) to the TLS layer
 on which they are presented. It does so by signing an [RFC5705]
 exporter value from the TLS connection. TLS 1.3 introduces a new
 mode that allows a client to send application data on its first
 flight. If this 0-RTT data contains a security token, the client
 would want to prove possession of its private key. However, the TLS
 exporter cannot be run until the handshake has finished. This
 document describes changes to Token Binding to allow for a client to
 send a proof of possession in its 0-RTT application data, albeit with
 weaker security properties.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Proposed Design

 A TokenBinding struct as defined in [I-D.ietf-tokbind-protocol]
 contains a signature of the EKM value from the TLS layer. When a
 client is building 0-RTT data to send on a TLS 1.3 connection, there

https://datatracker.ietf.org/doc/html/rfc5705
https://datatracker.ietf.org/doc/html/rfc2119

Harper Expires March 17, 2017 [Page 2]

Internet-Draft 0-RTT Token Binding September 2016

 is no EKM value available. This design changes the definition of the
 TokenBinding.signature field to use a different exporter for 0-RTT
 data, as well as defines that exporter. Since no negotiation for the
 connection can happen before the client sends this
 TokenBindingMessage in 0-RTT data, this document also describes how a
 client decides what TokenBindingMessage to send in 0-RTT data and how
 a server should interpret that message.

 If a client does not send any 0-RTT data, or if the server rejects
 the client's 0-RTT data, then the client MUST use the existing 1-RTT
 exporter, as defined in [I-D.ietf-tokbind-protocol].

2.1. 0-RTT Exporter

 In the key schedule for TLS 1.3, step is added between Early Secret
 and HKDF-Extract(ECDHE, Early Secret) to derive a value
 early_exporter_secret. With this modification, the key schedule
 (from [I-D.ietf-tls-tls13] section 7.1) looks like the following:

 0
 |
 v
 PSK -> HKDF-Extract
 |
 v
 Early Secret
 |
 +---------> Derive-Secret(., "early traffic secret",
 | ClientHello)
 | = early_traffic_secret
 |
 +---------> Derive-Secret(., "early exporter secret",
 | ClientHello)
 | = early_exporter_secret
 v
 (EC)DHE -> HKDF-Extract
 |
 ...

 This definition does not affect the value of anything else derived in
 this key schedule.

 The 0-RTT exporter is defined similarly to exporter in section 7.3.3,
 and has the same interface as the [RFC5705] exporter. It is defined
 as:

https://datatracker.ietf.org/doc/html/rfc5705

Harper Expires March 17, 2017 [Page 3]

Internet-Draft 0-RTT Token Binding September 2016

 HKDF-Expand-Label(early_exporter_secret,
 label, context_value, key_length)

 Where HKDF-Expand-Label is the same function defined in
 [I-D.ietf-tls-tls13].

2.2. TokenBinding Signature Definition

 In [I-D.ietf-tokbind-protocol], the signature field of the
 TokenBinding struct is defined to be the signature of a
 concatentation that includes the EKM value. This document changes
 that EKM value to be one of two possible values.

 The first exporter value is the output of the 0-RTT exporter defined
 above, which can be used in any TokenBindingMessage. The second is
 the exporter defined in section 7.3.3 of [I-D.ietf-tls-tls13], which
 can only be used once the handshake is complete. In both cases, the
 exporter is called with the following input values:

 o Label: The ASCII string "EXPORTER-Token-Binding" with no
 terminating NUL.

 o Context value: NULL (no application context supplied).

 o Length: 32 bytes.

 These are the same values as defined in section 3 of
 [I-D.ietf-tokbind-protocol].

 The rules for a client choosing which exporter to use are as follows.
 A client which is not sending any 0-RTT data on a connection MUST use
 the exporter defined in [I-D.ietf-tls-tls13] for all
 TokenBindingMessages on that connection so that it is compatible with
 [I-D.ietf-tokbind-protocol]. A client that sends a
 TokenBindingMessage in 0-RTT data must use the 0-RTT exporter defined
 in this document since the one in [I-D.ietf-tls-tls13] cannot be used
 at that time. A client that sends 0-RTT data which is not rejected
 by the server MUST use the 0-RTT exporter for the rest of the
 connection. If the server rejects the client's 0-RTT data, then the
 client MUST use the exporter defined in [I-D.ietf-tls-tls13] for the
 remainder of the connection, as if no 0-RTT data had ever been sent.

2.3. Negotiation TLS Extension

 The behavior of the Token Binding negotiation TLS extension does not
 change for a 0-RTT connection: the client and server should process
 this extension the same way regardless of whether the client also
 sent the EarlyDataIndication extension.

Harper Expires March 17, 2017 [Page 4]

Internet-Draft 0-RTT Token Binding September 2016

 For the sake of choosing a key parameter to use in 0-RTT data, the
 client MUST use the same key parameter that was used on the
 connection during which the ticket (now being used for resumption)
 was established. The server MUST NOT accept early data if the
 negotiated Token Binding key parameter does not match the parameter
 from the initial connection. This is the same behavior as ALPN and
 SNI extensions.

3. Implementation Challenges

 The client has to be able to modify the message it sends in 0-RTT
 data if the 0-RTT data gets rejected and needs to be retransmitted in
 1-RTT data. Even if the Token Binding integration with 0-RTT were
 modified so that Token Binding never caused a 0-RTT reject that
 required rewriting a request, the client still has to handle the
 server rejecting the 0-RTT data for other reasons.

 HTTP2 allows for requests to different domains to share the same TLS
 connection if the SAN of the cert covers those domains. If
 one.example.com supports 0-RTT and Token Binding, but two.example.com
 only supports Token Binding as defined in
 [I-D.ietf-tokbind-protocol], those servers cannot share a cert and
 use HTTP2.

4. Alternatives Considered

4.1. Use Both 0-RTT and 1-RTT Exporters on Same Connection

 The client could be required to use the 0-RTT EKM when the
 TokenBindingMessage is sent in 0-RTT data, and the 1-RTT EKM when it
 is sent in 1-RTT data. This creates synchronization issues on both
 the client and server to know when the application layer switched
 from writing in early data to writing after the handshake finished
 (and this switch could be in the middle of an HTTP request).

 This constraint could be relaxed slightly. A ratcheting mechanism
 could be used where the client uses the 0-RTT EKM while it thinks
 that it's writing early data (even if it isn't writing early data),
 and once it knows the handshake is finished, it uses the 1-RTT EKM.
 Once the server sees a TokenBindingMessage using the 1-RTT EKM, the
 server would no longer accept the 0-RTT EKM. In practice, this is
 difficult to implement because multiple HTTP/2 streams can be
 multiplexed on the same connection, requiring the ratchet to be
 synchronized across the streams.

 Relaxing this further where the server will always accept either the
 0-RTT or 1-RTT EKM (but the client keeps the behavior as above) is
 another possibility. This is more complicated than always using the

Harper Expires March 17, 2017 [Page 5]

Internet-Draft 0-RTT Token Binding September 2016

 0-RTT exporter, and provides no additional security benefits (since
 the server would have to accept a client only using the 0-RTT
 exporter).

4.2. Don't Remember Key Parameter From Previous Connection

 The proposed design uses the same Token Binding key parameter from
 the previous connection, and the TLS extension must negotiate the
 same key parameter as the previous connection. This mirrors how ALPN
 is negotiated in TLS 1.3. Instead of remembering this parameter, the
 client could put the in first entry of their key parameters list the
 key type being used in 0-RTT, and allow the client and server to
 potentially negotiate a new type to use once the handshake is
 complete. This alternate gains a slight amount of key type agility
 in exchange for implementation difficulty. Other variations of this
 are also possible, for example requiring the server to reject early
 data if it doesn't choose the first parameter, or requiring the
 client to send only one key parameter.

4.3. Token Binding and 0-RTT Data Are Mutually Exclusive

 If a TokenBindingMessage is never allowed in 0-RTT data, then no
 changes are needed to the exporter or negotiation. A server that
 wishes to support Token Binding must not create any NewSessionTicket
 messages with the allow_early_data flag set. A client must not send
 the token binding negotiation extension and the EarlyDataIndication
 extension in the same ClientHello.

5. Security Considerations

 Token Binding messages that use the 0-RTT exporter have weaker
 security properties than with the [RFC5705] exporter. If either
 party of a connection using Token Binding does not wish to use 0-RTT
 token bindings, they can do so: a client can choose to never send
 0-RTT data on a connection where it uses token binding, and a server
 can choose to reject any 0-RTT data sent on a connection that
 negotiated token binding.

 0-RTT data in TLS 1.3 can be replayed by an attacker. Token Binding
 is not designed to prevent 0-RTT data from being replayed.

5.1. Exporter Weaknesses

 The exporter specified in [I-D.ietf-tokbind-protocol] is chosen so
 that a client and server have the same exporter value only if they
 are on the same TLS connection. This prevents an attacker who can
 read the plaintext of a TokenBindingMessage sent on that connection
 from replaying that message on another connection (without also

https://datatracker.ietf.org/doc/html/rfc5705

Harper Expires March 17, 2017 [Page 6]

Internet-Draft 0-RTT Token Binding September 2016

 having the token binding private key). The 0-RTT exporter only
 covers the ClientHello and the PSK of the connection, so it does not
 provide this guarantee.

 An attacker with possession of the PSK secret and a transcript of the
 ClientHello and early data sent by a client under that PSK can
 extract the TokenBindingMessage, create a new connection to the
 server (using the same ClientHello and PSK), and send different
 application data with the same TokenBindingMessage. Note that the
 ClientHello contains public values for the (EC)DHE key agreement that
 is used as part of deriving the traffic keys for the TLS connection,
 so if the attacker does not also have the corresponding private
 values, they will not be able to read the server's response or send a
 valid Finished message in the handshake for this TLS connection.
 Nevertheless, by that point the server has already processed the
 attacker's message with the replayed TokenBindingMessage.

 If the client secures the PSK with the same level of protection as
 the Token Binding key, then for an attacker to steal the PSK to
 attack the 0-RTT exporter would mean that the attacker could also
 steal the Token Binding key directly. Therefore, it is recommended
 that any client implementing Token Binding on 0-RTT connections also
 secure their PSK resumption secrets with the same strength as their
 Token Binding keys.

 This sort of replayability of a TokenBindingMessage is different than
 the replayability caveat of 0-RTT application data in TLS 1.3. A
 network observer can replay 0-RTT data from TLS 1.3 without knowing
 any secrets of the client or server, but the application data that is
 replayed is untouched. This replay is done by a more powerful
 attacker who is able to view the plaintext and then spoof a
 connection with the same parameters so that the replayed
 TokenBindingMessage still validates when sent with different
 application data.

5.2. Early Data Ticket Age Window

 When an attacker with control of the PSK secret replays a
 TokenBindingMessage, it has to use the same ClientHello that the
 client used. The ClientHello includes an "obfuscated_ticket_age" in
 its EarlyDataIndication extension, which the server can use to narrow
 the window in which that ClientHello will be accepted. Even if a PSK
 is valid for a week, the server will only accept that particular
 ClientHello for a smaller time window based on the ticket age. A
 server should make their acceptance window for this value as small as
 practical to limit an attacker's ability to replay a ClientHello and
 send new application data with the stolen TokenBindingMessage.

Harper Expires March 17, 2017 [Page 7]

Internet-Draft 0-RTT Token Binding September 2016

6. Acknowledgements

 The author would like to thank David Benjamin, Steven Valdez, and
 Bill Cox for their feedback and suggestions.

7. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-15 (work in progress),
 August 2016.

 [I-D.ietf-tokbind-negotiation]
 Popov, A., Nystrom, M., Balfanz, D., and A. Langley,
 "Transport Layer Security (TLS) Extension for Token
 Binding Protocol Negotiation", draft-ietf-tokbind-

negotiation-05 (work in progress), September 2016.

 [I-D.ietf-tokbind-protocol]
 Popov, A., Nystrom, M., Balfanz, D., Langley, A., and J.
 Hodges, "The Token Binding Protocol Version 1.0", draft-

ietf-tokbind-protocol-10 (work in progress), September
 2016.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, DOI 10.17487/RFC5705,
 March 2010, <http://www.rfc-editor.org/info/rfc5705>.

Author's Address

 Nick Harper
 Google Inc.

 Email: nharper@google.com

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-15
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-05
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-negotiation-05
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-10
https://datatracker.ietf.org/doc/html/draft-ietf-tokbind-protocol-10
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5705
http://www.rfc-editor.org/info/rfc5705

Harper Expires March 17, 2017 [Page 8]

