
TLS Working Group Y. Nir

Internet-Draft Check Point

Intended status: Standards Track September 25, 2011

Expires: March 28, 2012

A Method for Sharing Record Protocol Keys with a Middlebox in TLS

draft-nir-tls-keyshare-01

Abstract

This document contains a straw man proposal for a method for sharing

symmetric session keys between a TLS client and a middlebox, so that

the middlebox can decrypt the TLS-protected traffic.

This method is an alternative to the middlebox becoming a proxy.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on March 28, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

1.1. Conventions Used in This Document

2. Protocol Overview

*

*

*

2.1. The tls_keyshare Extension

2.2. The KeyShareInfo Record

2.2.1. The KeyShareInfo Discovery Subtype

2.2.2. The KeyShareInfo Rejection Subtype

2.2.3. The KeyShareInfo Keys Subtype

3. Processing

3.1. Client Processing

3.2. Server Processing

3.3. Middlebox Processing

4. Middlebox Discovery

5. Security Considerations

6. IANA Considerations

7. References

7.1. Normative References

7.2. Informative References

Author's Address

1. Introduction

TLS ([TLS]) is used in a wide variety of protocols. The most common use

is for protecting HTTP, as described in [HTTPS]. Middleboxes such as

firewalls scan protocols for attacks. For HTTP common attacks to scan

for are cross-site scripting and transfer of files containing malware.

TLS provides authentication and privacy against eavesdropping, but it

hides the traffic not only from mallicious intercepters. It also hides

the traffic from the middlebox, and prevents it from doing its job. Our

goal is to allow the middlebox to inspect the traffic, without allowing

others to do the same.

The requirements can be summed up in the following points:

The middlebox should be able to decrypt all TLS traffic, and

optionally (the client's option) also modify it.

The protocol must not make it easier for other entities to

decrypt the traffic.

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

The client should be able to opt out of TLS decryption, but

opting out may mean that the connection is blocked.

The server should be able to opt out of TLS decryption, but

opting out may mean that the connection is blocked.

Two proposals have been offered to achieve these goals. One is having

the middlebox be a proxy, acting as server to the client, and as a

client to the server. This option is implemented in several commercial

products. [proxy_server_ext] describes an extension to TLS for

improving that mechanism, and also contains a good description in the

introduction.

This document describes an alternative mechanism, where the client

sends the keys to the middlebox in the TLS record stream. This requires

more changes to clients and servers, but has the advantage that it does

not break many of TLS guarantees.

1.1. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

2. Protocol Overview

A supporting client will send a new extension in the ClientHello

message. This new extension is called tls_keyshare. A server that

supports this extension will send the extension in the ServerHello if

it has received that extension in the ClientHello. Note that sending

this extension only acknowledges understanding the protocol, not

agreement to decryption. The extension contains a sequence of SHA-256

hashes of middlebox certificates. The client sends the hashes of the

certificates of middleboxes that it knows are on-path to the server.

See Section 4 for a discussion of middlebox discovery. The server sends

a subset of the same hashes, only those for which it agrees to

decryption.

This document defines a new record type called KeyshareInfo. This is a

new content type rather than a new handshake message so that it doesn't

figure in hash calculation of the hash message. A middlebox inserts a

KeyShareInfo record into the server-to-client stream immediately after

receiving the ClientHello message, if its hash was not present in the

client's tls_keyshare extension. It contains two pieces of information:

A certificate of the middlebox. The public key in the certificate

MUST be of the RSA type. The certificate should contain enough

information for the client to recognize the middlebox.

A signature using the private key associated with the certificate

over the concatenation of the ClientHello and ServerHello

messages.

*

*

*

*

The middlebox inserts a KeyShareInfo record with a certificate into the

client-to-server stream without an alert, immediately following a

ServerHello message that does not contain the middlebox hash. The

server will reply with either a fatal UNAUTHORIZED_MIDDLEBOX alert, or

a fatal RETRY_MIDDLEBOX alert, depending on policy.

In cases where the client and server negotiate either a ciphersuite

that the middlebox does not support, or an extension that it doesn't

support, the middlebox inserts a different kind of KeyShareInfo record

into the stream, that identifies the unsupported ciphersuite or

extension. Both kinds of KeyShareInfo records are followed by a fatal

alert. The client is expected to add the hashes and remove the

unsupported ciphersuites and extensions, before attempting a new TLS

connection.

The client inserts a third type of KeyShareInfo record into the client-

to-server stream immediately following the ChangeCipherSpec record

(before the Finished handshake record). This KeyShareInfo record is

constructed differently, and contains an RSA encrypted record of the

write keys for both client and server. The client may send several

records if there is more than one middlebox.

 Client Middlebox Server

 ------ --------- ------

 ClientHello(tls_keyshare=0)

 -------->

 KeyShareInfo(cert,sig)

 KeyShareInfo(reject cipher:0x0044)

 alert(MIDDLEBOX_PRESENT)

 <--------

 ClientHello(tls_keyshare=cert_hash)

 -------->

 ServerHello(cert_hash)

 (Certificate)

 (ServerKeyExchange)

 ServerHelloDone

 <--------

 (Certificate)

 ClientKeyExchange

 (CertificateVerify)

 ChangeCipherSpec

 KeyShareInfo(keys)

 Finished -------->

 ChangeCipherSpec

 Finished

 <--------

The diagram below outlines discovery.

 Client Middlebox Server

 ------ --------- ------

 ClientHello(tls_keyshare=cert_hash)

 -------->

 ServerHello(keyshare=0)

 (Certificate)

 (ServerKeyExchange)

 ServerHelloDone

 <--------

 KeyShareInfo(cert,sig)

 -------->

 alert(UNAUTHORIZED_MIDDLEBOX)

 <--------

The diagram below outlines the protocol in a case where the server

refuses decryption.

2.1. The tls_keyshare Extension

The tls_keyshare extension is a ClientHello and ServerHello extension

as defined in section 2.3 of [TLS-EXT]. The extension_type field is TBA

by IANA. The format is to be added.

2.2. The KeyShareInfo Record

The format of the KeyShareInfo record is to be added. The content type

is TBA by IANA.

2.2.1. The KeyShareInfo Discovery Subtype

The KeyShareInfo Discovery record gives client or server information

about the middlebox. Format is TBA.

2.2.2. The KeyShareInfo Rejection Subtype

The KeyShareInfo Rejection record gives client a list of unsupported

ciphersuites and extensions. Format is TBA.

2.2.3. The KeyShareInfo Keys Subtype

The KeyShareInfo Keys record is send by the client to the middlebox and

includes the session keys. Format is TBA.

3. Processing

3.1. Client Processing

If the client policy prohibits decryption, the client SHOULD send the

tls_keyshare extension without hashes. Note that the middlebox might

still try to proxy the connection, but that is in conflict with this

specification, and is outside the scope of this document.

If there are some middleboxes that are by policy acceptable to the

client, their certificates are known in advance, and the client

believes that they are on-path to the server, then the client MUST send

the SHA-256 hashes of their certificates in the tls_keyshare extension.

If a KeyShareInfo Discovery record is received with an unknown

certificate, it MAY be ignored, or the user MAY be prompted to

authorize the decryption, and optionally change the configuration to

allow future decryption by this certificate. There will certainly be

controversy about this, but the configuration must happen an some

point.

If policy dictates that the particular middlebox referenced in the

KeyShareInfo record is not allowed to decrypt, then such a record MUST

be ignored. In that case the connection fails. If the middlebox is

acceptable, then the client retries the connection, this time adding

the SHA-256 hash of the certificate to the tls_keyshare extension. This

is the discovery mechanism.

For all the middleboxes that are not ignored, the client MUST send a

KeyShareInfo record with the symmetric keys immediately following the

ChangeCipherSpec record before any protected record is sent.

If a KeyShareInfo Rejection record is received, the client SHOULD retry

the handshake, this time without the flagged ciphersuites and

extensions. If it is not acceptable to run the connection without these

ciphersuites or extensions, the client should log the event or inform

the user.

If the server sends a RETRY_MIDDLEBOX alert, the client should retry

the handshake. If it sends an UNAUTHORIZED_MIDDLEBOX alert, then the

client should log the event or alert the user.

3.2. Server Processing

The server SHOULD send the tls_keyshare extension even if policy

dictates that the decryption is prohibited. If policy allows all

middleboxex to decrypt, it makes sense to simply copy the client's

tls_keyshare extension.

If some of the middlebox hashes included in the client's tls_keyshare

extension are recognized as those of acceptable middleboxes, then only

those are copied to the server's tls_keyshare extension. When the

middlebox sends a KeyShareInfo Discovery record, the server may decide

whether that is acceptable or not, and accordingly send the

RETRY_MIDDLEBOX or UNAUTHORIZED_MIDDLEBOX alerts. In any case, every

time the server does not copy all hashes from the client's

tls_keyshare, the connection is probably going to end in an alert.

3.3. Middlebox Processing

The middlebox MUST send a KeyShareInfo Discovery record to the client

if the client has indicated support for this extension, and has not

included the middlebox hash in the extension. The discovery record is

followed by a MIDDLEBOX_PRESENT alert, breaking the connection.

Similarly, if the hash is missing from the server's tls_keyshare

extension, then the middlebox injects a KeyShareInfo Discovery record

into the client-to-server stream. The server will usually then send an

Alert record.

If the ServerHello specifies a ciphersuite that the middlebox does not

support, or if it includes a TLS extension that might prevent the

middlebox from processing, then the middlebox MAY send a KeyShareInfo

Reject record with all unacceptable ciphersuites and extension numbers,

followed by a MIDDLEBOX_PRESENT alert.

4. Middlebox Discovery

Discovering that the middlebox is present has already been described in

Section 3.1. The client that is not aware of the presence of the

middlebox receives a KeyShareInfo Discovery record followed by a

MIDDLEBOX_PRESENT alert message.

Discovering that a middlebox in no longer on the path is trickier,

because the superfluous KeyShareInfo Keys records do not lead to any

observable effects for the client. We suggest that the client keep a

list of discovered middleboxes, and periodically clear entries from the

list, requiring a repeated discovery. System events such as a change to

host IP address, a reboot or the computer entering sleep mode MAY be

used as triggers for clearing the list.

5. Security Considerations

To be added

6. IANA Considerations

To be added.

7. References

7.1. Normative References

[1]
Dierks, T. and E. Rescorla, "The Transport Layer Security

(TLS) Protocol Version 1.2", RFC 5246, August 2008.

[2]

Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J. and

T. Wright, "Transport Layer Security (TLS) Extensions", RFC

4366, April 2006.

[3]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

7.2. Informative References

[1] Rescorla, E, "HTTP Over TLS", RFC 2818, May 2000.

http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc4366
mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2818

[2]
McGrew, D and P Gladstone, "TLS Proxy Server Extension",

Internet-Draft draft-mcgrew-tls-proxy-server-00, July 2011.

Author's Address

Yoav Nir Nir Check Point Software Technologies Ltd. 5 Hasolelim st.

Tel Aviv, 67897 Israel EMail: ynir@checkpoint.com

http://tools.ietf.org/html/draft-mcgrew-tls-proxy-server-00
mailto:ynir@checkpoint.com

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions Used in This Document
	2. Protocol Overview
	2.1. The tls_keyshare Extension
	2.2. The KeyShareInfo Record
	2.2.1. The KeyShareInfo Discovery Subtype
	2.2.2. The KeyShareInfo Rejection Subtype
	2.2.3. The KeyShareInfo Keys Subtype
	3. Processing
	3.1. Client Processing
	3.2. Server Processing
	3.3. Middlebox Processing
	4. Middlebox Discovery
	5. Security Considerations
	6. IANA Considerations
	7. References
	7.1. Normative References
	7.2. Informative References
	Author's Address

