
TLS Working Group                                                 Y. Nir
Internet-Draft                                               Check Point
Intended status: Experimental                             April 29, 2014
Expires: October 31, 2014

Using Client Puzzles to Protect TLS Servers From Denial of Service
Attacks

draft-nir-tls-puzzles-00

Abstract

   This document proposes a mechanism for mitigating denial of service
   (DoS) and distributed denial of service (DDoS) attacks on TLS
   servers.  Attackers are limited in their ability to cause resource
   waste on the server by requiring proof of work by the client before
   these CPU resources are expended.

Status of this Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on October 31, 2014.

Copyright Notice

   Copyright (c) 2014 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents
   (http://trustee.ietf.org/license-info) in effect on the date of
   publication of this document.  Please review these documents
   carefully, as they describe your rights and restrictions with respect
   to this document.  Code Components extracted from this document must
   include Simplified BSD License text as described in Section 4.e of
   the Trust Legal Provisions and are provided without warranty as

Nir                     Expires October 31, 2014                [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info


Internet-Draft             TLS Client Puzzles                 April 2014

   described in the Simplified BSD License.

1.  Introduction

   TLS ([TLS]) is vulnerable to a simple denial of service (DoS) attack.
   Arbitrary hosts on the Internet can begin a TLS handshake with a
   server.  The attacking clients need only generate a valid TLS
   ClientHello and a valid-looking ClientKeyExchange, both of which
   require very little computing resources.

   To respond, the server has to perform some CPU-intensive operations.
   Depending on the chosen ciphersuite, the server will need to perform
   an RSA decryption or a Diffie-Hellman exchange plus a RSA, DSA, or
   ECDSA signature.  With such asymmetric work, it's easy for an
   attacker or a modestly sized bot-net to overwhelm a server's
   resources, creating a DoS or distributed DoS (DDoS) attack.

   The extension described in this document mitigates this attack, by
   forcing the attacker to perform some work (a partial break of a hash
   function) before the server agrees to process the ClientKeyExchange.
   This has a marked effect on the latency, so Section 4 recommends
   against using this feature when the server is not under extreme load.

1.1.  Conventions Used in This Document

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
   document are to be interpreted as described in [RFC2119].

2.  Protocol Overview

   A supporting client will send a new empty extension in the
   ClientHello message.  This new extension is called client_puzzle.

   A supporting server's reply depends on whether the feature is
   activated or not.  It is expected that conforming servers will have
   an option to set this feature to be unconditionally deactivated and
   unconditionally activated, but at least the latter will be for
   testing purposes only.  The usual configuration will be to activate
   the feature dynamically in response to a heavy load which may be a
   result of an attempt at a DoS attack.

   When deactivated, the server MAY either respond with an empty
   client_puzzle extension in its ServerHello, or it MAY omit the
   extension entirely.  Either way, no further action is required from
   either client or server.  TBD: Should we mandate one or the other?

https://datatracker.ietf.org/doc/html/rfc2119


Nir                     Expires October 31, 2014                [Page 2]



Internet-Draft             TLS Client Puzzles                 April 2014

   When activated, the server SHOULD generate a 32-byte value called a
   Mystery, and send a non-empty client_puzzle extension as described in

Section 2.1.  This extension is sent in the ServerHello.  Exceptions
   to the SHOULD-level requirement are in Section 5.

   A conforming client that has received a non-empty client_puzzle
   extension MUST respond with one of the following:
   o  Terminate the connection with a decode_error alert if the
      client_puzzle extension sent by the server was malformed.
   o  Terminate the connection with a puzzle_error alert if either the
      puzzle is too hard, or all attempts to solve the puzzle failed.
      This new alert is described in Section 2.2.
   o  A PuzzleSolution handshake message with the solution to the
      puzzle.  This new handshake message is defined in Section 2.3.
      The client MUST send this new handshake message before the
      optional Certificate message and the (non-optional)
      ClientKeyExchange message.

   When the feature is activated and a puzzle has been sent in the
   extension, the server MUST NOT process the Certificate or the
   ClientKeyExchange messages if the PuzzleSolution is missing.  In that
   case, it MUST terminate the connection with a puzzle_error alert.  A
   puzzle_error alert is also used if the solution in the PuzzleSolution
   message is incorrect.

   If the puzzle solution is correct, the server continues the handshake
   normally.

   The diagram below outlines the protocol structure.



Nir                     Expires October 31, 2014                [Page 3]



Internet-Draft             TLS Client Puzzles                 April 2014

         Client                                               Server

         ClientHello(*)               -------->
                                                      ServerHello(*)
                                                        Certificate*
                                                  ServerKeyExchange*
                                                 CertificateRequest*
                                      <--------      ServerHelloDone
         PuzzleSolution
         Certificate*
         ClientKeyExchange
         CertificateVerify*
         [ChangeCipherSpec]
         Finished                     -------->
                                                  [ChangeCipherSpec]
                                      <--------             Finished
         Application Data             <------->     Application Data

       (*) The ClientHello and ServerHello include the client_puzzle
           extension to indicate support

2.1.  The client_puzzle Extension

   The client_puzzle extension is a ClientHello and ServerHello
   extension as defined in section 2.3 of [TLS-EXT].  The extension_type
   field is TBA by IANA.

   The format of the non-empty extension is to be added, but it has to
   include the following fields:
   o  A 32-byte field that contains the SHA2-256 hash of the (not
      transmitted) Mystery.
   o  A 1-byte field that contains the difficulty level of the puzzle.
   o  A 32-byte "masked puzzle" value, which is the same as the Mystery,
      but with the last n bits set to zero, where n is the number in the
      difficulty field.

2.2.  The puzzle_error Alert

   This alert code is to be assigned by IANA.  This alert is always
   fatal.

2.3.  The PuzzleSolution Handshake Message

   The format of the PuzzleSolution record is to be added, but it will
   contain the 32-byte Mystery.  The content type is TBA by IANA.

   The client finds this value by trying different values for the masked



Nir                     Expires October 31, 2014                [Page 4]



Internet-Draft             TLS Client Puzzles                 April 2014

   bits in the "masked puzzle" field in the client_puzzle extension.

3.  Processing

3.1.  Client Processing

   The client MUST always send an empty client_puzzle extension in the
   ClientHello.

   If no client_puzzle extension is present in the ServerHello, no
   further action is needed.

   If an empty client_puzzle extension is present in the ServerHello, no
   further action is needed.

   If a non-empty client_puzzle extension is present in the ServerHello,
   the verify that it is properly formatted and that the difficulty
   level is acceptable.  The difficulty level is acceptable if all 2^n
   possibilities can be tested by the client in a reasonable amount of
   time.  If either check fails, the client MUST terminate the
   connection with a puzzle_error alert.

   The client then proceeds to attempt to solve the puzzle.  If the
   puzzle is unsolvable, the client MUST terminate the connection with a
   fatal puzzle_error alert.

   Having found a correct Mystery value, the client sends that value in
   a PuzzleSolution message, and proceeds with the rest of the TLS
   handshake.

3.2.  Server Processing

   Puzzle protection is enabled or disabled depending on load.  See
Section 4 for considerations.

   When disabled, it is acceptable for the client to not send a
   client_puzzle extension.  In this case, the server MUST NOT send a
   client_puzzle extension.

   When disabled, if the client does send an empty client_puzzle
   extension, the server MAY reply with an empty client_puzzle
   extension.  If the feature is administratively disabled, then the
   server SHOULD NOT send an empty client_puzzle extension, whereas if
   it's only disabled because the server is not under load, it SHOULD
   send the extension.

   When puzzles are enabled, but the client did not send a client_puzzle



Nir                     Expires October 31, 2014                [Page 5]



Internet-Draft             TLS Client Puzzles                 April 2014

   extension, the server MUST terminate the connection with a
   puzzle_error alert.

   When puzzles are enabled and the client has sent an empty
   client_puzzle extension, the server generates a random 32-byte string
   called the Mystery.  To construct the extension, the server hashes
   the Mystery, sets a difficulty level (n), and adds the Mystery to the
   extension data field, clearing the last n bits.  The server also
   stores the Mystery value.

   When the client returns a PuzzleSolution handshake message, the
   server compares the Mystery value to the value in the PuzzleSolution.
   If they match, or if their SHA2-256 hashes match, processing
   continues as usual.  If not, the server MUST terminate the session
   with a puzzle_error alert.

4.  Operational Considerations

   [This section needs a lot of expanding]

   Not all Clients support this extension, so this protection should
   only be enabled when the server detects an unusual load that could
   indicate an attack.  Detecting this is beyond the scope of this
   document.

   The difficulty level should be set by balancing the requirement to
   minimize the latency for legitimate clients and making things
   difficult for attackers.  A good rule of thumb is for taking about 1
   second to solve the puzzle.  A typical client or bot-net member in
   2014 can perform slightly less than a million SHA2-256 hashes per
   second per core, so setting the difficulty level to n=20 is a good
   compromise.  It should be noted that mobile initiators, especially
   phones are considerably weaker than that.  Implementations should
   allow administrators to set the difficulty level, and/or be able to
   set the difficulty level dynamically in response to load.

   Note that when this feature is enabled, it causes a latency of about
   one second.  Such a delay may be unnoticeable for SMTP servers, but
   would be very irritating to browser users.  These considerations
   should be taken into account when determining activation thresholds
   and difficulty levels.

   Clients should set a maximum difficulty level beyond which they won't
   try to solve the puzzle and log or display a failure message to the
   administrator or user.

   This mechanism is appropriate for TLS.  For DTLS, initiating multiple



Nir                     Expires October 31, 2014                [Page 6]



Internet-Draft             TLS Client Puzzles                 April 2014

   handshakes so as to load the server with memory allocations may be a
   more attractive attack vector, one that this feature does not protect
   against.  See Appendix A for an alternate design that could be
   appropriate for DTLS.

5.  Security Considerations

   To be added

6.  IANA Considerations

   IANA is requested to allocate:
   o  An alert type in the "TLS Alert" registry, with puzzle_error in
      the Description field, "Y" in the DTLS-OK field, and this document
      as reference.
   o  An extension type in the "ExtensionType Values" registry.  The
      extension name should be "client_puzzle" and the reference should
      be this document.
   o  A handshake message type in the "TLS HandshakeType" registry with
      description "puzzle_solution", "Y" for DTLS-OK, and this document
      as reference.

7.  Normative References

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [TLS]      Dierks, T. and E. Rescorla, "The Transport Layer Security
              (TLS) Protocol Version 1.2", RFC 5246, August 2008.

   [TLS-EXT]  Blake-Wilson, S., Nystrom, M., Hopwood, D., Mikkelsen, J.,
              and T. Wright, "Transport Layer Security (TLS)
              Extensions", RFC 4366, April 2006.

Appendix A.  An Alternate Design

   This appendix broadly describes an alternate design.  I rejected this
   in favor of the design in the main part of the document, because that
   one seemed more appropriate for a TCP-based protocol such as TLS.

   With this design, the client does not need to indicate support.  When
   the server is under load, it responds to a ClientHello with an alert
   that carries the puzzle, and terminates the TLS connection.  The
   client then solves the puzzle, and starts a new connection, including

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc5246
https://datatracker.ietf.org/doc/html/rfc4366


Nir                     Expires October 31, 2014                [Page 7]



Internet-Draft             TLS Client Puzzles                 April 2014

   the puzzle solution in a ClientHello extension.

   Advantages of this alternate design:
   o  No state is needed on the server while the client is solving the
      puzzle.  Specifically, no sockets are occupied.
   o  No new handshake messages are required.
   o  Appropriate for DTLS, because the statelessness while the client
      is solving the puzzle mitigates the state allocation attack.

   Disadvantages of this alternate design:
   o  Requires an extra TCP handshake, increasing latency in a protocol
      extension that already has a latency issue.
   o  Has a challenge with recognizing puzzles and preventing re-use of
      a solution.  Mysteries need to be generated in such a way that the
      server will recognize them as Mysteries that it has generated, and
      also won't allow re-use of a solved Mystery by multiple clients.

   The challenge above is not insurmountable.  It is possible to
   generate the Mystery in a stateless way by making it depend on client
   IP address and on a timestamp.  Alternatively, the server can
   allocate state and store the issued Mysteries, deleting them when
   they are received to prevent re-use, and expiring them after some
   appropriate time span (at least round-trip time plus the time it
   takes the slowest client to solve the puzzle).

Author's Address

   Yoav Nir
   Check Point Software Technologies Ltd.
   5 Hasolelim st.
   Tel Aviv  6789735
   Israel

   Email: ynir.ietf@gmail.com



Nir                     Expires October 31, 2014                [Page 8]


