Network Working Group Y. Nishida ToC

Internet-Draft WIDE Project
Intended status: Standards March 02,
Track 2010

Expires: September 3, 2010

NewReno Modification for Smooth Recovery After Fast Retransmission
draft-nishida-newreno-modification-02

Abstract

This memo describes a feeble point in Fast Recovery algorithm in
NewReno defined in RFC3782 and proposes a simple modification to solve
the problem.

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task
Force (IETF), its areas, and its working groups. Note that other groups
may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference material
or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://
www.ietf.org/ietf/1id-abstracts. txt.

The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

This Internet-Draft will expire on September 3, 2010.

Copyright Notice

Copyright (c) 2010 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (http://trustee.ietf.org/license-
info) in effect on the date of publication of this document. Please
review these documents carefully, as they describe your rights and
restrictions with respect to this document. Code Components extracted
from this document must include Simplified BSD License text as
described in Section 4.e of the Trust Legal Provisions and are provided
without warranty as described in the BSD License.

http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Table of Contents

Introduction

Conventions and Terminology

Problem Description

Possible Scenarios

4.1. Case 1: Small Sending Window Size at Sender
4.2. Case 2: Zero Window Advertisement from Receiver
4.3. Case 3: Lost of ACK segments

Discussion

Proposed Fix

Simulation Results

Security Considerations

IANA Considerations

Normative References

Author's Address

[

1. Introduction TOC

There are some situations that NewReno cannot recover quickly after the
success of fast retransmission. This issue is resulted from a feeble
point in Fast Recovery algorithm in NewReno defined in RFC3782
[REC3782] (Floyd, S., Henderson, T., and A. Gurtov, “The NewReno
Modification to TCP's Fast Recovery Algorithm,” April 2004.). This
document describes the point in Fast Recovery and presents possible
scenarios. This memo also propose a simple modification to fix this
problem.

2. Conventions and Terminology TOC

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119] (Bradner, S.,
“Key words for use in RFCs to Indicate Requirement Levels,”

March 1997.).

Since this document describes a potential risk in NewReno, it uses the
same terminology and definitions in RFC3782 [RFC3782] (Floyd, S.,
Henderson, T., and A. Gurtov, “The NewReno Modification to TCP's Fast
Recovery Algorithm,” April 2004.). Which means this documents assumes
that the reader is familiar with the terms SENDER MAXIMUM SEGMENT SIZE
(SMSS), CONGESTION WINDOW (cwnd), and FLIGHT SIZE (FlightSize) defined
in [RFC2581] (Allman, M., Paxson, V., and W. Stevens, “TCP Congestion
Control,” April 1999.).

3. Problem Description TOC

This section describes a potential risk in Fast Retransmit and Fast
Recovery Algorithm in RFC3782.

Section 3 in RFC3782 describes the Fast Retransmit and Fast Recovery
Algorithm in NewReno. The algorithm consists of 6 steps. The following
lines are the description of the fifth steps which describes the
behavior for the arrival of the first Full ACK after first
retransmission.

5) When an ACK arrives that acknowledges new data, this ACK could be
the acknowledgment elicited by the retransmission from step 2, or
elicited by a later retransmission.

Full acknowledgements:

If this ACK acknowledges all of the data up to and including
"recover", then the ACK acknowledges all the intermediate
segments sent between the original transmission of the lost
segment and the receipt of the third duplicate ACK. Set cwnd to
either (1) min (ssthresh, FlightSize + SMSS) or (2) ssthresh
where ssthresh is the value set in step 1; this is termed
"deflating" the window. (We note that "FlightSize" in step 1
referred to the amount of data outstanding in step 1, when Fast
Recovery was entered, while "FlightSize" in step 5 refers to the
amount of data outstanding in step 5, when Fast Recovery is
exited.)

According to this description, the cwnd after the first FULL ACK
reception will be one of the followings.

(1) min (ssthresh, FlightSize + SMSS)
(2) ssthresh

However, there is a risk in (1) which can cause performance
degradation. In (1), if FlightSize is zero, the result of (1) will be 1
SMSS. (ssthresh should be bigger than 1) This means TCP can transmit
only 1 segment in this case. This can cause the delay in ACK
transmission at the receiver side if the receiver use delayed ACK
algorithm. The FlightSize in (1) represents the amount of data
outstanding in the fifth step: the moment when the new Full ACK
arrives. The next section describes several scenarios where the
FlightSize becomes zero.

4. Possible Scenarios TOC
There are several possible situations that FlightSize becomes zero when

the first new full ACK arrives after fast retransmission. This section
describe several possible cases.

4.1. Case 1: Small Sending Window Size at Sender TOC

This is the tcpdump example of the case. This log is recorded at A.

1 10:41:00.000001 A > B: 1000:2000(1000) ack 1 win 32768
2 10:41:00.001001 A > B: 2000:3000(1000) ack 1 win 32768
3 10:41:00.002001 A > B: 3000:4000(1000) ack 1 win 32768
4 10:41:00.003001 A > B: 4000:5000(1000) ack 1 win 32768
5 10:41:00.010001 B > A: ack 1000 win 16384
6 10:41:00.011001 B > A: ack 1000 win 16384
7 10:41:00.012001 B > A: ack 1000 win 16384
8 10:41:00.013001 A > B: 1000:2000(1000) ack 1 win 32768
9 10:41:00.014001 A > B: 5000:6000(1000) ack 1 win 32768
10 10:41:00.024001 B > A: ack 6000 win 16384
11 10:41:00.025001 A > B: 6000:7000(1000) ack 1 win 32768

In this example, A sends data segments to B. At the beginning of the
log, the cwnd of A is 4 SMSS, hence A sends 4 segments to B (line 1-4).
Here, if the segment sent in line 1 (segment 1000:2000) is lost, B
sends 3 duplicated ACKs for the lost segment (line 5-7) to ask
retransmission. At line 8, A receives 3 duplicated ACKs then it
transmits the lost segment. At line 9, A sets cwnd to ssthresh plus
3*SMSS (as defined in the second steps in NewReno algorithm) and cwnd
becomes 5 SMSS as the result. This window inflation allows A to
transmit one new segment.

Since the two segments in line 8 and 9 are usually transmitted almost
at the same time, the receiver may send back only one ACK for these two
segments (line 10) The ACK received in line 10 is the first Full ACK
and there is no out-standing data in this moment. Hence, new cwnd is
set to 1 SMSS and only one new segment is sent (line 11)

4.2. Case 2: Zero Window Advertisement from Receiver TOC

This is the tcpdump example of the case. This log is recorded at A.

1 11:42:00.000001 A > B: 1000:2000(1000) ack 1 win 32768
2 11:42:00.001001 A > B: 2000:3000(1000) ack 1 win 32768
3 11:42:00.002001 A > B: 3000:4000(1000) ack 1 win 32768
4 11:42:00.003001 A > B: 4000:5000(1000) ack 1 win 32768
5 11:42:00.004001 A > B: 5000:6000(1000) ack 1 win 32768
6 11:42:00.005001 A > B: 6000:7000(1000) ack 1 win 32768
7 11:42:00.010001 B > A: ack 1000 win 0

8 11:42:00.011001 B > A: ack 1000 win 0

9 11:42:00.012001 B > A: ack 1000 win 0

10 11:42:00.012201 A > B: 1000:2000(1000) ack 1 win 32768
11 11:42:00.013001 B > A: ack 1000 win 0

12 11:42:00.014001 B > A: ack 1000 win 0

13 11:42:00.022001 B > A: ack 7000 win 16384

14 11:42:00.023001 A > B: 7000:8000(1000) ack 1 win 32768

In this example, A sends data segments to B. At the beginning of the
log, the cwnd of A is 6 SMSS, hence A sends 6 segments to B (line 1-6).
Here, if the segment sent in line 1 (segment 1000:2000) is lost, B
sends duplicated ACKs for the lost segment (line 7-9 and 11-12) to ask
retransmission. However, these duplicated ACKs sent from B have zero
advertised window because of buffer overflow. In this case, although
the cwnd at A is inflated at the reception of the duplicated ACKs, it
cannot transmit new segments. Hence, only the lost segment is
retransmitted (line 10). When B receives retransmitted segment, the
buffer becomes empty, then B sends a Full ACK with non-zero advertised
window. The ACK received in line 13 is the first Full ACK and there is
no out-standing data in this moment. Hence, new cwnd is set to 1 SMSS
and only one new segment is sent (line 14)

4.3. Case 3: Lost of ACK segments TOC

This is the tcpdump example of the case. This log is recorded at A.

1 12:43:00.000001 A > B: 1000:2000(1000) ack 1 win 32768
2 12:43:00.001001 A > B: 2000:3000(1000) ack 1 win 32768
3 12:43:00.002001 A > B: 3000:4000(1000) ack 1 win 32768
4 12:43:00.003001 A > B: 4000:5000(1000) ack 1 win 32768
5 12:43:00.004001 A > B: 5000:6000(1000) ack 1 win 32768
6 12:43:00.005001 A > B: 6000:7000(1000) ack 1 win 32768
7 12:43:00.010001 B > A: ack 1000 win 16384
8 12:43:00.011001 B > A: ack 1000 win 16384
9 12:43:00.012001 B > A: ack 1000 win 16384
10 12:43:00.012201 A > B: 1000:2000(1000) ack 1 win 32768
11 12:43:00.022001 B > A: ack 7000 win 16384
12 12:43:00.023001 A > B: 7000:8000(1000) ack 1 win 32768

In this example, A sends data segments to B. At the beginning of the
log, the cwnd of A is 6 SMSS, hence A sends 6 segments to B (line 1-6).
Here, if the segment sent in line 1 (segment 1000:2000) is lost, B
generates 5 duplicated ACKS, however 2 ACK segments are lost in this
case. Then, only 3 duplicated ACKs arrives at A (line 7-9). At line 10,
A transmits the lost segment and sets cwnd to ssthresh plus 3*SMSS. As
the result, the cwnd becomes 6 SMSS. However, this cwnd does not allow
A to transmit new segments. At line 11, A receives the first Full ACK
and there is no out-standing data in this moment. Hence, new cwnd 1is
set to 1 SMSS and only one new segment is sent (line 12)

5. Discussion TOC

Some TCP implementations such as Linux, NS-2 Network simulator do not
have this issue. This is because these implementations always transmit
more than 1 MSS right after fast recovery. In these implementations,
when TCP exits Fast Recovery (when the first FULL ACK is received) it
also calls "open cwnd" function at the same time and performs Slow
Start or Congestion Avoidance algorithm. Hence, even though cwnd is set
to 1 MSS after Fast Recovery as described in Section 3, the cwnd will
be increased by 1 MSS by Slow Start. (Since ssthresh should be bigger
than 1 MSS at this moment, Slow Start is always used to increase cwnd)
However, this behavior can be controversial because it enters Slow-
Start after Fast Recovery without receiving any packets. Although this
point is unclear in RFC3782, we believe that this is rather aggressive
behavior and TCP should not open cwnd after Fast Recovery without
receiving another ACKs. In fact, several implementation do not perform
Slow Start right after Fast Recovery. With these implementations,
severe performance degradations can be observed over lossy networks.

TOC

6. Proposed Fix

To solve the problem mentioned above, we propose a simple fix to the
fifth step in NewReno.
The proposed solution is modifying the current cwnd adjustment:

(1) min (ssthresh, FlightSize + SMSS)
to
(1) min (ssthresh, max(FlightSize, SMSS) + SMSS)

This fix ensures that cwnd is always larger than 1 SMSS. Hence, sender
TCP can always transmit at least two segments right after the first
Full ACK reception. This can avoid the delay of ACK transmissions
caused by delayed ACK algorithm. The new algorithm increases 1 SMSS
only when FlightSize becomes zero and behaves completely the same as
the previous algorithm does in other situations. The new algorithm
might add slight burstness since it requires additional increase of
cwnd. However, we believe this burstness can be almost negligible.

7. Simulation Results TOC

In order to verify the effect of the issue described in this document,
we implemented our algorithm in the TCP/Newreno agent in ns-2.34 and
conducted several simulations. We used a simple network configuration
as depicted in the below figure for our simulations. There is one
10Mbps link between the sender and the receiver and link delay is set
to 2ms. The PLR on the link is set to 0.01 - 0.06 for the traffic
towards the receiver. The sender transmits 100000 packets to the
receiver with one TCP connection. (FTP application attached to TCP/
Newreno agent is used) The receiver uses TCPSink/DelAck agent and
delayed ack interval is set to 200ms.

	10Mbps, 2ms	
sender	------------mmomio oo	receiver
	PLR=0.01-0.06	

wWith this configuration, we measured the performance of TCP by using
the following three algorithms. algl is the algorithm adopted in the
original NS-2 code or linux. alg2 is the algorithm that seems to be
adopted in some other 0Ss. alg3 is the algorithm proposed in this
document.

algl ... always do slow start after fast recovery without receiving

ACKs

alg2 ... don't do slow start after fast recovery without receiving
ACKs

alg3 ... don't do slow start after fast recovery without receiving

ACKs. but, adjust cwnd to be always bigger than 1.

At first, we measured the number of events where flightsize becomes
zero after fast recovery. As showed in the below table, when PLR=0.01,
the ratio of the event is around 0.1% while it is around 2.0% when
PLR=0.06. This means that the ratio of this event cannot be negligible
under congested situations.

number of events where flightsize becomes zero after fast recovery

PLR=0.01 PLR=0.02 PLR=0.03 PLR=0.04 PLR=0.05 PLR=0.06

alg1l 108 333 687 1140 1537 1916
alg2 113 365 724 1182 1615 1939
alg3 107 371 717 1186 1587 1936

Next, we measured the throughput of each algorithm. As showed in the
below table, alg2 exhibits serious performance degradation compared to
the other two. algl maintains the best performance in all cases. This
is because it has a bit aggressive natures. Although alg3 is a less
aggressive algorithm than algl, it attains mostly the same performance
as alg1l.

throughput (kbps)

PLR=0.01 PLR=0.02 PLR=0.03 PLR=0.04 PLR=0.05 PLR=0.06

algl 1028.49 697.87 491.29 356.36 257.71 198.65
alg2 825.57 451.96 284.25 190.13 137.99 107.05
algs3 1006.64 671.86 470.39 344.28 248.71 193.30

From these results, we recommend not to adopt alg2 and to use algl or
alg3. We also believe that alg3 is the best algorithm since it can
attain good performance while it keeps conservative nature as we
discuss in this draft.

8. Security Considerations TOC

This document only propose simple modification in RFC3782. There are no
known additional security concerns for this algorithm.

9. IANA Considerations TOC

This document does not create any new registries or modify the rules
for any existing registries managed by IANA.

10. Normative References

[RFC2119]

[RFC2581]

[RFC3782]

TOC
Bradner, S., “Key words for use in RFCs to Indicate
Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT,
HTML, XML).
Allman, M., Paxson, V., and W. Stevens, “TCP Congestion
Control,” RFC 2581, April 1999 (TXT).
Floyd, S., Henderson, T., and A. Gurtov, “The NewReno
Modification to TCP's Fast Recovery Algorithm,” RFC 3782,
April 2004 (TXT).

Author's Address

_T0C
Yoshifumi Nishida
WIDE Project
Endo 5322
Fujisawa, Kanagawa 252-8520
Japan
Email: nishida@wide.ad.jp

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://www.rfc-editor.org/rfc/rfc2119.txt
http://xml.resource.org/public/rfc/html/rfc2119.html
http://xml.resource.org/public/rfc/xml/rfc2119.xml
mailto:mallman@grc.nasa.gov
mailto:vern@aciri.org
mailto:rstevens@kohala.com
http://tools.ietf.org/html/rfc2581
http://tools.ietf.org/html/rfc2581
http://www.rfc-editor.org/rfc/rfc2581.txt
http://tools.ietf.org/html/rfc3782
http://tools.ietf.org/html/rfc3782
http://www.rfc-editor.org/rfc/rfc3782.txt
mailto:nishida@wide.ad.jp

	NewReno Modification for Smooth Recovery After Fast Retransmissiondraft-nishida-newreno-modification-02
	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Conventions and Terminology
	3. Problem Description
	4. Possible Scenarios
	4.1. Case 1: Small Sending Window Size at Sender
	4.2. Case 2: Zero Window Advertisement from Receiver
	4.3. Case 3: Lost of ACK segments
	5. Discussion
	6. Proposed Fix
	7. Simulation Results
	8. Security Considerations
	9. IANA Considerations
	10. Normative References
	Author's Address

