
Network Working Group Y. Nishida
Internet-Draft WIDE Project
Intended status: Standards Track April 15, 2011
Expires: October 17, 2011

Rescue Retransmission for SACK-based Loss Recovery Algorithm
draft-nishida-tcpm-rescue-retransmission-00

Abstract

 This memo describes an issue in the recovery algorithm in RFC3517 and
 proposes a simple modification to avoid unnecessary timeouts for
 performance improvement.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on October 17, 2011.

Copyright Notice

 Copyright (c) 2011 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Nishida Expires October 17, 2011 [Page 1]

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

Table of Contents

1. Introduction . 3
2. Conventions and Terminology 4
3. Problem Description . 5
4. Possible Scenario . 6
5. Proposed Fix . 8
6. Discussion . 9
7. Acknowledgements . 10
8. Security Considerations 11
9. IANA Considerations . 12
10. References . 13
10.1. Normative References 13
10.2. Informative References 13

 Author's Address . 14

Nishida Expires October 17, 2011 [Page 2]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

1. Introduction

RFC3517 [RFC3517] defines conservative loss recovery algorithm based
 on the use of the selective acknowledgment (SACK) TCP option
 [RFC2018]. It is designed to follows the guidelines set in RFC2581
 [RFC2581] in order to be used safely in TCP implementations.
 However, in some situations, the loss recovery algorithm in RFC3517
 fails to retransmit segments even though there are available pipe
 size for the connection. This failure of the retransmission can
 causes unnecessary timeouts which can lead performance degradation.
 This document describes the issue and propose a simple modification
 to solve this problem. The proposed solution allows SACK-based TCP
 to attain the same performance as NewReno [RFC3782].

https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782

Nishida Expires October 17, 2011 [Page 3]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

Nishida Expires October 17, 2011 [Page 4]

https://datatracker.ietf.org/doc/html/rfc2119

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

3. Problem Description

 In RFC3517, when a sender receives the duplicate ACK corresponding to
 DupThresh ACKs, it enters loss recovery phase. In the loss recovery
 phase, whenever sender receives ACK segments, it re-calculate the
 size of pipes by calling Update() and SetPipe(). and determines which
 segments should be sent by calling NextSeg(). However, there are
 some situations where NextSeg() returns no segment although the size
 of pipes is not zero. This behavior results from the following logic
 in the NextSeg(). When NextSeg() tries to find segments to be
 retransmitted, it uses the IsLost() that returns segments which are
 most likely lost. In order to increase the accuracy, IsLost()
 determines that the packet with 'SeqNum' is lost when DupThresh
 discontiguous SACKed sequences have arrived above 'SeqNum' or
 (DupThresh * SMSS) bytes with sequence numbers greater than 'SeqNum'
 have been SACKed. If IsLost() returns no packet, NextSeg() uses new
 segments for the next transmission.

 In this logic, a problem can arise when a sender does not have new
 segments to be sent. In this case, if IsLost() returns no packet,
 NextSeg() cannot find a packet for the next transmission and packet
 transmissions will be delayed until one of the following events
 happens.

 o ACKs have arrived and IsLost() finds new lost segments

 o Application feeds data to TCP

 o Retransmission timer expires

 However, in some situations, such as where window size is small, the
 number of arrived ACKs might not be enough to identify lost segments.
 In addition, applications might feed data intermittently or might not
 have no more data to feed. In this case, TCP will need timer
 expiration to retransmit segments even though there are enough pipe
 size to send a packet.

https://datatracker.ietf.org/doc/html/rfc3517

Nishida Expires October 17, 2011 [Page 5]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

4. Possible Scenario

 This section describe a possible scenario where the issue described
 in the document happens.

 The following is a virtual tcpdump log.

 1 10:41:00.000001 A > B: . 1000:2000(1000) ack 1 win 32768
 2 10:41:00.001001 A > B: . 2000:3000(1000) ack 1 win 32768
 3 10:41:00.002001 A > B: . 3000:4000(1000) ack 1 win 32768
 4 10:41:00.003001 A > B: . 4000:5000(1000) ack 1 win 32768
 5 10:41:00.004001 A > B: . 5000:6000(1000) ack 1 win 32768
 6 10:41:00.010001 B > A: . ack 1000 win 16384 < sack {2000:3000} >
 7 10:41:00.011001 B > A: . ack 1000 win 16384 < sack {2000:4000} >
 8 10:41:00.012001 B > A: . ack 1000 win 16384 < sack {2000:5000} >
 9 10:41:00.015001 A > B: . 1000:2000(1000) ack 1 win 32768
 10 10:41:00.018001 B > A: . ack 5000 win 16384

 In this example, A sends data segments to B. At the beginning of the
 log, the cwnd of A is 5 SMSS (SMSS=1000 octets), hence A sends 5
 segments to B (line 1-5). Here, if the segment sent in line 1
 (segment 1000:2000) and line 5 (segment 5000:6000) are lost, B sends
 3 duplicated ACKs for the lost segment (line 6-8) to ask
 retransmission for the segment 1000:2000. At line 8, A receives
 DupThresh ACKs and retransmits the lost segment (at line 9). At this
 time, A enters loss recovery phase and set pipe size to 2.5 SMSS. At
 line 10, A receives the ACK triggered by the arrival of the segment
 1000:2000. Upon the reception of the ACK at line 10, A performs the
 following steps to determine if there are segments can be sent.

 1. Update the pipe size by calling update() and SetPipe(). Since
 HighACK = 5000, HighData is 6000 and IsLost(5000) returns false,
 the value of pipe is set to 1000.

 2. Because cwnd - pipe >= 1 SMSS, it decides to send one or more
 segments.

 3. Call NextSeg() to determine what segments to be sent.

 Now, if A has no unsent data, only available packet can be sent is
 segment 5000:6000. NextSeg() checks if this segment can be sent by
 applying the following logics, however none of them can be applied.

 1. rule (1) cannot be applied to this segment. Because (1.b) and
 (1.c) return false,

Nishida Expires October 17, 2011 [Page 6]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

 2. rule (2) cannot be applied since there is no available unsent
 data.

 3. rule (3) cannot be applied to this segment. Because (1.b)
 returns false.

 Hence NextSeg() returns no segment in this case, which means TCP has
 no segment to be sent until timeout happens. In case where there are
 multiple packet loss in a window and TCP has no data to send at the
 moment, it will be possible that TCP falls into this situation.

Nishida Expires October 17, 2011 [Page 7]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

5. Proposed Fix

 To solve the problem mentioned above, we propose to introduce one
 variable: RescueRxt for TCP sender and add the following logic as the
 fourth rule.

 (4) If the conditions for rules (1), (2) and (3) fail, but there
 exists unSACKed data, one segment of up to SMSS octets MAY be
 returned if RescueRxt is not set. The returned segment MUST
 include the highest unSACKed sequence number.

 When a segment is returned by this rule, RescueRxt MUST be set to
 the highest octets of the segment. Also, HighRxt MUST NOT be
 updated.

 In addition to this rule, TCP sender MUST reset RescueRxt when it
 receives cumulative ACK for a sequence number greater than RescueRxt.

Nishida Expires October 17, 2011 [Page 8]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

6. Discussion

 The simple approach to address this issue is to send unSACKed data
 when the conditions for rules (1), (2) and (3) failed as long as
 there is available pipe size. A similar approach is also proposed in
 [I-D.scheffenegger-tcpm-sack-loss-recovery]. However, this approach
 can cause lots of unnecessary retransmissions where segments are
 reordered but not lost.

 The proposed fix in the document allows TCP to retransmit one segment
 per RTT where all available data TCP has is unSACKed and not sure if
 it is lost. Since the objective of this algorithm is to avoid
 retransmission timeout and maintain ack clocking, but not to utilize
 unused pipe, sending one segment per RTT is enough for this purpose.
 By sending this one packet, the sender TCP will have a good chance to
 receive additional ACKs from the receiver, which can trigger another
 retransmissions in the next RTT. The variable RescueRxt ensures that
 the retransmission by this algorithm happens only once in a RTT.
 This logic can drastically suppress amount of unnecessary
 retransmissions in case of reordering.

Nishida Expires October 17, 2011 [Page 9]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

7. Acknowledgements

 The authors gratefully acknowledge Richard Scheffenegger who
 originally identified the issue described in the document and gave
 insightful comments. The authors also would like to appreciate Mark
 Allman and Ethan Blanton for their careful reviewing on the initial
 idea of the logic and their valuable feedbacks.

Nishida Expires October 17, 2011 [Page 10]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

8. Security Considerations

 This document only propose simple modification in RFC3782. There are
 no known additional security concerns for this algorithm.

Nishida Expires October 17, 2011 [Page 11]

https://datatracker.ietf.org/doc/html/rfc3782

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

9. IANA Considerations

 This document does not create any new registries or modify the rules
 for any existing registries managed by IANA.

Nishida Expires October 17, 2011 [Page 12]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

10. References

10.1. Normative References

 [RFC2018] Mathis, M., Mahdavi, J., Floyd, S., and A. Romanow, "TCP
 Selective Acknowledgment Options", RFC 2018, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2581] Allman, M., Paxson, V., and W. Stevens, "TCP Congestion
 Control", RFC 2581, April 1999.

 [RFC3517] Blanton, E., Allman, M., Fall, K., and L. Wang, "A
 Conservative Selective Acknowledgment (SACK)-based Loss
 Recovery Algorithm for TCP", RFC 3517, April 2003.

 [RFC3782] Floyd, S., Henderson, T., and A. Gurtov, "The NewReno
 Modification to TCP's Fast Recovery Algorithm", RFC 3782,
 April 2004.

10.2. Informative References

 [I-D.scheffenegger-tcpm-sack-loss-recovery]
 Scheffenegger, R., "Improving SACK-based loss recovery for
 TCP", draft-scheffenegger-tcpm-sack-loss-recovery-00 (work
 in progress), November 2010.

https://datatracker.ietf.org/doc/html/rfc2018
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2581
https://datatracker.ietf.org/doc/html/rfc3517
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/draft-scheffenegger-tcpm-sack-loss-recovery-00

Nishida Expires October 17, 2011 [Page 13]

Internet-Draft Rescue Retransmission for SACK Recovery April 2011

Author's Address

 Yoshifumi Nishida
 WIDE Project
 Endo 5322
 Fujisawa, Kanagawa 252-8520
 Japan

 Email: nishida@wide.ad.jp

Nishida Expires October 17, 2011 [Page 14]

