	Internet	Engineering Task Force	
Muhammad Niswar			
	Internet	Draft	Shigeru
Kashihara			
	Expires:	June 2010	Kazuya
Tsukamoto			
			Youki
Kadobayashi			
			Suguru
Yamaguchi			

Inter-domain WLAN handover management for Multi-homed Mobile Node <<u>draft-niswar-wlan-multihomed-handover-00.txt</u>>

Status of this Memo

vith	This Internet-Draft is submitted to IETF in full conformance		
WILU	the provisions of <u>BCP 78</u> and <u>BCP 79</u> .		
Engineering	Internet-Drafts are working documents of the Internet		
	Task Force (IETF), its areas, and its working groups. Note		
Internet-Drafts.	other groups may also distribute working documents as		
six months at any reference	Internet-Drafts are draft documents valid for a maximum of		
	and may be updated, replaced, or obsoleted by other documents		
	time. It is inappropriate to use Internet-Drafts as		
	material or to cite them other than as "work in progress."		
at	The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/lid-abstracts.txt		
	The list of Internet-Draft Shadow Directories can be accessed		
	http://www.ietf.org/shadow.html.		
	This Internet-Draft will expire on June 2010.		

Copyright Notice

the	Copyright (c) 2009 IETF Trust and the persons identified as
the	document authors. All rights reserved.
	This document is subject to <u>BCP 78</u> and the IETF Trust's
Legal	
of	Provisions Relating to IETF Documents in effect on the date
01	publication of this document (<u>http://trustee.ietf.org/</u>
<u>license-info</u>).	Please review these documents carefully as they describe
your	riease review these documents carefully, as they describe
	rights and restrictions with respect to this document.

Niswar, et al. Expires - June 2010

[Page 1]

Abstract

c	This document discusses inter-domain WLAN handover management
TOP	multi-homed mobile node (MN) in order to maintain Voice over
IP	
communication path	(VoIP) quality during handover (HO). Switching a า
is a	from one Access Point (AP) to another in inter-domain WLANs
10 4	critical challenge for real-time applications such as VoIP
because	communication quality during HO is more likely to be
deteriorated. To	maintain VoIP quality during HO, we need to solve many
problems. In	particular in hidiractional communication such as VaTD on
AP	particular, in bidirectional communication such as voip, an
result,	becomes a bottleneck with the increase of VoIP calls. As a
, qualing dalay	packets queued in the AP buffer may experience a large
queuing deray	or packet losses due to increase in queue length or buffer
overflow,	thereby causing the degradation of VoIP quality for the MNs
side. To	avoid this degradation. MNs pood to appropriately and
autonomously	avoid this degradation, MNS need to appropriately and
condition,	execute HO in response to the changes in wireless network
congestion	i.e., the deterioration of wireless link quality and the
congestion	state at the AP. We then propose an HO management considering
all of	frame retries, AP queue length, and transmission rate at an
MN for	reinteining VerD guelity during UO
	maintaining voiP quality during HU.

Table of Contents

1.Introduction......3 2.Existing Studies of Handover Strategy......3 3.Handover Decision

Criterion......<u>5</u> 3.1 Number of RTS Retries......<u>5</u> 3.2 AP Queue 3.3 Transmission 4. Handover Management for Multi-homed Mobile 4.1 Architecture of Handover 4.2 Handover Mechanism......7 4.2.1 Single-Path and Multi-Path Transmission Modes<u>7</u> 4.2.2 Dealing with Ping-Pong Effect.....<u>10</u> 4.2.3 Elimination of Redundant Probe Packet.....<u>12</u> 4.3 Considered Handover Scenarios......<u>15</u> Acknowledgments......<u>16</u> Author's

Niswar, et al. Expires - June 2010

[Page 2]

<u>1</u>. Introduction

wireless	Wireless LAN (WLAN, IEEE802.11a/b/g/n) has been the dominant
WTLETE22	technology and is extensively deployed today. Meanwhile,
there is a	huge demand for Voice over IP (VoIP) service over WLANs.
However,	delivering VetD over WLANE (VeWLANE) has many challenges
because VoIP	derivering vor over what's (vowhat's) has many charrenges
provided the	is a delay and packet loss sensitive application. In some metropolitan areas, WLANs (Wi-Fi hotspots) have already
	broadband Internet connectivity to mobile nodes (MNs) in many locations. In such an environment, the MNs are likely to
Lraverse	several WLANs with different IP subnets during VoIP calls
because the	coverage of an individual WLAN is relatively small.
Consequently,	YowIAN quality could be drastically degraded due to the
severe	changes of wireless network condition several by the merement
and	changes of wireless network condition caused by the movement
need to	increase of MNs. Therefore, to maintain VoWLAN quality, MNs
response to	appropriately and autonomously execute handovers (HOs) in
	the wireless network condition.
	In such a mobile environment, typically, two main factors
degrade	VoWLAN quality: (1) degradation of wireless link quality and
(2)	congestion at an AP. First, as an MN freely moves across
WLANs, the	communication quality degrades due to the fluctuation of
wireless	communication quarity degrades due to the fidetuation of
bi-	link condition (fading and shadowing). Second, as VoIP is a
hottleneck	directional communication, an access point (AP) becomes a
	with the increase of VoIP calls. That is, VoIP packets
transmilted	from Correspondent Nodes (CNs) to MNs are liable to
experience large	

queuing delay or packet loss due to increase in queue length or buffer overflow in the AP buffer because each MN and AP has almost the same priority level of frame transmission by following the CSMA/CA scheme. In addition, in multi-rate WLANs, although a rate adaptation function automatically changes the transmission rate in response to wireless link condition, a low transmission rate occupies a larger amount of wireless resources than that of a high transmission rate. Thus, compared with a high transmission rate, a low transmission rate tends to cause congestion at an AP. Therefore, to maintain VoWLAN quality, we propose a new HO strategy method considering wireless network conditions, i.e., wireless link quality, AP queue length, and transmission rate.

2. Existing Studies of Handover Strategy

	Many HO strategies have been studied for various layers of
the	
	protocol stack where network and transport layers are most
widely	
	studied. Mobile IP [<u>1</u>] is a network layer scheme utilizing
and	
	relying on network infrastructures including Router
advertisement,	
	Home Agent (HA) and Foreign Agent (FA). However, an HO
process in	Nabile TD takes a simulficant time manial includion the
portiod for	MODILE IP Lakes a significant time period including the
period for	acquisition of the TD address in a new WLAN and registration
roquest	acquisition of the IP address in a new weak and registration
request	

Niswar, et al. Expires - June 2010

[Page 3]

been	to an HA and a CN. Although FMIPv6 [2] and HMIPv6 [3] have
	proposed to reduce the handover processing period, they are
difficult	to deploy in WLANs administrated by different organizations.
This is	because they require additional network element such as the
HA that	because they require additional network element such as the
cost.	introduce a burdensome administration and require additional
	Then, we consider the end-to-end basis approach, which is not required any change of the existing network infrastructure.
Turnemierien	On the transport layer approach, mobile Stream Control
Transmission	Protocol (mSCTP) [4], which is a mobility extension of SCTP,
has been	proposed. Although mSCTP supports multi-homing and dynamic
address	reconfiguration for mobility, the issue of the HO decision is
not	
scheme	discussed in detail. Authors in [5] proposed an SCIP-based HU
decision	for VoIP using a Mean Opinion Score (MOS) [6] as an HO
2	metric. The HO mechanism also employs a probe message called
a	heartbeat in order to estimate a Round Trip Time (RTT) and
then	calculates MOS value based on the RTT. However, since upper
layer	(above layer 3) information such as packet loss, RTT, and MOS indicate end-to-end communication quality, the information is
varied	with the change in condition of both the wireless and wired
networks.	
due to	Inerefore, the existing studies could cause unnecessary HUS
	temporal congestions in wired networks.
dataat	In a mobile environment, MNs need to promptly and reliably
uerect	wireless link condition. Our practical experiments in [7]
proved that	the number of frame retries on the MAC layer has the
potential to	detect the wireless link degradation during movement because

a packet	over WLAN inevitably experiences frame retries before being
treated	as nacket loss Reference [8] proposed an HO mechanism
employing the	number of frame retries as an H0 decision metric through
analytical	
retransmission	study. This method, however, only considers the frame
MNs in a	caused by the collision with frames transmitted from other
an HO	non interference environment. On the other hand, we proposed
on the	strategy method considering the number of data frame retries
environment throug	MAC layer [9,10,11] considering in an interference
to	simulation study. This strategy employs multi-homing enabling
demain	execute multi-path transmission mode for supporting inter-
uomain	soft-HO between two WLANs with different IP subnets. However, although our previous method can detect the degradation of
wireless	link condition due to both movement of MN and radio
interference, it	cannot detect congestion at both serving AP and target-HO AP. As a result, in our previous method, an MN could execute an
HO to a	congested AD as well as lead to imbalanced traffic load among
APs,	thus WETD multiplication and the dependent We need on WO
management	thus, volP quality would be degraded. We need an HO
APs. We	considering congestion of AP and the load balancing among the
real-	then consider an HO management based on end-to-end basis for
of	time application and the HO management aims no modification
	network infrastructure such as AP.

Niswar, et al. Expires - June 2010 [Page 4]

<u>3</u>. Handover Decision Metrics

	We discuss HO decision metrics that can precisely indicate
wireless	
	network condition. In particular, many HO technologies employ
the	
	received signal strength (RSS) on PHY layer as an HO decision
metric.	
	However, our previous research [7] showed that RSS is very
difficult	
	to properly detect deterioration in communication quality
because it	fluctuates should be the increase in the distance and
the	fluctuates abruptly due to the increase in the distance and
Llie	avistoped of interforing objects. It also compat detect the
	degradation due to radio interference. Furthermore, in [7]
we showed	degradation due to radio interference. Furthermore, in $\lfloor \underline{I} \rfloor$,
we showed	that the information on the MAC layer, i.e., frame retry has
a	
	potential to serve as a significant metric. However, it
cannot	, , , , , , , , , , , , , , , , , , ,
	satisfactorily detect the wireless network condition. In this
section,	
	we then describe the following three HO metrics employed in
our new	
	proposed method.

3.1 Number of RTS Retries

In the IEEE802.11 standard, a sender confirms a successful transmission by receiving an ACK frame in response to the transmitted data frame. When a data or ACK frame is lost, the sender periodically retransmits the same data frame until achieving a successful transmission or reaching a predetermined retry limit. The standard supports two retry limits: long-frame and short-frame retry limits. If Request-to-Send (RTS)/Clear-to-Send (CTS) function is applied, a long-frame retry limit of four is applied, otherwise, a short-frame retry limit of seven is applied. When frame retries reach the retry limit, the sender treats the data frame as a lost packet.

That is, we can detect the occurrence of packet loss in advance by utilizing the frame retries. Moreover, unlike the RSS, frame retries can promptly and reliably detect the wireless link degradation due to not only reduction of signal strength but also radio interference and collisions [7]. Therefore, frame retry allows an MN to detect wireless link condition promptly and reliably. In [9], we employed data frame retry as an HO decision metric in WLANs with a fixed transmission rate (11 Mb/s). However, in a real environment, almost all WLANs employ a multi-rate function that can change the transmission rate according to wireless link condition. If the transmission rate is dropped by the multi-rate function, a more robust modulation type is selected and thus data frame retries are further decreased. As a result, an MN cannot properly detect the degradation of wireless link quality only from data frame retries in multi-rate WLANs. Therefore, we consider an RTS frame as an alternative metric of data frame retries. Note that, as an RTS frame is always transmitted at the lowest rate (e.g., 6 Mb/s in 802.11a/g and 1 Mb/s in 802.11b), an MN can appropriately detect the change of wireless link quality. Moreover, RTS frame is basically employed to

Niswar, et al. Expires - June 2010 [Page 5]

However,	prevent collisions in wireless network due to hidden nodes.
2347 hytes	according to the IEEE802.11 standard, as RTS threshold is
2347 bytes	by default, thus, RTS is not sent in case of VoIP packet size
(160	bytes). Therefore, in our proposal, all MNs must set RTS
threshold to	0 in order to enable the MNs send the RTS frame. Furthermore,
in our	proposal. RTS retry ratio is employed instead of the
frequency of RTS	retries. The RTS retry ratio is calculated as follows:
	Number of RTS Frame Retries
	RTS Retry Ratio =
kent	According to our evaluation [12], RTS retry ratio should be
Kope	under 0.6 to maintain the adequate VoIP quality.
<u>3.2</u>	2 AP Queue Length
length	With the increase of VoIP calls in a WLAN, the AP queue
	increases. Then, each packet routed to MN and queued in the
AP Durrer	may experience a large queuing delay or packet loss due to
increase	in queue length or buffer overflow. Consequently, the queuing
delay	and the packet loss severely affect the VoIP quality of MNs.
However,	the IEEE802.11 (a/b/g/n) standard unfortunately does not
provide a	mechanism that can inform MNs of the AP queue length.
Therefore, to	maintain VaID quality on MN poods to detect the consection
of the AP	maintain voir quairty, an MN needs to detect the congestion
length based	by itself. We then propose a method to estimate AP queue
probe	on RTT between MN and AP (W-RTT). The MN periodically sends a
W-RTT	packet (ICMP message) to an AP and then calculates W-RTT. The
	increases in response to the increase of AP queuing delay

because a	
	probe response packet experiences queuing delay in the AP
buffer.	Therefore the W-RTT can be used to derive information about
AP	
	queuing delay. According to our evaluation [12], the W-RTT
should be	kept under 200 ms to satisfy adequate VoTP quality.
Therefore, in our	
length and	proposed method, we also employ W-RTT to estimate AP queue
iengin and	set the W-RTT threshold (W-RTT_thr) of 200 ms to maintain the
adequate	
	VoIP quality.
<u>3.3</u>	3 Transmission Rate
	IEEE 802.11 supports a rate adaptation function that can
dynamically	and automatically change the transmission rate based on
wireless link	
ac the	condition. In the case where wireless link quality degrades,
	transmission rate decreases caused by the change of the

type, the wireless resource is more occupied because of the

transmission delay. As a result, the lower transmission rate

likely to cause congestion of an AP. Therefore, to alleviate

congestion of an AP, the transmission rate can also be

Niswar, et al. Expires - June 2010

potential HO decision metric.

[Page 6]

modulation

treated as a

long

is

<u>4</u>. Handover Management for Multi-homed Mobile Node

In this section, we describe the details of our proposed HO management. First, we describe the architecture of HO follow by HO mechanism explaining how HO management switches the transmission modes based on HO decision metrics. Finally, we describe HO management.

+ Applica	+ tion
Transp + +> HM ++	ort + <+
IP	
+ + MAC	+ MAC +
++	++
PHY	PHY
++	++
WLAN-IF1	WLAN-IF2

Fig.1 Handover Management Architecture

4.1 Architecture of Handover Management

	We propose an end-to-end HO management (HM) implemented on
transport	
	layer of MN. The HM controls HO based on the HO decision
metrics,	
	i.e., RTS frame retry, estimation of AP queue length (W-RTT),
and	
	transmission rate, obtained from lower layer through cross
layer	
- · · ·	approach (as illustrated in Fig.1). Our HO management takes a
multi-	
	homing approach where an MN has two WLAN interfaces (IFs)
connected	to the MANA with different TD submate
	LO LWO WLANS WILD DIFFERENT IP SUDDETS.

4.2 Handover Mechanism

<u>4.2.1</u> Single-Path and Multi-Path Transmission Modes

HM can switch between single-path and multi-path transmission				
in response to wireless network condition. Single-path				
mode means that an MN communicates with the CN using only one				
Multi-path transmission, on the other hand, means that an MN				
duplicated packets to a CN through two IFs. Multi-path				
introduce redundant packet transmissions but it is one				
alternative to supporting soft-HO.				

Niswar, et al. Expires - June 2010

[Page 7]

Fig.2 Switching to single/multi-path transmission

Figure 2 shows an algorithm of switching to single/multi-path transmission when an MN is located in an overlap area of two APs, An MN associated with two APs (AP1 and AP2) transmits a probe packet at every 500 ms intervals to estimate AP queue length of each AP. If both W-RTTs for AP1 and AP2 are below an W-RTT threshold (W-RTT_thr: 200 ms), an MN detects that both APs are not congested. Then, the MN investigates RTS frame retry ratio of the current active IF. If the RTS frame retry ratio reaches a retry ratio threshold of single-path (R_Sthr: 0.6), the HM switches to multi-path mode to investigate wireless link condition of these two IFs as well as supporting soft-

Niswar, et al. Expires - June 2010

[Page 8]

	HO. On the other hand, if the W-RTT of AP1 reaches W-RTT_thr,
1.e., AP1	is congested, the MN switches to the AP2 directly without
switching	
the AD1	to multi-path mode, thereby avoiding a serious congestion in
LITE AFI.	If both measured W-RTTs reach W-RTT_thr, the MN then
investigates the	
the	wireless link condition by using the RTS frame retry ratio of
	current active IF. In a multi-path transmission, to maintain
VoIP	quality, the MN conde duplicate data peokete through two WIAN
IFs,	quality, the MN sends duplicate data packets through two wLAN
	hence, the MN needs to switch back to single-path
transmission as	soon to prevent unnecessary network overload.
	++
	Multi-Path
	++

/-----\ / W-RTT AP1 < W-RTT_thr ∖ Yes

V

----+

/ && \---> | Comparing Retry Ratio | \ W-RTT AP2 < W-RTT_thr / +----+ \ / \----/ | No V /---- \ \ Yes +----+ / / W-RTT AP1 > W-RTT AP2 \---> | Single-Path to IF2 | / +----+ \ \ \----/ | No V /----\ \ Yes +----+ / / W-RTT AP1 < W-RTT AP2 \---> | Single-Path to IF1 | / +----+ \ \ /

Fig.3 Switching from multi-path to single-path

transmission

As shown in Fig.3, an algorithm of switching from multi-path to single-path transmission works as follows. First, an MN measures W-RTTs of both APs. If either of the W-RTTs is below the W-RTT_thr, the MN

Niswar, et al. Expires - June 2010

[Page 9]

	< <u>draft-niswar-wlan-multihomed-handover-00.txt</u> >		
December 2009			
	switches to an IF with a smaller W-RTT. If both W-RTTs are		
_	simultaneously below the W-RTT_thr, the MN then compares the		
RTS frame			
	retry ratio of both IFs. Figure 4 shows an algorithm for the comparison of the RTS frame retry ratio obtained from both		
IFs. If			
	both RTS frame retry ratios of the IFs are equal, the MN		
continues			
	multi-path mode. On the other hand, if either of the frame		
retries is			
	below the retry threshold of multi-path (R_Mthr: 0.4), the MN switches to single-path mode through the IF with a small		
retry ratio.			

Fig.4 Handover based on RTS frame retry ratio

4.2.2 Deal with Ping-Pong Effect

	If all MNs send probe pa	ackets to measure the	W-RTT between MN
and AP,			
	the MNs may unfortunatel	Ly detect congestion o	of the serving AP
	(e.g., AP1) at nearly the	e same time. Then, all	. MNs may switch
the			
	communication to a neight simultaneously. As a res drastically increased, a	nbor AP (e.g., AP2) ar sult, neighbor AP2's c and then, all MNs dete	nd leave the AP1 Jueue length is ect the
congestion at the			
	AP2 and switch back to t	the AP1 again. This ph	nenomena is
typically			
Nis [Page 10]	swar, et al. E	Expires - June 2010	

quality due	called ping-pong effect and leads to degradation of VoIP			
qually due	to fluctuation of bot	h APs queue length.		
		+	+	
6Mhns	+	> Calculate W-RTT	I	ARF_thr=0 :
OMbos	I	+	+	ARF_thr=1 :
	I	Ι		ARF_thr=2 :
12Mbps	I	V		ARF_thr=3 :
18Mbps	I	/	- \	ARF_thr=4 :
24Mbps	++ N	o / W-RTT > W-RTT_th	r \	ARF_thr=5 :
36Mbps	ARF_thr = 0 <-	\	/	ARF_thr=6 :
48Mbps	++	\	-/	ARE thr=7 ·
54Mbps	· · ·	,	,	AKIt.i = / .
		Yes V		
	No	/	- \	
		/ CurrTime - LastTim	e \	
		<pre>\ > Time_thr \</pre>	/	
		\ Yes	- /	
		V		
		+	+ 0	
		+	+	
		Yes V		
		/	-\ Yes	6
++	I	/ Transmission Rate	\	> Handover
to		· · · · · ·	,	
AP I		<pre>\ <= ARF_thr</pre>	/	another
	I	\	-/	
+ +		No		I
		V		
	 +	++ ARF_thr ++ <		 +
		++		

Fig.5 Handover based on transmission rate

all MNs	To avoid the ping-pong effect, we extend the mechanism where
	first examine their own current transmission rate before
executing HO.	
	Fig. 5 shows an algorithm of HO based on transmission rate. A
	provides a multi-rate function that can change the
transmission rate	
oarlior	dynamically based on wireless link condition. As mentioned
earitter,	since an MN with lower transmission rate occupies more
wireless	
Moreover	resources, the MN is liable to lead to congestion of an AP.
Moreover,	as MNs with the lowest transmission rate typically are far
away from	
thou have	the connected AP, that is, near the edge of its coverage,
chey have	to execute handover as soon as possible to maintain their
	communication quality. Therefore, in the proposed scheme, \ensuremath{MNs}
with	

Niswar, et al. Expires - June 2010

[Page 11]

<<u>draft-niswar-wlan-multihomed-handover-00.txt</u>>

December 2009

	the lowest transmission rate (6 Mb/s) first execute HO. Then,
if the	
	AP queue length is still high even after Time_thr (CurrTime -
LastT	
	ime) of 2 seconds expires, MNs with the next lowest
transmission rate	
	(9 Mb/s) starts to execute HOs. Note that an MN does not need
to know	
	the transmission rate of other MNs because we assume that
every MN	
	automatically follows this algorithm to deal with the issue
of	
	synchronization of all MNs transmission rates.

			++
	+		-> Captured Packet
<	+		
			+
+			
V		1	
			/\
No			
			/ ProbePktSize ==
\			
			\mathbf{N}
CapturedPktSize	/		
\	-/		1
,	, I		' 1
Yes	I	I.	I
100	I	I	
V	I	I	
v	I	I	+
1	1		,
т	1		ProbalactTime -
1	1		FIODELASTITUE -
I	1		L CurreTime
1			
I	1		
			+
+			
	l		
1		I	
V			

Fig.6 Calculate W-RTT from existing probe packet

4.2.3 Elimination of Redundant Probe Packet

	If every MN measures W-RTT by using probe packets, these
probe packets	
	may aggravate congestion in a WLAN. To eliminate the
redundant probe	
	packets, we also extend the HO mechanism, in which one
representative	
	MN sends a probe packet to the AP and all MNs including the

Niswar, et al. Expires - June 2010

[Page 12]

representative MN measure W-RTT by capturing the probe request and probe reply packets.

This method works as follows (see Fig. 6). Each MN first monitors all packets over a wireless link before sending a probe packet. If it finds a probe packet sent by another MN, it cancels sending a probe packet and measures W-RTT by using the probe request and probe reply packet sent by another MN and AP. As each MN captures the header of all received packets, it can identify whether a captured packet is a probe request/reply packets or not by observing the frame length of the ICMP message (64 bytes). Furthermore, an MN can also identify whether a probe packet is for request (ICMP Request) or for reply (ICMP Response) by observing the MAC address of the probe packet. More specifically, because all MNs connected to an AP can identify the MAC address of the AP, each MN can judge the packet as a probe request packet transmitted from another MN when destination MAC address of the captured packet is that of the AP. On the other hand, if the source MAC address is an AP's one, then each MN judges the packet as a probe reply packet transmitted from the AP. In Fig.6, probeRegTime and probeReplyTime indicate the receiving time of the probe request (transmitted from another MN) and the probe reply (transmitted from the AP), respectively. As every MN can identify whether a captured packet is a probe request or probe reply, it can calculate the W-RTT (probeReqTime - probeReplyTime) properly. This method can eliminate the redundant probe packets because

only one representative MN sends probe packets and all MNs measure the W-RTT by capturing existing probe packets over a wireless link. If the representative MN leaves a WLAN, one of the remaining MNs needs to start periodical transmission of probe packets as a next representative MN. Here, we describe how an MN obtains the right to send probe packets in Fig.7. First, all MNs always examine the difference between the last receiving time of a probe packet (ProbeLastTime) and the current time (CurrTime). If the difference is greater than probeAbsenceTime, that is, a probe packet cannot be captured for a while, First, MNs with the lowest transmission rate in a WLAN try to send a probe packet. This is because a probe packet sent at the lowest transmission rate can be captured by almost all MNs in a WLAN due to its inherently longer transmission range. The timing to send a probe packet among MNs is determined based on WaitingTime. Basically, an MN with the smallest WaitingTime, will be a representative MN because WaitingTime is calculated based on datarate_Weight, which indicates its weight of transmission rate (see Fig 7). Thus, if the datarate_Weight is lower, then WaitingTime gets small. If several MNs with the same transmission rate exist, then random value in WaitingTime helps to distinguish who will be the representative MN among them.

Niswar, et al. Expires - June 2010

[Page 13]

<<u>draft-niswar-wlan-multihomed-handover-00.txt</u>>

/CurrTime - SendFirstTime \----+ \ > WaitingTime / \-----/ | Yes V +----+ | Send ProbePkt | +----+ datarate_Weight=0 : 6Mbps datarate_Weight=1 : 9Mbps datarate_Weight=2 : 12Mbps datarate_Weight=3 : 18Mbps datarate_Weight=4 : 24Mbps datarate_Weight=5 : 36Mbps datarate_Weight=6 : 48Mbps datarate_Weight=7 : 54Mbps

Fig.7 Obtaining a right to send the probe packet

Niswar, et al. Expires - June 2010

[Page 14]

<<u>draft-niswar-wlan-multihomed-handover-00.txt</u>>

December 2009

<u>4.3</u> Considered Handover Scenarios

management	We have evaluated the effectiveness of our proposed HO
in	through simulation study. We conducted simulation experiments
±11	three simulation scenarios.
speed of	First, an MN with two WLAN IFs moves from AP1 to AP2 at the
fixed 15	1 m/s. AP2 is assumed to be congested due to existence of
whether	MNs establishing VoIP calls. This scenario aims to validate
whether	MN can detect the congestion in AP2 and avoid to HO to AP2.
hetween	Second, 20 MNs are randomly located within an overlap area
select the	AP1 and AP2. This scenario aims to validate whether MN can
avoiding ning-	best AP based on W-RTT and transmission rate as well as
avorating pring-	pong effect.
at a	Third, the 15 MNs randomly move between two AP coverage areas
select	speed of 1 m/s. This scenario aims to validate whether MN can
VoTP	the best AP based on W-RTT and transmission rate and maintain
VOI	quality when MN randomly moves between two APs.
those	Our proposed HO management can maintain VoIP quality when
	scenarios are applied. Reference [12] presents the detail of simulation results.
<u>5</u> .	Conclusion
considering	In this document, we proposed an MN-centric HO management
AP and	estimation of AP queue length to detect the congestion at the
detect the	exploiting RTS frame retry and transmission rate of MN to
movement	deterioration of wireless communication quality due to the

of the MN. According to simulation study [12], we have

demonstrated

chae out proposou no management out maintain voir quartey	
during HO.	
References	
[1] C. Perkins (Ed.), "IP Mobility Support for IPv4," IETF	
Aug. 2002.	
[2] R. Koodli, "Fast Handovers for Mobile IPv6, " IETF	
2005.	
[3] H. Soliman et al., "Hierarchical Mobile IPv6 Mobility	
Management	
(HMIPV6)," IEIF <u>RFC4140</u> , Aug. 2005. [4] S. J. Kob. et al. "Mobile SCTP for Transport Laver	
Mobility,"	
draft-reigel-sjkoh-sctp-mobility-05.txt, Internet draft	t,
IETF,	
Jul. 2005.	0.15
[5]John Filzpätrick et al., "An Approach to Transport Laye	er
of VoIP over WLAN," Proc. of IEEE CCNC, Jan.2006.	
[6] IIU-I:"6.107", <u>nttp://www.ltu.int/rec/I-REC-G.107/en</u> .	

Niswar, et a	ıl. Exp	pires - Ju	une 2010
--------------	---------	------------	----------

[Page 15]

December 2009 [7] K. Tsukamoto, et al., "Experimental Evaluation of Decision Criteria for WLAN handover: Signal Strength and Frame Retransmission," IEICE Trans. on Communications, Vol.E90-B, No. 12, pp. 3579-3590, Dec. 2007. [8] H. Velayos and G. Karlsson, "Techniques to reduce the IEEE802.11b handover time," Proc. of IEEE ICC, vol. 7, pp. 3844-3848, Jun. 2004. [9] S. Kashihara and Y. Oie, "Handover Management based on the number of data frame retransmissions for VoWLAN," Elsevier Computer Communications, vol. 30, no. 17, pp.3257-3269, Nov. 2007. [10] S. Kashihara et al., "Service-oriented mobility management architecture for seamless handover in ubiquitous networks," IEEE Wireless Communications, Vol. 14, No. 2, pp. 28-34, Apr. 2007. [11] Y. Taenaka, et al., "Design and Implementation of Crosslaver Architecture for Seamless VoIP Handover," Proc. Of IEEE MHWMN, Oct. 2007. [12] M. Niswar, et al., "Handover Management for VoWLAN based on Estimation of AP Queue Length and Frame Retries, EIEICE Trans. on Information and System, Vol.E92-D, No. 10, pp. 1847-1856, Dec. 2009. Acknowledgments This work was supported by the Kinki Mobile Radio Centre Inc., and the Japan Society for the Promotion of Science, Grant-in-Aid for Young Scientists (B) Author's Addresses

<draft-niswar-wlan-multihomed-handover-00.txt>

Muhammad Niswar

Graduate School of Information Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama, Ikoma, 630-0192, Japan Phone: +81-743-72-5216 Email: <niswar-m@is.naist.jp>

Shigeru Kashihara Graduate School of Information Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama, Ikoma, 630-0192, Japan Phone: +81-743-72-5216 Email: shigeru@is.naist.jp

<Niswar, et al.> Expires - June 2010

[Page 16]

Kazuya Tsukamoto Department of Computer Science and Electronics, Kyushu Institute of Technology (KIT) Kawazu 680-4, Iizuka, 820-8502, Japan Phone: +81-948-29-7687 Email: tsukamoto@cse.kyutech.ac.jp

Youki Kadobayashi Graduate School of Information Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama, Ikoma, 630-0192, Japan Phone: +81-743-72-5216 Email: youki-k@is.naist.jp

Suguru Yamaguchi Graduate School of Information Science, Nara Institute of Science and Technology (NAIST) 8916-5 Takayama, Ikoma, 630-0192, Japan Phone: +81-743-72-5216 Email: suguru@is.naist.jp

[Page 17]