
ipdvb Working Group Michael Noisternig
 Bernhard Collini-Nocker
Internet Draft University of Salzburg
 July 14, 2008
Expires: January 2009

A lightweight security extension for the
Unidirectional Lightweight Encapsulation (ULE) protocol

draft-noisternig-ipdvb-ulesec-01

Status of this Document

 By submitting this Internet-Draft, each author represents that
 any applicable patent or other IPR claims of which he or she is
 aware have been or will be disclosed, and any of which he or she
 becomes aware will be disclosed, in accordance with Section 6 of
 BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/1id-abstracts.html

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html

 This Internet-Draft will expire on January 14, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 The Unidirectional Lightweight Encapsulation (ULE) protocol is an
 efficient and extensible transport mechanism for IP over MPEG-2
 networks. Such networks are often operated on broadcast wireless

Noisternig Expires January 14, 2009 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/1id-abstracts.html
http://www.ietf.org/shadow.html

Internet-Draft A lightweight security extension for ULE July 2008

 channels, and are thus specifically vulnerable to attacks. Passive
 attacks, such as eaves-dropping, are simple to perform and emphasize
 the importance of security support within ULE.

 This document defines a mandatory security extension for the ULE
 protocol that is designed with the aim of being conservative in
 bandwidth consumption and lightweight in the sense that it allows for
 implementation in low-cost, resource-scarce (mobile) receiver
 devices. The extension may be easily adapted to the Generic Stream
 Encapsulation (GSE) protocol, which uses the same extension header
 mechanism. The document describes the format of the security
 extension header, specifies default security algorithms to be used
 with this extension, and gives detailed processing descriptions for
 devices implementing the security extension.

Conventions used in this document

 The following DVB specific terms are taken from [RFC4326] and
 recapitulated here for easy lookup:

 DVB: Digital Video Broadcast. A framework and set of associated
 standards published by the European Telecommunications Standards
 Institute (ETSI) for the transmission of video, audio, and data using
 the ISO MPEG-2 standard [MPEG2].

 MPEG-2: A set of standards specified by the Motion Picture Experts
 Group (MPEG) and standardized by the International Standards
 Organization (ISO/IEC 13818-1) [MPEG2] and ITU-T [H222].

 NPA: Network Point of Attachment. In this document, refers to a 48-
 bit destination address (resembling an IEEE MAC address) within the
 MPEG-2 transmission network that is used to identify individual
 receivers or groups of receivers.

 PDU: Protocol Data Unit. Examples of a PDU include Ethernet frames,
 IPv4 or IPv6 datagrams, and other network packets.

 PID: Packet Identifier [MPEG2]. A 13-bit field carried in the header
 of TS cells. This is used to identify the TS Logical Channel to
 which a TS cell belongs [MPEG2].

 SNDU: SubNetwork Data Unit. An encapsulated PDU sent as an MPEG-2
 payload unit.

 TS: Transport Stream [MPEG2]. A method of transmission at the MPEG-2
 level using TS cells; it represents layer 2 of the ISO/OSI reference
 model.

https://datatracker.ietf.org/doc/html/rfc4326

Noisternig Expires January 14, 2009 [Page 2]

Internet-Draft A lightweight security extension for ULE July 2008

 TS Logical Channel: Transport Stream Logical Channel. In this
 document, this term identifies a channel at the MPEG-2 level [MPEG2].
 All packets sent over a TS Logical Channel carry the same PID value.

 ULE: Unidirectional Lightweight Encapsulation [RFC4326]. A protocol
 that encapsulates PDUs into SNDUs that are sent in a series of TS
 cells using a single TS Logical Channel.

 Terms and abbreviations from cryptography are explained when they
 first appear within this document.

 All numbers encoded in protocols are to be interpreted in network
 byte order.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL", when
 appearing within this document, are to be interpreted as described in
 [RFC2119].

Table of Contents

1. Introduction ... 4
2. Format of the ULE Security Extension Header 6

2.1. Type field .. 7
2.2. VPN-ID field .. 7
2.3. Key (K) bit ... 7
2.4. Sequence Number.. 8
2.5. Encrypted Destination Address field 8
2.6. PDU Type field .. 8
2.7. MAC field ... 8

3. Security Algorithms .. 8
3.1. Key Derivation .. 9
3.2. Encryption .. 9
3.3. Identity Protection 10
3.4. Authentication and Integrity Protection 11
3.5. Replay Protection 12

4. Security Extension Header Processing 12
4.1. Preliminaries .. 12

4.1.1. Security Policy Database (SPD) 13
4.1.2. Security Association Database (SAD) 14

4.2. Sender Processing 16
4.2.1. General Activity Diagram 16
4.2.2. Detailed Processing Description 16

4.3. Receiver Processing 20
4.3.1. General Activity Diagram 20
4.3.2. Detailed Processing Description 21

5. Key Management Considerations 23

https://datatracker.ietf.org/doc/html/rfc4326
https://datatracker.ietf.org/doc/html/rfc2119

Noisternig Expires January 14, 2009 [Page 3]

Internet-Draft A lightweight security extension for ULE July 2008

5.1. Unidirectional Key Management 24
5.2. Bidirectional Key Management 25

6. Security Considerations 25
7. IANA Considerations ... 26
8. Conclusions ... 26
9. Acknowledgments ... 27

 APPENDIX A: Rationale for the Extension Header Format 28
A.1. (16-bit) optional VPN-ID vs. (32-bit) SPI 28
A.2. VPN-ID + K-Bit vs. SPI 28
A.3. 31-bit/63-bit Sequence Number 29
A.4. MAC field .. 29

 APPENDIX B: Rationale for the Default Security Algorithms 30
B.1. Encryption ... 30
B.2. Identity protection 31
B.3. Authentication ... 32
B.4. Source Authentication 33
B.5. Combined Authentication and Encryption 34
B.6. Replay Protection 35

10. References ... 36
10.1. Normative References 36
10.2. Informative References 36

 Author's Addresses ... 41
 Intellectual Property Statement 41
 Disclaimer of Validity ... 42

1. Introduction

 The Unidirectional Lightweight Encapsulation (ULE) protocol [RFC4326]
 has been designed as an efficient and extensible encapsulation
 mechanism of IPv4/IPv6 and other network layer packets over the ISO
 MPEG-2 Transport Stream (TS) [MPEG2]. It has a simple base format,
 but as such does not offer any security services; however, MPEG-2
 networks are often operated on wireless channels, such as satellite
 DVB-S [DVB-S] and terrestrial wireless DVB-T [DVB-T] and DVB-H [DVB-
 H] links, and are thus specifically vulnerable to attacks [ULEsec-
 Req]. Passive attacks, such as eavesdropping packet data or
 monitoring the identities (addresses) of the communicating parties,
 are easy to perform, and remain undetected. Low cost receiver devices
 and the large coverage area of satellite senders add to the
 likelihood of such events. Effective means to secure the ULE link are
 therefore important.

 One solution is to rely on end-to-end security, and on one hand,
 reliable security can only be end-to-end. On the other hand, end-to-
 end security may not be applicable: this is because both sides of a
 communication must provide support for the same security mechanism,

https://datatracker.ietf.org/doc/html/rfc4326

Noisternig Expires January 14, 2009 [Page 4]

Internet-Draft A lightweight security extension for ULE July 2008

 which will not be realizable under many conditions where the two
 sides are not under central control (e.g., when browsing a public web
 site). One important security requirement cannot be attained by end-
 to-end security at all: the protection of the end-point addresses
 ("identities") of the communicating parties against eavesdropping
 (subsequently referred to as "identity protection").

 By securing the ULE link only, solutions can be provided for these
 problems. In addition, this has the benefit that the ULE broadcast
 link becomes transparent for the user in the sense that he or she can
 rely on security assumptions as of wired links [RFC3819]. The IPsec
 [RFC4301] security protocols could be used in tunnel mode to create
 such a secure link, but this will result in significant bandwidth
 overhead on satellite links (due to the IP-in-IP encapsulation).
 Current IPsec specifications only define pairwise tunnels between two
 devices, thus this option is not applicable for multicast and
 broadcast transmissions. Last but not least, the rather high
 complexity of IPsec implementations might make its realization within
 low-cost receiver devices difficult.

 Implementing security at the ULE link layer addresses above problems.
 A more detailed rationale for ULE link layer security and a
 comparison of security at the various layers can be found in [ULEsec-
 Req]. It also lists the security requirements for the ULE link.

 This document defines a mandatory security extension for the ULE
 protocol that is designed with the aim of being conservative in
 bandwidth consumption and lightweight in the sense that it allows for
 implementation in low-cost, resource-scarce (mobile) receiver
 devices. The extension may be easily adapted to the second-generation
 Generic Stream Encapsulation (GSE) protocol [GSE], which shares the
 extension header mechanism with ULE. The format of the security
 extension header is described in section 2, and default security
 algorithms to be used with this extension are specified in section 3.
 These algorithms should address the most important security
 requirements for the ULE link: data confidentiality, identity
 protection, integrity protection, data authentication, and replay
 protection. Section 4 then gives detailed processing descriptions for
 devices implementing the security extension. While not defining any
 protocol for automated key management, some guidelines are given in

section 5. After security and IANA considerations in sections 6 and
 7, conclusions are presented in section 8. At the end of this
 document, two appendices support the reader with more insight and
 rationale on the decisions taken within this specification.

https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4301

Noisternig Expires January 14, 2009 [Page 5]

Internet-Draft A lightweight security extension for ULE July 2008

2. Format of the ULE Security Extension Header

 This section defines the format of the ULE security extension header,
 ULEsec header in short. This format can be regarded as a framework
 for a set of security transforms. While section 3 defines default
 algorithms to be used within that framework, other security
 transforms, especially making use of other cryptographic primitives,
 modes, and key lengths, may be devised later and defined within
 separate documents.

 Figure 1 below shows an example format of a ULE SubNetwork Data Unit
 (SNDU) containing a ULEsec header. In this example, the ULEsec
 extension header directly follows the base header, and it is
 RECOMMENDED that encapsulation devices always be configured that way.
 Users not following this recommendation must clearly understand the
 implications: first, extension headers preceding the ULEsec header
 cannot be protected under the data confidentiality service; second,
 when processing the security extension header, a receiver device may
 decide to discard the SNDU, a point at which preceding headers will
 already have been evaluated.

 0 16 31
 +-+-----------------------------+------------------------------+
 |D| Length | Type=ULEsec/ULEsec_ID |
 +-+-----------------------------+------------------------------+
 | Destination Address (D=0) |
 | +------------------------------+
 | | VPN-ID (Type=ULEsec_ID) |
 +-+-----------------------------+------------------------------+
 |K| Sequence Number (31/63 bits) |
 +-+-----------------------------+------------------------------+
 | Encrypted Destination Address (optional) |
 | +------------------------------+
 | | (Encrypted) PDU Type |
 +-------------------------------+------------------------------+
 | |
 ~ (Encrypted) Payload Data ~
 | |
 | |
 +--+
 | |
 ~ MAC (optional) ~
 | |
 +--+
 | CRC-32 |
 +--+
 Figure 1 Example ULE SNDU containing a security extension header

Noisternig Expires January 14, 2009 [Page 6]

Internet-Draft A lightweight security extension for ULE July 2008

 The following subsections describe the fields that are part of or
 directly relevant to the ULEsec header. All encoded numbers are in
 network byte order.

2.1. Type field

 The 16-bit Type field of the ULE base header (or some other extension
 header) indicates a security extension header following subsequently.
 Two different type values are defined. The first one, denoted simply
 ULEsec, SHOULD be used when receiver devices can uniquely identify
 Security Associations (SAs) based on MPEG-2 TS Program Identifiers
 (PIDs) and SNDU destination addresses solely. The second type,
 denoted ULEsec_ID, MUST be used, when PIDs and destination addresses
 alone are not sufficient to look up SAs. In this case, the VPN-ID
 field will be present, which is described next.

2.2. VPN-ID field

 This 16-bit field is present when the ULEsec_ID Type is chosen. It
 can be viewed as a Security Parameter Index (SPI) as of IPsec
 implementations [RFC4301], but more adequately simply represents a
 Virtual Private Network (VPN) identifier. See above to decide when to
 use this field.

2.3. Key (K) bit

 This mandatory bit provides for an easy way of detecting a key
 update. Whenever ULE sender (i.e., ULE encapsulator) devices switch
 to new keys, they flip this bit. This enables receivers to find out
 which of two concurrently defined set of keys (the current/old ones,
 or the new ones) are to be used for decoding.

 New keys will be issued within key management messages by a Group
 Controller and Key Server (GCKS), which may or may not physically
 reside with a ULE sender. After each key update, devices MUST wait
 for a policy-defined amount of time before they permit switching to
 new keys again. This is necessary to avoid collisions between
 different keys on SNDUs sent with the same K bit. This can happen
 either because a receiver still accepts old keys (see section 4.3),
 or because a device has missed all key management messages during two
 periods of key updates. To avoid the latter, a GCKS may periodically
 send out key management messages with the key currently in use (see

section 5.1).

https://datatracker.ietf.org/doc/html/rfc4301

Noisternig Expires January 14, 2009 [Page 7]

Internet-Draft A lightweight security extension for ULE July 2008

2.4. Sequence Number

 The mandatory Sequence Number field serves two purposes. First, it is
 part of the nonce required for the default encryption algorithm.
 Second, it is used for the replay protection service.

 The default size of the Sequence Number field is 31 bits. This MAY be
 extended to 63 bits when configured as such by a Security Policy (SP)
 or via negotiation within a key management protocol. The larger size
 MUST be used when no automated key management is available.

2.5. Encrypted Destination Address field

 This field is only present if the identity protection service is used
 (determined by the SPs selected). In that case, SNDUs do not contain
 a 48-bit NPA destination address in the ULE base header (i.e., they
 have the D bit set to 1), but the address will appear in the security
 extension header's Encrypted Destination Address field instead, where
 it will be encrypted subsequently (along with the payload data).

2.6. PDU Type field

 This mandatory 16-bit field designates the type of the PDU or the
 next extension header in the header chain.

2.7. MAC field

 The security extension header has an optional (SP-configured) trailer
 that follows the PDU data and contains the Message Authentication
 Code (MAC) of the SNDU. This MAC SHOULD have a default length of 12
 octets.

3. Security Algorithms

 This section specifies a set of mandatory default security algorithms
 to be used in conjunction with the ULEsec header. These algorithms
 are lightweight in the sense that the only cryptographic primitive
 required is the Advanced Encryption Standard (AES) [AES] with a key
 size of 128 bits, denoted AES-128 in short, and only its encryption
 part is used.

 Implementation of default security algorithms is REQUIRED.

 Within the following subsections, AES_mk(value) means AES-128
 encryption of the 128-bit value using the master key mk, value[x..y]
 means taking value's bits x to y, || denotes concatenation, and x^y

Noisternig Expires January 14, 2009 [Page 8]

Internet-Draft A lightweight security extension for ULE July 2008

 means that bit x is to be repeated y times. All encoded numbers are
 in network byte order.

3.1. Key Derivation

 In order to minimize transmission overhead within a key management
 protocol and to ease the setup of manual keys, separate encryption
 and authentication keys are derived from a single master key. The
 derived keys are computed as follows:

 encr_key = AES_mk (Salt || 0^64)

 auth_key = AES_mk (Salt || 0^63 || 1)

 The Salt is a 64-bit value that MUST be an unpredictable value for
 adversaries. It will be transmitted along with the master key either
 explicitly or implicitly (e.g., derived from nonces used within the
 key management protocol). Including the Salt in the key derivation
 process preserves full security of the master key in case of
 compromise of any derived key against an adversary using pre-
 computation techniques.

3.2. Encryption

 Using encryption spoils an adversary's attempt of finding out
 information transmitted via eavesdropping. By encoding all data
 following a security extension header's Sequence Number field up to
 but not including the MAC field, confidentiality is provided for
 SNDUs' payload data as well as any extension headers succeeding a
 security header.

 Encryption is performed by employing AES-128 in the Counter (CTR)
 mode of operation, which is specified in [Modes], and using the
 encr_key defined in subsection 3.1.

 The CTR mode requires a Nonce as part of its input. It is a 128-bit
 value and derived per packet from a 64-bit random value (Salt) that
 is distributed along with the master key, the 13-bit Program
 Identifier (PID) the underlying MPEG-2 TS cell originated from, and
 the ULEsec header's K bit and Sequence Number as follows:

 Nonce = Salt || K || Sequence Number || 0^3 || PID || 0^16.

 When 63-bit sequence numbers are used, the Nonce is computed as such:

 Nonce = Salt[63..32] || Salt[31] XOR K || Salt[30..0] XOR Sequence
 Number[62..32] || Sequence Number[31..0] || 0^3 || PID || 0^16.

Noisternig Expires January 14, 2009 [Page 9]

Internet-Draft A lightweight security extension for ULE July 2008

 The Salt is the same as that of subsection 3.1, which primarily means
 that it be an unpredictable value for adversaries. Again, its purpose
 is to thwart pre-computation attacks.

 Special care has to be taken when PID re-mapping can occur (typically
 within a multiplexer on a DVB network boundary [MPEG2]), as a
 receiver will not be able to decrypt the data successfully when using
 a PID value different from the sender. For one-sender scenarios where
 the sender also acts as the key server, a simple solution to inform
 receivers about such PID re-mapping may be to include the originating
 PID within the key management messages.

3.3. Identity Protection

 For additional protection against traffic flow analysis, the ULE link
 layer addresses may be hidden using the identity protection service.
 For this, a sender omits the 48-bit NPA destination address from the
 ULE base header, sets the D bit, and places the address into the
 extension header's Encrypted Destination Address field instead, where
 it will be encrypted subsequently (along with the payload data). A
 receiver will detect an SNDU destined to it simply by probing (i.e.,
 trial-decryption).

 Identity protection has the following properties:

 o There is no need to store or transmit any additional information
 (besides that the identity protection service is requested).
 Particularly, there is no need for a central server to manage or
 distribute addresses used specifically for this service.

 o An adversary not in the know of a matching encryption key will not
 be able to read an SNDU's NPA destination address.

 o A legitimate receiver will correctly decode the address with very
 high probability. In detail, the probability that an SNDU is
 mistakenly accepted is given approximately by k*10^-14.4, where k
 is the receiver's number of keys that do not match. Note that this
 is close to typical packet-error ratios on the ULE link for small
 k, which is between 10^-15.5 and 10^-16.8 on a quasi-error-free
 channel.

 o For even lower false-acceptance rates, the authentication
 mechanism may be used. A MAC of size t bits will decrease the
 probability of erroneously accepting a SNDU with a wrong key by
 the factor 2^-t.

Noisternig Expires January 14, 2009 [Page 10]

Internet-Draft A lightweight security extension for ULE July 2008

 Two typical use cases for this service are sketched. In the first
 one, each receiver device has one distinct key to protect its unicast
 data. In this case, a receiver will not miss any data destined to it,
 and will mistakenly accept other SNDUs with negligible probability
 (k=1).

 In the second case, all sender and receiver devices on a PID use a
 single shared key to protect their data, forming a VPN. Within such
 VPN, all devices can correctly decode all addresses (k=0).

 Note that while identity protection could be used for unicast as well
 as multicast settings, it is sensible only for unicast communication,
 and as such - and in order to keep the number of mismatching keys low
 - should not be used for multicast scenarios.

 Identity Protection MUST NOT be used without the data confidentiality
 service (section 3.2).

3.4. Authentication and Integrity Protection

 As a mechanism against active attacks, SNDUs may carry a Message
 Authentication Code (MAC). A MAC provides integrity protection and
 source authentication for unicast connections as well as other
 single-sender settings. When there is more than one sender, such as
 in peer-to-peer settings, or when there is a possibility that a
 receiver in the know of the shared key might act as a sender, this
 mechanism gets reduced to group authentication. This is regarded
 sufficient, however, as attacks are primarily expected from outside
 (i.e., from adversaries not in the know of the right keys) [ULEsec-
 Req].

 This construction of the MAC is based on the Cipher Block Chaining
 (CBC) mode of operation [Modes], and is commonly known as a (plain)
 CBC-MAC, which is computed as follows:

 1. The SNDU, excluding the CRC and the MAC field, is first internally
 right-padded with zeros to an integral multiple of the cipher's
 block length (128 bits for AES), if necessary.

 2. This padded data is then internally encrypted with AES-128 in CBC
 mode using the auth_key defined in subsection 3.1, and an
 Initialization Vector (IV) of 0.

 3. The final output block of the encryption step resembles the full-
 length MAC whose least-significant bits are then truncated to
 receive the MAC of desired length.

Noisternig Expires January 14, 2009 [Page 11]

Internet-Draft A lightweight security extension for ULE July 2008

 The CBC-MAC based on AES is fully secure up to 98 bits, or about 12
 octets, when used with the default sequence number space of 2^31. 12
 octets is the "standard" authentication length for the IPsec
 protocols, and should be used as a default for ULEsec, too.

 When extended (63-bit) sequence numbers are used, a block cipher with
 larger block size should be chosen. It is advised to take the
 Rijndael algorithm [Rijndael] with a block size of 256 bits as a
 superset of AES.

3.5. Replay Protection

 Upon switching to a new set of keys, senders and receivers will set
 its sequence numbers to be sent or accepted next for a Security
 Association (SA) to the value 0. A sender will increment a sender-
 side sequence number by 1 after each SNDU transmitted, independently
 of whether replay protection is used or not. A receiver, using replay
 protection, will only accept SNDUs with a receiver-side sequence
 number higher than the last one accepted. Detailed processing
 descriptions regarding this service are given in section 4.

 Note that replay protection using sequence numbers only works for the
 one-sender scenario due to the difficulty of synchronizing replay
 state among multiple senders. As such, this service MUST NOT be used
 when there is multiple legitimate senders or legitimate receivers
 acting as senders for a SA. Also, it SHOULD NOT be used when keys are
 set up manually, as a sender would have to remember its sequence
 number state across reboots.

4. Security Extension Header Processing

4.1. Preliminaries

 Within the next subsections, the following terms are used to simplify
 wording:

 o Basic (Policy) Selector: a pair of destination NPA address and PID
 value.

 o Receiver-Side (Policy) Selector: a Basic (Policy) Selector with
 the optional VPN-ID value.

 o Sender-Side (Policy) Selector: a Basic (Policy) Selector,
 optionally extended by higher-layer selector data, such as IP
 addresses, TCP ports, etc.

 The term (Policy) Selector is used interchangeably for those above.

Noisternig Expires January 14, 2009 [Page 12]

Internet-Draft A lightweight security extension for ULE July 2008

4.1.1. Security Policy Database (SPD)

 Senders and receivers define policies describing the security
 services required or permitted for outgoing and incoming data. The
 collection of such Security Policies (SPs) is referred to as the
 Security Policy Database (SPD).

 For both outgoing and incoming data, a SPD contains an ordered list
 of SPs. Each SP MUST contain the following information:

 o A set of Sender-Side or Receiver-Side Policy Selectors (for
 outgoing or incoming data respectively), defining the
 applicability of this SP. To simplify parsing, this set MUST be
 encoded as a single Selector together with a Selector Mask.

 o Information about the SA(s) to be instantiated by this SP. This
 contains:

 o A set of subsets of above Policy Selectors, downgraded to Basic
 Policy Selectors (i.e., only the address and PID are taken).
 Each subset together with the optional VPN-ID value constitutes
 a SA Selector, which is used for looking up or creating a
 Security Association (SA) within the Security Association
 Database (SAD) (see next section 4.1.2). To simplify parsing, a
 single Basic Selector Mask MUST be stored, denoted SA Selector
 Mask, from which the set of subsets is derived.

 o An optional VPN-ID value, part of the SA Selector. If defined,
 a sender MUST use this value within the VPN-ID field of the
 ULEsec_ID extension header type.

 o Optional Group Controller and Key Server (GCKS) data, specified
 by an optional destination address and a (possibly empty set
 of) PID(s). A device MAY use the PID(s) as a first check for
 legitimacy of key management messages from a certain source.
 When a destination address is defined, it MUST be used to
 contact the GCKS for membership request on receiving a
 protected SNDU for which this SP matches, and when the SP does
 not contain default key data in its first set of Security
 Parameters.

Noisternig Expires January 14, 2009 [Page 13]

Internet-Draft A lightweight security extension for ULE July 2008

 o An ordered list of Security Parameter sets used for
 instantiating a SA, sorted according to preference. A Security
 Parameter set MUST allow having no security services selected
 at all, which MUST be interpreted as sending or receiving data
 without protection (i.e., SNDUs without a security extension
 header). A sender MUST default to the first entry in the list,
 unless a key management protocol permits negotiation (e.g., for
 unicast, bidirectional settings) and a receiver contacts the
 GCKS to request another set of Security Parameters from the
 list. Each set of Security Parameters MUST contain information
 about:

 o The cryptographic algorithms used.

 o The cryptographic parameters required by these algorithms
 (e.g., the MAC length).

 o The length of the sequence number field.

 o Optional key data for manual keying: a master key, and an
 optional Salt.

 SPs may be manually set up by the owner of the sender or receiver
 equipment, or dynamically distributed via a GCKS (using a key
 management protocol). While the resulting SPD may become complex by
 containing separate SPs for each pair of PID and NPA address data may
 be sent to or received from, in general it is expected to contain
 just a few entries.

 This document does not define how to store, manage, and look up SPs
 within the SPD, as this is regarded implementation specific details.

4.1.2. Security Association Database (SAD)

 A Security Association (SA) is an instantiation of a SP. It describes
 the current state of a secure connection between two or more devices.
 All devices sharing a SA are part of the same VPN. The set of SAs of
 a device is aggregated in the Security Association Database (SAD).

 A SA MUST contain the following information:

 o The SA Selector derived from the instantiating SP.

 o Any GCKS data defined by the SP and the GCKS.

 o Static security parameters defined by the SP (cryptographic
 algorithms, MAC length, Sequence Number length, etc.).

Noisternig Expires January 14, 2009 [Page 14]

Internet-Draft A lightweight security extension for ULE July 2008

 o Current and prospective dynamic security parameters (keys, Salt,
 etc.), defined by the SP or the GCKS.

 o The current sender-side K bit and sequence number for transmitting
 data.

 o The current receiver-side K bit for receiving data, and the
 current receiver-side sequence number for receiving data with
 replay protection.

 o A flag defining whether prospective security parameters have been
 received through a GCKS.

 As with the SPD, this document does not define how to store, manage,
 and look up SAs within the SAD.

Noisternig Expires January 14, 2009 [Page 15]

Internet-Draft A lightweight security extension for ULE July 2008

4.2. Sender Processing

4.2.1. General Activity Diagram

 +-----------------+
 | receive PDU | +-----------------+
 +---->|from upper layers|<-------------------| discard PDU |
 | +-----------------+ +-----------------+
 | v ^
 | +-----------------+ not found? +-----------------+
 | | get SP |------------------->| log event |<-+
 | +-----------------+ +-----------------+ |
 | v ^ failure? |
 | +-----------------+ not found? +-----------------+ |
+--	get SA	------------------->	create SA		
	+-----------------+ +-----------------+				
	w/o		success?		
	sec.ext.	+----------------+			
	v				
	+-----------------+ fresh key	+-----------------+			
		check keys	------------------->	switch keys	
	+-----------------+ available?	+-----------------+			
	v	+------------+			
	+-----------------+ seq.nr.				
		check seq.nr.	-----------------------------+-----------+		
	+-----------------+ overflow?		v		
		expected		+-----------------+	
	+---------------------------->	get key from GCKS			
		seq.nr. overflow?		+-----------------+	
	v		v failure?		
	+-----------------+		+-----------------+		
+->	construct SNDU	<-----------+		log event	
	& transmit	<---------------+ +-----------------+			
+-----------------+					
v					
+-----------------+					
	update SA				
+-----------------+					
 +--------------+

4.2.2. Detailed Processing Description

 The following list describes the processing steps for a ULE
 encapsulator implementing the ULE security extension (ULEsec sender
 in short):

Noisternig Expires January 14, 2009 [Page 16]

Internet-Draft A lightweight security extension for ULE July 2008

 1. Get SP: After receiving a PDU from upper layers for transmission
 over the ULE link, a ULEsec sender MUST consult its SPD by
 scanning the ordered list of outgoing SPs until it finds a
 matching policy. That is, it looks for a SP for which

 (SP's Sender-Side Selector AND SP's Selector Mask)
 == (SNDU's Sender-Side Selector AND SP's Selector Mask)

 is true. If no such policy can be found, the data MUST be
 discarded, and this event SHOULD be logged as an invalid
 transmission attempt.

 2. Get SA: With a SP chosen, a SA Selector is constructed as a
 triple:

 SA Selector := (SNDU's Basic Selector AND SP's SA Selector Mask,
 SP's SA Selector Mask, SP's VPN-ID value)

 The VPN-ID value, if not defined by the SP, must be set to a
 reserved "null" value (i.e., a fixed value not within the 16-bit
 number range of the extension header's VPN-ID field).

 The SA Selector is then used to look up a SA within the SAD. If no
 SA is found, it must be set up as follows: If the SP's first
 Security Parameter set either contains default key data (master
 key, optional Salt, etc.) or defines data to be sent without
 protection, the SA is immediately created and initialized
 according to these settings. Otherwise, if the SP defines a GCKS
 destination address, the server MUST be contacted for obtaining
 key material. During that attempt the sender SHOULD postpone or
 discard transmission of the data. Any case of failure MUST result
 in the data being discarded, and this SHOULD be logged accordingly
 (e.g., as a user authentication failure in case of membership
 denial by the GCKS).

 3. Check keys: Whenever a SA is provided with fresh key material, a
 sender MUST switch to the new set of keys after a policy-defined
 length or point of time, and prior to a sequence number overflow
 (see next step). This is done by flipping the SA's sender-side K
 bit and resetting the sender-side sequence number to 0, while
 selecting the fresh key material as the new current one for
 sending. Note that a SA that is also used for receiving SNDUs may
 still require the older set of keys as a receiver-side K bit will
 be flipped at a later (policy-defined) point of time. This is to
 compensate differences in key update times of multiple senders,
 which means there will be a period during which some devices will

Noisternig Expires January 14, 2009 [Page 17]

Internet-Draft A lightweight security extension for ULE July 2008

 already send with new keys while others will still use the old
 ones.

 4. Check sequence number: An implementation MUST NOT allow a SA's
 sender-side sequence number to overflow. For a SA defining a GCKS
 destination address, an implementation MUST contact the server for
 obtaining fresh key material in anticipation of this event. When
 keys are set up manually, the user SHOULD be warned about an
 expected overflow. Should eventual transmission of an SNDU ever
 result in the sequence number to overflow, the data MUST be
 discarded instead, and this event SHOULD be logged as a sequence
 number overflow event.

 5. Construct SNDU: For a SA that allows passing data unprotected, the
 SNDU is constructed as usual. Otherwise, it is built as follows:

 a. First, the ULE base header and any extension headers
preceding
 the security extension header are written. If the SA requests
 identity protection, the destination NPA address MUST be
 omitted from the base header (with the D bit set to 1). If a
 VPN-ID value is defined within the SA, the last extension
 header's (or base header's) Type field MUST contain the value
 for a ULEsec_ID extension header; otherwise, it contains the
 ULEsec extension header value.

 b. For the ULEsec_ID extension header, the 16-bit VPN-ID
field is
 written.

 c. Next, the SA's sender-side K bit and sequence number
are
 filled into the extension header's mandatory K Bit and
 Sequence Number fields. The length of the Sequence Number
 field is defined by the SA.

 d. For the identity protection service, the destination
NPA is
 encoded as defined by the SA, which means it will be encrypted
 along with any subsequent extension headers and the payload
 data for the default identity protection algorithm.

 e. Subsequently, the mandatory (Encrypted) Type field,
any other
 extension headers, and the PDU are encoded as defined by the
 encryption algorithm selected.

 f. For authentication, a MAC of length as defined by the
SA is

 appended. The MAC is computed over all the data encoded so
 far, which means, from the start of the SNDU to the end of the
 payload data.

Noisternig Expires January 14, 2009 [Page 18]

Internet-Draft A lightweight security extension for ULE July 2008

 g. Finally, the CRC is calculated and appended, and the
SNDU
 further processed according to [RFC4326].

 6. Update SA: After processing a protected SNDU is completed, a
 sender MUST increment the SA's sender-side sequence number by 1.

Noisternig Expires January 14, 2009 [Page 19]

https://datatracker.ietf.org/doc/html/rfc4326

Internet-Draft A lightweight security extension for ULE July 2008

4.3. Receiver Processing

4.3.1. General Activity Diagram

 +-----------------+
 | receive SNDU | +-----------------+
 +---->| from MPEG layer |<-------------------| discard SNDU |
 | +-----------------+ +-----------------+
 | v ^
 | +-----------------+ decoding |
 | |decode headers up| error? +-----------------+
 | |to security ext. |------------------->| log event |<-+
 | +-----------------+ +-----------------+ |
	^ ^ ^ ^					
	+-----------------------------+					
v	not found/not permitted?					
+-----------------+						
+--	get SP	<----------------------+		+-----+		
	+-----------------+ no match?					
	permit.	permitted (SNDU w/o address)				
	w/o	w/				
	sec.	sec. +-----------------------------	--+			
	ext.	ext.	id.prot. mismatch?			
	v	(SNDU w/ address)		failure?		
	+-----------------+ +-----------------+					
		get SA(s)	---------------->	create SA		
	+-----------------+ not found? +-----------------+					
			success?			
		+--------------------------------+				
	v v					
	+-----------------+ not found? +-----------------+					
		select key	----------->	get key from GCKS	-------+	
	+-----------------+ +-----------------+ failure?					
			success?			
		+---------------------------+				
	v v					
	+-----------------+					
+->	decode SNDU	decoding/authentication/replay error?				
	& pass to L3	---+				
+-----------------+						
v						
+-----------------+						
	update SA					
+-----------------+						
 +--------------+

Noisternig Expires January 14, 2009 [Page 20]

Internet-Draft A lightweight security extension for ULE July 2008

4.3.2. Detailed Processing Description

 A receiver implementing the ULE security extension (ULEsec receiver
 in short) must follow below procedure upon reception of a ULE SNDU:

 1. Decode SNDU (1): The SNDU is checked for a correct CRC as
 described in [RFC4326], after which the base header and the
 extension headers up to either a security extension header or the
 PDU are evaluated. From the base header, a Basic Policy Selector
 is constructed. This one is extended to a Receiver-Side Policy
 Selector by adding the VPN-ID field of a ULEsec_ID Type security
 extension header, when encountered.

 2. Get SP: After the SNDU passed the first filtering and evaluation
 step, the SPD's ordered list of incoming policies is scanned for a
 matching policy.

 a. D=0: With the SNDU's D bit cleared, the following
check must
 be true for selecting a SP:

 (SP's Receiver-Side Selector AND SP's Selector Mask)
 == (SNDU's Receiver-Side Selector AND SP's Selector Mask).

 If no matching policy can be found, the data MUST be discarded
 immediately, and this event SHOULD be logged as reception of
 an invalid SNDU.

 b. D=1: When the D bit is set, above check is done as
well,
 except that the destination NPA address values are ignored.

 If no matching policy can be found, the data MUST be discarded
 immediately, and this event MAY be logged as reception of an
 invalid SNDU.

 If the SNDU is received without a security extension header but
 the SP does not permit unprotected data to pass, the SNDU MUST be
 discarded immediately, and this event SHOULD be logged as
 reception of an invalid SNDU. Likewise, if there is a security
 extension header but the policy allows only for unprotected data,
 the SNDU MUST be discarded, and this event SHOULD be logged.

 When permitted, an SNDU without a security extension header is
 decoded as usually. For a protected SNDU, processing continues
 with step 3.

 3. Get SA: With a first match on a SP, a SA Selector is constructed
 to find a SA within the SAD.

https://datatracker.ietf.org/doc/html/rfc4326

Noisternig Expires January 14, 2009 [Page 21]

Internet-Draft A lightweight security extension for ULE July 2008

 a. D=0: With a destination address present, the following
SA
 Selector is used to directly look up a SA within the SAD:

 SA Selector := (SNDU's Basic Selector data AND SP's SA
 Selector Mask, SP's SA Selector Mask, SNDU's VPN-ID value)

 The VPN-ID value must be set to a reserved value if not
 defined by a ULEsec_ID header.

 If no SA is found, it must be tried to set it up as described
 in step 2 of section 4.2, Sender Processing. If creation of a
 SA fails, the SNDU MUST be discarded, and this SHOULD be
 logged accordingly.

 b. D=1: With the D bit set, a set of SAs is looked up by
omitting
 the destination address:

 SA Selector := (SNDU's PID AND SP's SA Selector Mask's PID,
 SP's SA Selector Mask, SNDU's VPN-ID value)

 From the retrieved set, every SA not defining identity
 protection is ignored. Assuming the remaining set is not
 empty, the K Bit and Encrypted Destination Address field are
 read ahead from the security extension header. The current
 key, as defined by the K Bit (see next step), is then taken
 from the first SA in the set to trial-decrypt the Encryption
 Destination Address field (i.e., it is decrypted to a
 temporary buffer). The decrypted address MUST be checked to
 match both the SP selected as well as belong to the current
 SA. Then, it MUST be compared with all destination NPA
 addresses a receiver accepts to look for a match. If either a
 SA does not contain the current key, or there is no match for
 an address, the SA is removed from the retrieved set, and
 probing is done with the next one.

 If no SA matches, but the SP defines default key data as well
 as the identity protection service for the first set of
 Security Parameters, the encryption key derived from the
 default key data is used for probing with the SNDU as
 described in above paragraph. (Because of this, receiver-side
 SPs containing default key material SHOULD already provide
 derived keys for efficiency reasons.) If this test succeeds, a
 SA is constructed using the SP's first Security Parameter set;
 if SA creation fails (e.g., due to out-of-memory conditions),
 the SNDU MUST be discarded, and this SHOULD be logged
 accordingly.

Noisternig Expires January 14, 2009 [Page 22]

Internet-Draft A lightweight security extension for ULE July 2008

 When no matching SA can be found, the SP is assumed to be
 selected mistakenly, and processing MUST continue at step 2.b
 with the next SP in the list of incoming SPs.

 4. Select key: Once a matching SA is found, proper keys must be
 looked up. For this, the SNDU's K bit is compared with the SA's
 receiver-side one. If they are equal, the SA's current keys are
 taken for decoding. Otherwise, the SA's prospective keys must be
 selected. If these are not defined, the SNDU MUST be discarded and
 this event SHOULD be logged as reception of an invalid SNDU. A
 receiver SA, when provided with prospective keys, must switch to
 these after a policy-defined point or amount of time by flipping
 its receiver-side K bit and replacing the current keys with the
 fresh ones.

 5. Decode SNDU (2):

 a. Authenticate SNDU: For verifying authenticity and
integrity, a
 MAC is computed as defined for the sender side, and then
 compared with the value of the SNDU's MAC field for equality.
 If the two values differ, the SNDU MUST be discarded, and this
 SHOULD be logged as a data authentication failure.

 b. Replay Protection: To detect replays, the SNDU's
Sequence
 Number MUST be greater than or equal to the SA's receiver-side
 sequence number; if this is not the case, the SNDU MUST be
 discarded, and this event SHOULD be logged as a replay.

 c. Decryption: If the data confidentiality service is
used, all
 data starting from the security extension header's Encrypted
 Type field up to the end of the PDU data are decrypted. After
 that, processing continues as normally (i.e., any other
 extension headers are evaluated, and the PDU is finally passed
 to upper protocol layers).

 6. Update SA: Now that the SNDU has been accepted, a SA using replay
 protection must be updated accordingly: If the K bits of step 4
 were differing, keys are switched immediately as described in that
 step; then, the SA's receiver-side sequence number is set to the
 SNDU's Sequence Number value, and incremented by 1.

5. Key Management Considerations

 Manual key setup is simple but practical only for small and
 relatively static secure groups. When number of receivers gets high,
 or users need to be added or excluded more frequently, automated key

 management becomes necessary. A Group Controller and Key Server

Noisternig Expires January 14, 2009 [Page 23]

Internet-Draft A lightweight security extension for ULE July 2008

 (GCKS) uses a key management protocol to automatically distribute key
 material to legitimate devices in the event of new membership,
 revoking of users, or key update (either periodically for increased
 security, or after a security breach). The definition or selection of
 any particular key management protocol is out of scope for this
 document as doing so has no influence on extension header format,
 security algorithms, or extension header processing. However, some
 important considerations are discussed next, and one must distinguish
 between the two different scenarios of unidirectional and
 bidirectional communication.

5.1. Unidirectional Key Management

 In unidirectional settings, security parameters can merely be decided
 by the sender. Having no way for negotiation, this allows for a
 simpler protocol design in this regard. However, other issues arise.
 Senders must assure reliable delivery of information to all
 receivers. Doing so might require sending the same data multiple
 times. Receivers must be able to jump into a session at any time and
 without substantial delays, either when they are turned on, or after
 loss of synchronization. Replay attacks must be considered. They are
 best countered with timestamps; however, this requires sender and
 receivers to have synchronized clocks.

 The design of a unidirectional key management protocol should allow
 installing, updating, and revoking a number of different keys within
 receiver devices, with new keys encrypted with any other one.
 Different keys can correspond to individual, group, or global keys.
 This flexibility will allow the use of various broadcast encryption
 algorithms (such as the subset difference scheme [Subset]).

 It is further suggested that a unidirectional key management protocol
 uses the same format for re-key messages as for the initial key
 distribution. In other words, re-keys should provide all the
 information necessary to allow receivers to jump into the middle of a
 session, which shall result in great aid for connectivity.

 Existing mechanisms should be evaluated, such as [DVB-CA] and [ATSC-
 CA]. For example, [DVB-CA] defines unidirectional key management in
 the form of the entitlement checking and entitlement management
 messages. This offers a simple mechanism for securely establishing,
 updating, and revoking keys. A 3-level key hierarchy is used to
 provide for a better level of safety in case of key compromise.
 However, the single first-level key remains unchanged, constituting a
 weakness in this system; this could be mitigated in a protocol for
 the ULE security extension by either configuring receiver devices
 with unique sets of first level keys, thereby allowing true broadcast

Noisternig Expires January 14, 2009 [Page 24]

Internet-Draft A lightweight security extension for ULE July 2008

 encryption algorithms such as [Subset], or by permitting operators of
 a VPN to update first level keys externally of the ULE network
 (either manually or automatically).

5.2. Bidirectional Key Management

 The availability of a back channel allows devices not only to
 actively request group membership, revocation, and retransmission of
 keys after loss of synchronization. Negotiation of cryptographic
 algorithms and keys becomes possible, as well as enhanced security
 features such as perfect forward secrecy, mutual authentication, and
 identity protection when receivers are identified by other means than
 their NPA address.

 In contrast to unidirectional key management, numerous bidirectional
 protocols have been developed for various layers of the ISO/OSI
 reference model. Prominent examples include [DVB-RCS] (link layer),
 IKEv2/IPsec [RFC4306] (network layer), TLS [RFC4346] (transport
 layer) and SSH [RFC4253] (application layer). Naturally, they differ
 highly in purpose, functionality, and complexity. While existing link
 layer technology such as those within [DVB-RCS] is probably most
 directly usable for ULE, requirements for bidirectional key
 management must be clearly determined.

 Traditional key management protocols, including the ones cited above,
 are designed for unicast communication, only. ULE key management must
 support VPN-like settings with a potentially large number of
 receivers. One focus of the IETF MSEC working group is on developing
 and standardizing scalable solutions for key management within large
 groups, and several different protocols have been proposed [RFC4535,

RFC3547, GKDP, FMKE, RFC3830]). Clearly, these must be considered
 when defining ULE key management.

6. Security Considerations

 The security of cryptography-based systems depends in one part on the
 strength of the cryptographic algorithms chosen and the strength of
 the keys used with those algorithms. The algorithms identified in
 this document are not known to be broken at the current time, and
 research so far leads to believe that the combination of algorithms
 and key lengths specified within this document will likely remain
 secure into the foreseeable future. Considerations that relate to
 this aspect, including the correct use of algorithms, are addressed
 in their respective sections or the appendices of this document.

 There is a caveat regarding the security extension's Sequence Number
 field when a SA secures communication for a single receiver device

https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc3547
https://datatracker.ietf.org/doc/html/rfc3830

Noisternig Expires January 14, 2009 [Page 25]

Internet-Draft A lightweight security extension for ULE July 2008

 (i.e. for unicast communication) and the identity protection service
 is used. A passive attacker may link SNDUs with increasing sequence
 number to the same SA, thereby increasing its chance of identifying a
 receiver and the amount and type of data transmitted to it. Future
 research will investigate on possible solutions for this problem.

 The security also depends on the engineering and administration of
 the protocols used by the system to ensure that there are no non-
 cryptographic ways to bypass security. When selecting a key
 management protocol, its security will be a pre-requirement for
 overall system security.

 ULE link layer security may not be treated as a replacement for end-
 to-end security. If reliable security is required, one MUST use end-
 to-end security protocols. However, ULE link layer security can
 complement end-to-end security as laid out in the conclusions in

section 8.

7. IANA Considerations

 This document requires two 16-bit Type codes to be registered by the
 IANA, namely one for the ULEsec security extension, and one for the
 ULEsec_ID extension header type. It is suggested that the two Type
 codes are allocated in a way that they differ only in their least-
 significant bit. This allows use of this bit as a flag for
 determining the presence of the VPN-ID field. (However, this is
 merely an optimization and no requirement.)

8. Conclusions

 The solution presented within this document addresses many of the
 security requirements for the ULE protocol laid out in the separate
 security requirements document. Passive attacks, constituting the
 most important threats in the ULE network, are effectively defeated
 using the data confidentiality and identity protection service. To
 mitigate active attacks, MACs may be used to assure a receiver of the
 authenticity and integrity of the data received. While not providing
 source authentication for VPN-like settings with multiple senders,
 they still render outsider attacks futile. Sequence numbers within
 each SNDU allow for simple detection of replayed data on unicast
 connections, without any additional bandwidth overhead.

 The format of the security extension header generates minimal
 bandwidth overhead, is extensible, and acts as a framework for a set
 of security transforms that may be changed and updated independently
 of each other. Default algorithms are defined to be lightweight and
 allow implementation in low-cost devices.

Noisternig Expires January 14, 2009 [Page 26]

Internet-Draft A lightweight security extension for ULE July 2008

 A key management protocol may be added later and independently of
 this specification. This will allow more flexibility and security in
 setting up secure connections and VPNs. Existing protocols such as
 those following the guidelines of [RFC4046] might be used. However,
 this will need careful assessment regarding the applicability for the
 ULE link.

 Note that the presented ULE security extension secures the ULE
 broadcast link, only, and as such may not be treated as a replacement
 for end-to-end security. In fact, ULE link layer security is an
 additional security mechanism that complements end-to-end security
 [ULEsec-Req]. Where end-to-end security is used, it can provide
 identity protection over the ULE link in addition. When the ULE link
 is used to directly connect two secure sites, ULEsec can be the sole
 provider of security. In the cases where end-to-end security is not
 applicable, the ULE security extension can be viewed as protecting
 the weakest link, and a user can rely on security assumptions as of
 wired links.

9. Acknowledgments

 The document was prepared using 2-Word-v2.0.template.dot.

Noisternig Expires January 14, 2009 [Page 27]

https://datatracker.ietf.org/doc/html/rfc4046

Internet-Draft A lightweight security extension for ULE July 2008

APPENDIX A: Rationale for the Extension Header Format

A.1. (16-bit) optional VPN-ID vs. (32-bit) SPI

 In order to identify which secure connection (represented by a SA) a
 secured packet belongs to, it is generally marked with a connection
 identifier. For the IPsec [RFC4301] security protocols, this
 identifier is known as the Security Parameter Index (SPI). It is
 selected by the receiver, only, in order to avoid collisions between
 different connections. This works because IPsec is designed for
 secure unicast communication only. For multicast settings, a manually
 assigned SPI together with manual keying can be used. The same
 principle of deriving a secure connection identifier can be used with
 the ULE security extension, too. Instead of an SPI, the ULE security
 extension provides the VPN-ID field, when the ULEsec_ID security
 extension header type is used.

 One difference between IPsec and ULEsec is that IPsec is an end-to-
 end security protocol. This means that on a single ULE link a ULE
 decapsulator will potentially accept data from many different (IPsec)
 end-to-end connections. In contrast, at the ULE link layer users are
 expected to establish just a single or otherwise so few secure L2
 connections that in many cases receivers can even identify
 connections based on ULE destination NPA addresses and MPEG-2 TS PID
 values alone. Therefore, a size of 16 bits has been chosen for the
 ULEsec VPN-ID field as opposed to 32 bits as used for the SPI of the
 IPsec security protocols. In addition, it is provided for a way to
 omit the VPN-ID field altogether (by selecting the ULEsec extension
 header type).

A.2. VPN-ID + K-Bit vs. SPI

 The way re-keying works in the IPsec protocols is by creating a new
 SA (i.e., secure connection) for the new keys. The new SA will have a
 different SPI value than the old one, selected by the receiver again.
 This model does not work for ULE, however. A receiver that failed to
 receive key update messages will have no way of determining that the
 new data with a different secure connection identifier is to be
 received by him. This is not only an issue for multicast settings
 where scalability is a concern, but also for unidirectional links
 where there is no way for feedback. Instead, ULEsec uses the K Bit to
 signal when re-keying occurred, and keeps the VPN-ID value constant.
 Now a receiver will always know which data to accept, and it would
 have to lose key management messages during two periods of key
 updates for this model to fail.

https://datatracker.ietf.org/doc/html/rfc4301

Noisternig Expires January 14, 2009 [Page 28]

Internet-Draft A lightweight security extension for ULE July 2008

A.3. 31-bit/63-bit Sequence Number

 A 31-bit sequence number has been chosen as a default as it does not
 add too much overhead and is reasonably big for automated re-keying
 to happen infrequently. For example, when SNDUs are continuously sent
 on a link with an effective bit rate as high as 68 Mbit/s [DVB-S],
 protected under the same key, and contain only TCP/IP acknowledgments
 so the SNDU size is just 60 octets (20 octets ULE+ULEsec header, 20
 octets IP header, and 20 octets TCP header), then a key can still be
 used for more than four hours before the 31-bit sequence number space
 will be exhausted.

 For high-speed links, and when manual keying is used, the larger 63-
 bit sequence numbers are to be used. This pairs well with a key size
 of 128 bits for the encryption algorithm, where after 2^63 uses
 security will be about halved and new keys should be set up by then.

 While the Sequence Number field could be optional, too, its placement
 has been made mandatory in order to not unnecessarily complicate
 things, and since it is required virtually always, anyway. It could
 be replaced with a timestamp, though, but this is not defined within
 this specification.

A.4. MAC field

 The MAC field is not a direct part of the security extension header,
 but defined as a trailer. This allows the MAC to be computed in an
 online way. For example, a sender can compute the MAC of an SNDU
 while it is already transmitting it, and when it has sent the last
 bit of the payload it can simply attach the MAC.

 For a similar reason, the CRC, which can be viewed as part of the ULE
 base header, is at the end of the SNDU.

Noisternig Expires January 14, 2009 [Page 29]

Internet-Draft A lightweight security extension for ULE July 2008

APPENDIX B: Rationale for the Default Security Algorithms

B.1. Encryption

 The first question on the data confidentiality service is whether to
 use a block cipher or a stream cipher algorithm. Stream ciphers offer
 the benefit of allowing for very simple and fast implementations. One
 particular stream cipher is the Arcfour (or RC4) algorithm [Arcfour],
 and it can be regarded the de-facto standard among software based
 implementations. However, several weaknesses have been found so far,
 and while there are ways to circumvent some of them, they do not make
 Arcfour a favorable choice [Arcfour-Fix]. Unfortunately, other stream
 ciphers available are either not sufficiently analyzed, or are based
 on linear feedback shift registers, making them suitable for cheap
 hardware implementations but vulnerable to algebraic attacks.

 Among block ciphers, things are looking much better. The Advanced
 Encryption Standard (AES) [AES] has been quickly embraced as a
 secure, fast, and open encryption algorithm since its election within
 a competition held by the American NIST in the year 2000 to replace
 the aging DES. Despite algebraic structures found, AES is still
 considered secure.

 A mode of operation is required for a block cipher to allow it to be
 repeatedly used securely under the same key. NIST has standardized
 several such modes [Modes]. One particular mode is the Cipher Block
 Chaining (CBC) mode. It is well-understood and has good security
 properties. However, it operates on full blocks only, and data must
 therefore be padded to multiples of block lengths in general. In
 addition, the CBC mode requires an explicit (pseudo-)random
 Initialization Vector (IV) of the size of a cipher block for each
 packet. This is clearly wasteful for the ULE scenario, where this
 means additional average overhead of 24 octets per SNDU when used
 with AES.

 The Counter (CTR) mode in contrast effectively turns the block cipher
 into a stream cipher, so there is no need for padding. IVs for this
 mode come as nonces, so a simple counter may be used. A counter can
 not only be encoded in less space than the size of a cipher block, it
 may also serve as a mechanism for replay protection - in which case
 no space will be wasted at all. Some of the other advantages of the
 CTR mode are that only the encryption part of the block cipher
 algorithm is needed, and both encryption and decryption can be
 parallelized.

 Strong care must be taken for the nonces to never be used twice under
 the same key, or all security will be lost. Therefore, within the

Noisternig Expires January 14, 2009 [Page 30]

Internet-Draft A lightweight security extension for ULE July 2008

 construction of the nonce, not only the SNDU's sequence number but
 also the MPEG-2 TS cell's PID value is included. This gives a
 guarantee for nonces to be unique when the encryption key is shared
 across more than one PID. One case is that of multiple senders (i.e.
 ULE encapsulators) using the same keys. It is assumed that there will
 be at most one sender per PID for technical reasons (this does not
 preclude the possibility of adversaries sending on the same PID). A
 similar scenario is where a sender spreads data over multiple PIDs.

 The last question is what key size to use. AES may be used with key
 sizes of 128, 192, or 256 bits. Of these, 128 bits are regarded to be
 sufficiently secure even for the foreseeable future, and any bigger
 size would merely result in increased key management overhead and
 computational effort [Standards].

B.2. Identity protection

 The presented solution for identity protection is simple, yet very
 effective. First, a receiver needs to probe only a very low number of
 keys with an SNDU. This is because in the vast majority of cases
 there is only a single or otherwise very few different keys a
 receiver associates with a PID or pair of PID and VPN-ID field: For
 an incoming ULEsec packet with a VPN-ID field present, the pair of
 PID and VPN-ID will most commonly denote a single VPN with a single
 shared key. Without a VPN-ID, the PID may represent a VPN with a
 single key, or the PID will probably contain several or many unicast
 or multicast connections of which the receiver accepts only a few,
 namely for its own unicast and a few (if any) multicast addresses.
 Each of these connections could utilize identity protection; however,
 this is sensible only for unicast communication. Assuming a device is
 not assigned more than one unicast address, there is only a single
 key left that has to be probed with.

 Second, by encrypting the address an adversary not in the know of a
 matching decryption key will not be able to read the packet's
 destination address. A legitimate receiver, in contrast, will
 correctly decode the address with very high probability. In detail,
 the chance that an SNDU is mistakenly accepted (assuming the
 encryption algorithm behaves as a pseudo-random function under
 different keys) is given approximately by k*10^-14.4, where k is the
 receiver's number of keys that do not match. This is close to typical
 packet-error ratios on the ULE link for small k, as this example
 shows: assuming a quasi-error free channel with a bit-error ratio of
 10^-10 [DVB-S], and - for simplicity assumed - a probability of 2^-32
 for the CRC-32 failing, the chance of receiving an erroneous SNDU
 undetected by the CRC ranges between approximately 10^-15.5 for a

Noisternig Expires January 14, 2009 [Page 31]

Internet-Draft A lightweight security extension for ULE July 2008

 typical 1500-octet (file download) payload and 10^-16.8 for small
 (VoIP) data of 60 octets.

 Note that this method of identity protection requires to be combined
 with the data confidentiality service for two reasons: First, it
 protects only L2 addresses. Second, there is a requirement for the
 data a receiver assumes to be an encrypted destination address to be
 pseudo-random, or at least non-repeating (with high probability),
 otherwise above equations will not hold.

 This solution for identity protection is also superior to other
 suggestions such as the use of temporary destination addresses
 [ULEsec-CPI] for a variety of reasons. First, when creating temporary
 addresses it must somehow be assured that these do not and will not
 collide with real-world addresses, i.e. addresses that are in use or
 might be used in the future. Second, in order to assure these
 addresses to be unique a server must keep every one of them in a
 database. This is clearly a disadvantage for simple settings such as
 VPNs where otherwise only a single key must be stored. Third, such
 addresses compromise additional information that must be distributed
 in a reliable way, which is difficult for unidirectional links and
 does not scale well for multicast scenarios. Last but not least, even
 though these addresses are temporary, they remain constant for a
 period of time and as such may pose just another chance for an
 adversary to link packets with a receiver.

B.3. Authentication

 By adding redundancy in the form of keyed cryptographic checksums to
 packets, legitimate receivers can verify both authenticity and
 integrity of the data. A Message Authentication Code (MAC) is the
 result of a symmetric checksum function, so both senders and
 receivers use the same key for authenticating and verifying.

 MAC algorithms typically build upon cryptographic hash functions
 (message digests), such as MD5 [RFC1321], SHA-1 and the SHA-2 family
 [SHA], and RIPEMD-160 [RIPEMD-160]. The HMAC [RFC2104] is a popular
 construction to turn a hash function into a MAC function. The
 advantage of using hash functions is their simple implementability,
 resulting in certain speed advantages. Despite a number of surprising
 and unexpected collision attacks on hash functions published lately
 [MD5-Attack, SHA-1-Attack], the HMAC construction is secure as long
 as no second pre-image attacks become practical, and the hash
 function's output cannot be distinguished from random data by an
 adversary [Preimages, HMAC2, Standards].

https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc2104

Noisternig Expires January 14, 2009 [Page 32]

Internet-Draft A lightweight security extension for ULE July 2008

 MAC constructions may also use block ciphers as building blocks. The
 main advantage of this approach is that an already existing block
 cipher implementation can be re-used. This makes the CBC-MAC (and its
 variants) still a very popular solution. The security of a CBC-MAC is
 directly dependent on that of the block cipher. Because of the
 birthday phenomenon, the upper limit of security is also determined
 by the block length of the underlying encryption algorithm, which
 degrades quadratically over time [CBCMAC1, CBCMAC2]. Therefore, when
 the same key is used for a long time (e.g., with extended sequence
 numbers for ULEsec), a cipher with a higher block length should be
 chosen, such as [Rijndael] with a block length of 256 bits.

 A plain CBC-MAC is not a generally secure construction. In detail, it
 is only secure for fixed-size or prefix-free messages [CBCMAC1].
 However, ULE SNDUs are automatically prefix-free because of the
 inclusion of the length field in the base header.

 There are some interesting newer constructions based on Carter-Wegman
 universal hashing, such as the UMAC [RFC4418] and the [Poly1305-AES],
 both defined for use with the AES encryption algorithm. While having
 excellent security properties, allowing for parallelization, and
 achieving high throughputs on modern desktop processors, they are not
 suitable for small hardware devices because of performing complex
 operations such as multiplications in large size Galois fields and
 requiring a large amount of memory.

 Two surprisingly simple and parallelizable designs are presented in
 [XOR-MAC] and [PMAC]. When a block cipher is plugged into the pseudo-
 random function required, the complexity is similar to that of the
 CBC-MAC. Security is not affected by the birthday phenomenon,
 however. As both algorithms are covered by patents, they are not
 selected as default authentication algorithms.

B.4. Source Authentication

 MAC algorithms are symmetrical functions, so anyone in the know of
 the right key could have been the author of an authenticated message.
 Consequently, MACs cannot provide source authentication when there is
 more than one legitimate sender, or receivers are able to act as
 senders. In order to guarantee data coming from the source as
 corroborated, some asymmetry must be introduced, either by using
 functions that are hard to invert (digital signatures), or by
 disclosing verification key material only after it has been used for
 authentication (e.g., TESLA [RFC4082]).

 Source authentication does not come for free, however. Digital
 signature algorithms are very computationally demanding, as time

https://datatracker.ietf.org/doc/html/rfc4418
https://datatracker.ietf.org/doc/html/rfc4082

Noisternig Expires January 14, 2009 [Page 33]

Internet-Draft A lightweight security extension for ULE July 2008

 needed for signing and verification is still counted in milliseconds
 even on modern hardware. Additionally, bandwidth consumption is high
 with typical key sizes of 1024 bits and signature sizes of 320 bits
 for a level of security comparable to that of a 80-bit symmetric key
 [Recommendations]. A number of different solutions have been
 developed over time to overcome these shortcomings, most prominently
 TESLA; however, all of them have one or another drawback such as
 increased latency at the sender or receiver side, lack of re-
 synchronization ability in case of packet loss, or even higher
 bandwidth cost.

 Source Authentication for ULEsec may be devised independently of this
 specification, but it likely makes more sense for control messages
 (e.g., key management messages).

B.5. Combined Authentication and Encryption

 While there had always been a lack of consensus in cryptography and
 security communities about the "right" way of combining
 authentication with encryption, it had not been know until recently
 that the only generally secure way of generic composition is Encrypt-
 then-Authenticate (EtA) [Order-AE]. By following that finding within
 this specification, encryption and authentication algorithms can be
 changed and updated independently of each other without compromising
 overall security; for example, the default CBC-MAC for authentication
 could safely be replaced with a MAC using a cryptographic hash
 function, or with an algorithm providing source authentication for
 multi-sender scenarios.

 Another recent development in cryptography are so-called
 Authenticated Encryption (AE) and Authenticated Encryption with
 Associated Data (AEAD) schemes. These can be viewed as modes of
 operation that integrate both authentication and encryption
 functionality. Excitement for these schemes can primarily be
 contributed to the development of encryption modes that provide
 authentication essentially for free (i.e., with negligible
 computational overhead) [IAPM, XCBC, OCB]. Unfortunately, all these
 so-called 1-pass schemes have patents filed on them, which is an
 issue for an open standard. This circumstance initiated the
 development of second-generation unpatented 2-pass schemes, most
 notably CCM [CCM]. Even though these modes provide a secure two-in-
 one solution (one key for both encryption and authentication), they
 have lost their predecessors' main advantage: they are, as their name
 says, 2-pass. As a result, they do not offer any real benefits over
 the more versatile AtE generic composition approach.

Noisternig Expires January 14, 2009 [Page 34]

Internet-Draft A lightweight security extension for ULE July 2008

B.6. Replay Protection

 The key idea in providing replay protection is to guarantee each
 packet to be unique under the same key. This is generally achieved by
 adding a monotonically increasing counter or a timestamp to the
 packet header. The in-order delivery of data on the ULE link then
 allows for easy detection of replays on the receiver side.

 A counter is simple to use, requires minimal connection state on each
 side, and is fully reliable for unicast connections and other one-
 sender scenarios. It cannot be used when a key is shared among
 multiple senders due to the difficulty of synchronizing replay state.

 A timestamp uses synchronized clocks for the replay state. A small
 window of accepted timestamps is required to compensate timing
 discrepancies. This way, timestamps can be used with any number of
 senders. However, this also means that they are not completely
 reliable; consequently, their use is not defined within that
 specification.

Noisternig Expires January 14, 2009 [Page 35]

Internet-Draft A lightweight security extension for ULE July 2008

10. References

10.1. Normative References

 [RFC4326] G. Fairhurst, B. Collini-Nocker, "Unidirectional
 Lightweight Encapsulation (ULE) for Transmission of IP
 Datagrams over an MPEG-2 Transport Stream (TS)", IETF RFC

4326, December 2005.

 [MPEG2] "Information technology - generic coding of moving pictures
 and associated audio information systems, Part I", ISO
 13818-1, International Standards Organization (ISO), 2000.

 [RFC2119] S. Bradner, "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, IETF RFC 2119, March 1997.

 [AES] "Advanced Encryption Standard (AES)", FIPS PUB 197,
 National Institute of Standards and Technology (NIST), Nov.
 2001.

 [Modes] M. Dworkin, "Recommendation for Block Cipher Modes of
 Operation - Methods and Techniques", SP 800-38A, National
 Institute of Standards and Technology (NIST), Dec. 2001.

10.2. Informative References

 [H222] "Information technology, Generic coding of moving pictures
 and associated audio information Systems", H.222.0,
 International Telecommunication Union (ITU-T), 1995.

 [DVB-S] "Digital Video Broadcasting (DVB); Framing structure,
 channel coding and modulation for 11/12 GHz satellite
 systems", ETSI EN 300 421, Aug. 1997.

 [DVB-T] "Digital Video Broadcasting (DVB); Framing structure,
 channel coding and modulation for digital terrestrial
 television", ETSI EN 300 744, June 2006.

 [DVB-H] "Digital Video Broadcasting (DVB); Transmission system for
 handheld terminals (DVB-H)", ETSI EN 302 304, Nov. 2004.

 [ULEsec-Req]H. Cruickshank, P. Pillai, M. Noisternig, S. Iyengar,
 "Security requirements for the Unidirectional Lightweight
 Encapsulation (ULE) protocol", draft-ietf-ipdvb-sec-req-08
 (work in progress), July 2008.

https://datatracker.ietf.org/doc/html/rfc4326
https://datatracker.ietf.org/doc/html/rfc4326
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-ipdvb-sec-req-08

Noisternig Expires January 14, 2009 [Page 36]

Internet-Draft A lightweight security extension for ULE July 2008

 [GSE] "Generic Stream Encapsulation (GSE) Protocol", DVB BlueBook
 A116, May 2007.

 [RFC4301] S. Kent, K. Seo, "Security Architecture for the Internet
 Protocol", IETF RFC 4301, Dec. 2005.

 [RFC4346] T. Dierks, E. Rescorla, "The Transport Layer Security (TLS)
 Protocol Version 1.1", IETF RFC 4346, April 2006.

 [RFC4253] T. Ylonen, C. Lonvick, "The Secure Shell (SSH) Transport
 Layer Protocol", IETF RFC 4253, Jan. 2006.

 [RFC3819] P. Karn, C. Bormann, G. Fairhurst, D. Grossman, R. Ludwig,
 J. Mahdavi, G. Montenegro, J. Touch, L. Wood, "Advice for
 Internet Subnetwork Designers", IETF RFC 3819, July 2004.

 [Rijndael]J. Daemen, V. Rijmen, "The Design of Rijndael: AES - The
 Advanced Encryption Standard", Springer Verlag, March 2002,
 pp. 238.

 [Subset] D. Naor, M. Naor, J. Lotspiech, "Revocation and Tracing
 Schemes for Stateless Receivers", Advances in Cryptology -
 CRYPTO 2001, 21st Annual International Cryptology
 Conference, Proceedings, August 2001, pp. 41-62.

 [DVB-CA] "Digital Video Broadcasting (DVB); Support for Use of
 Scrambling and Conditional Access (CA) within Digital
 Broadcasting Systems", ETSI ETR 289, Jan. 1996.

 [ATSC-CA] "Conditional Access System for Terrestrial Broadcast,
 Revision A, with Amendment No. 1", Doc. A/70A, Advanced
 Television Systems Committee, July 2004 (Sept. 2006 for
 Amendment No. 1).

 [DVB-RCS] "Digital Video Broadcasting (DVB); Interaction Channel for
 Satellite Distribution Systems", ETSI EN 301 790, Sept.
 2005.

 [RFC4306] C. Kaufman, "Internet Key Exchange (IKEv2) Protocol", IETF
RFC 4306, Dec. 2005.

 [RFC4046] M. Baugher, R. Canetti, L. Dondeti, F. Lindholm, "Multicast
 Security (MSEC) Group Key Management Architecture", IETF

RFC 4046, April 2005.

https://datatracker.ietf.org/doc/html/rfc4301
https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc4253
https://datatracker.ietf.org/doc/html/rfc3819
https://datatracker.ietf.org/doc/html/rfc4306
https://datatracker.ietf.org/doc/html/rfc4046

Noisternig Expires January 14, 2009 [Page 37]

Internet-Draft A lightweight security extension for ULE July 2008

 [RFC4535] H. Harney, U. Meth, A. Colegrove, G. Gross, "GSAKMP: Group
 Secure Association Key Management Protocol", IETF RFC 4535,
 June 2006.

 [RFC3547] M. Baugher, B. Weis, T. Hardjono, H. Harney, "The Group
 Domain of Interpretation", IETF RFC 3547, July 2003.

 [RFC3830] J. Arkko, E. Carrara, F. Lindholm, M. Naslund, K. Norrman,
 "MIKEY: Multimedia Internet KEYing", IETF RFC 3830, August
 2004.

 [GKDP] L. Dondetti, J. Xiang, S. Rowles, "GKDP: Group Key
 Distribution Protocol", IETF draft-ietf-msec-gkdp-01
 (expired), March 2006.

 [FMKE] L. Duquerroy, S. Josset, "The Flat Multicast Key Exchange
 protocol", draft-duquer-fmke-01 (expired), Sept. 2004.

 [RFC4082] A. Perrig, D. Song, R. Canetti, J. Tygar, B. Briscoe,
 "Timed Efficient Stream Loss-Tolerant Authentication
 (TESLA): Multicast Source Authentication Transform
 Introduction", IETF RFC 4082, June 2005.

 [RFC4082] A. Perrig, D. Song, R. Canetti, J. D. Tygar, B. Briscoe,
 "Timed Efficient Stream Loss-Tolerant Authentication
 (TESLA): Multicast Source Authentication Transform
 Introduction", IETF RFC 4082, June 2005.

 [Arcfour] B. Schneier, "Applied Cryptography Second Edition:
 protocols algorithms and source in code in C", John Wiley
 and Sons, New York, 1996.

 [Arcfour-Fix] B. Harris, "Improved Arcfour Modes for the Secure
 Shell (SSH) Transport Layer Protocol", IETF RFC 4345, Jan.
 2006.

 [Standards] B. Burr, "NIST Cryptographic Standards Status Report",
 PowerPoint presentation, National Institute of Standards
 and Technology (NIST), April 2006.

 [ULEsec-CPI]H. Cruickshank, P. Pillai, S. Iyengar, "Security
 Extension for Unidirectional Lightweight Encapsulation
 Protocol", draft-cruickshank-ipdvb-sec-03 (work in
 progress), July 2007.

 [RFC1321] R. Rivest, "The MD5 Message-Digest Algorithm", IETF RFC
1321, April 1992.

https://datatracker.ietf.org/doc/html/rfc4535
https://datatracker.ietf.org/doc/html/rfc3547
https://datatracker.ietf.org/doc/html/rfc3830
https://datatracker.ietf.org/doc/html/draft-ietf-msec-gkdp-01
https://datatracker.ietf.org/doc/html/draft-duquer-fmke-01
https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4082
https://datatracker.ietf.org/doc/html/rfc4345
https://datatracker.ietf.org/doc/html/draft-cruickshank-ipdvb-sec-03
https://datatracker.ietf.org/doc/html/rfc1321
https://datatracker.ietf.org/doc/html/rfc1321

Noisternig Expires January 14, 2009 [Page 38]

Internet-Draft A lightweight security extension for ULE July 2008

 [SHA] "The Secure Hash Standard", FIPS 180-2 (+ change notice to
 include SHA-224), National Institute of Standards and
 Technology (NIST), August 2002.

 [RIPEMD-160]H. Dobbertin, A. Bosselaers, B. Preneel, "RIPEMD-160: A
 Strengthened Version of RIPEMD",

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html,
 April 1996.

 [RFC2104] H. Krawczyk, M. Bellare, M. and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", IETF RFC 2104, Feb.
 1997.

 [CBCMAC1] M. Bellare, J. Kilian, P. Rogaway, "The security of the
 cipher block chaining message authentication code", Journal
 of Computer and System Sciences, Vol. 61, No. 3, Dec. 2000,
 pp. 362-399.

 [CBCMAC2] B. Preneel, P. C. van Oorschot, "MDx-MAC and building fast
 MACs from hash functions", Proc. Crypto '95: 15th Annual
 International Cryptology Conference, Santa Barbara, Aug.
 1995.

 [RFC4418] T. Krovetz, "UMAC: Message Authentication Code using
 Universal Hashing", IETF RFC 4418, March 2006.

 [Poly1305-AES] D. Bernstein, "The Poly1305-AES Message-Authentication
 Code", Proceedings of Fast Software Encryption, Lecture
 Notes in Computer Science, Springer-Verlag, 2005.

 [XOR-MAC] M. Bellare, R. Guerin, P. Rogaway, "XOR MACs: New methods
 for message authentication using finite pseudorandom
 functions", Advances in Cryptology - Crypto 95 Proceedings,
 Lecture Notes in Computer Science, Springer-Verlag, 1995.

 [PMAC] J. Black, P. Rogaway, "A Block-Cipher Mode of Operation for
 Parallelizable Message Authentication", Advances in
 Cryptology - EUROCRYPT '02, Lecture Notes in Computer
 Science, Springer-Verlag, 2002.

 [DSS] "Digital Signature Standard (DSS)", FIPS PUB 186-2 (+
 change notice), National Institute of Standards and
 Technology (NIST), Jan. 2000.

http://homes.esat.kuleuven.be/~bosselae/ripemd160.html
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/rfc4418

Noisternig Expires January 14, 2009 [Page 39]

Internet-Draft A lightweight security extension for ULE July 2008

 [Order-AE]H. Krawczyk, "The order of encryption and authentication
 for protecting communications", Proc. Crypto 2001: 21st
 Annual International Cryptology Conference, Santa Barbara,
 Aug. 2001.

 [IAPM] C. Jutla, "Parallelizable Encryption Mode with Almost Free
 Message Integrity", NIST proposed mode.

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_developmen
t.html

 [XCBC] V. Gligor, P. Donescu, "Fast Encryption and Authentication:
 XCBC Encryption and XECB Authentication Modes", NIST
 proposed mode, April 2001.

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_developmen
t.html

 [OCB] P. Rogaway, M. Bellare, J. Black, T. Krovetz, "OCB: A
 Block-Cipher Based Mode of Operation for Efficient
 Authenticated Encryption", NIST proposed mode, August 2001.

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_developmen
t.html

 [CCM] D. Whiting, R. Housley, N. Ferguson, "AES Encryption &
 Authentication using CTR Mode & CBC-MAC", IEEE P802.11
 802.11-02/001r0, Jan. 2002.

 [MD5-Attack]X. Wang, D. Feng, X. Lai, H. Yu, "Collisions for Hash
 Functions MD4, MD5, HAVAL-128 and RIPEMD", Cryptology
 ePrint Archive: Report 2004/199, August 2004.

 [SHA-1-Attack] X. Wang, Y. Yin, H. Yu, "Finding Collisions in the
 Full SHA-1", Advances in Cryptology - Crypto 2005
 Proceedings, Lecture Notes in Computer Science, Springer-
 Verlag, Aug. 2005.

 [Preimages] J. Kelsey, B. Schneier, "Second Preimages on n-bit Hash
 Functions for Much Less than 2^n Work", Cryptology ePrint
 Archive: Report 2004/304, Nov. 2004.

 [HMAC2] M. Bellare, "New Proofs for NMAC and HMAC: Security without
 Collision-Resistance", Advances in Cryptology - Crypto 2006
 Proceedings, Lecture Notes in Computer Science Vol. 4117,
 Springer-Verlag, Sept. 2006.

 [Recommendations] "Recommendation for Key Management - Part 1:
 General (Revised)", SP 800-57, National Institute of
 Standards and Technology (NIST), May 2006.

http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html
http://csrc.nist.gov/groups/ST/toolkit/BCM/modes_development.html

Noisternig Expires January 14, 2009 [Page 40]

Internet-Draft A lightweight security extension for ULE July 2008

Author's Addresses

 Michael Noisternig
 University of Salzburg
 Jakob-Haringer-Str. 2
 5020 Salzburg
 Austria

 Email: mnoist@cosy.sbg.ac.at

 Bernhard Collini-Nocker
 University of Salzburg
 Jakob-Haringer-Str. 2
 5020 Salzburg
 Austria

 Email: bnocker@cosy.sbg.ac.at

Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Noisternig Expires January 14, 2009 [Page 41]

Internet-Draft A lightweight security extension for ULE July 2008

Disclaimer of Validity

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

Acknowledgment

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

Noisternig Expires January 14, 2009 [Page 42]

https://datatracker.ietf.org/doc/html/bcp78

