
JSONPath WG G. Normington, Ed.
Internet-Draft VMware, Inc.
Intended status: Standards Track E. Surov, Ed.
Expires: 10 June 2021 TheSoul Publishing Ltd.
 M. Mikulicic
 VMware, Inc.
 S. Gössner
 Fachhochschule Dortmund
 7 December 2020

JavaScript Object Notation (JSON) Path
draft-normington-jsonpath-00

Abstract

 JSONPath defines a string syntax for identifying values within a
 JavaScript Object Notation (JSON) document.

Note

 *This document is a work in progress and has not yet been published
 as an Internet Draft* (which needs to be fixed soon).

Contributing

 This document picks up the popular JSONPath specification dated
 2007-02-21 and provides a normative definition for it. In its
 current state, it is a strawman document showing what needs to be
 covered.

 Comments and issues can be directed at the github repository _insert
 repo here_ as well as (for the time when the more permanent home is
 being decided) at the dispatch@ietf.org mailing list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Normington, et al. Expires 10 June 2021 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft JSONPath December 2020

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 June 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/

license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Terminology . 3
1.2. Inspired by XPath . 4
1.3. Overview of JSONPath Expressions 5

2. JSONPath Examples . 7
3. JSONPath Syntax and Semantics 10
3.1. Overview . 10
3.2. Terminology . 10
3.3. Implementation . 10
3.4. Syntax . 11
3.5. Semantics . 11
3.6. Selectors . 12
3.6.1. Dot Child Selector 12
3.6.2. Union Selector 13
3.6.2.1. Syntax . 13
3.6.2.2. Semantics . 13
3.6.2.3. Child . 13
3.6.2.4. Array Selector 15

4. IANA Considerations . 19
5. Security Considerations 19
6. References . 19
6.1. Normative References 19
6.2. Informative References 19

 Acknowledgements . 20
 Contributors . 20

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info
https://trustee.ietf.org/license-info

Normington, et al. Expires 10 June 2021 [Page 2]

Internet-Draft JSONPath December 2020

 Authors' Addresses . 21

1. Introduction

 This document picks up the popular JSONPath specification dated
 2007-02-21 [JSONPath-orig] and provides a normative definition for
 it. In its current state, it is a strawman document showing what
 needs to be covered.

 JSON is defined by [RFC8259].

 JSONPath is not intended as a replacement, but as a more powerful
 companion, to JSON Pointer [RFC6901]. [insert reference to section
 where the relationship is detailed. The purposes of the two syntaxes
 are different. Pointer is for isolating a single location within a
 document. Path is a query syntax that can also be used to pull
 multiple locations.]

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 The grammatical rules in this document are to be interpreted as ABNF,
 as described in [RFC5234]. ABNF terminal values in this document
 define Unicode code points rather than their UTF-8 encoding. For
 example, the Unicode PLACE OF INTEREST SIGN (U+2318) would be defined
 in ABNF as "%x2318".

 The terminology of [RFC8259] applies.

 Data Item: A structure complying to the generic data model of JSON,
 i.e., composed of containers such as arrays and maps (JSON
 objects), and of atomic data such as null, true, false, numbers,
 and text strings.

 Object: Used in its generic sense, e.g., for programming language
 objects. When a JSON Object as defined in [RFC8259] is meant, we
 specifically say JSON Object.

 Query: Short name for JSONPath expression.

 Argument: Short name for the JSON data item a JSONPath expression is
 applied to.

https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc8259
https://datatracker.ietf.org/doc/html/rfc8259

Normington, et al. Expires 10 June 2021 [Page 3]

Internet-Draft JSONPath December 2020

 Output Path: A simple form of JSONPath expression that identifies a
 Position by providing a query that results in exactly that
 position. Similar to, but syntactically different from, a JSON
 Pointer [RFC6901].

 Position: A JSON data item identical to or nested within the JSON
 data item to which the query is applied to, expressed either by
 the value of that data item or by providing a JSONPath Output
 Path.

1.2. Inspired by XPath

 A frequently emphasized advantage of XML is the availability of
 powerful tools to analyse, transform and selectively extract data
 from XML documents. [XPath] is one of these tools.

 In 2007, the need for something solving the same class of problems
 for the emerging JSON community became apparent, specifically for:

 * Finding data interactively and extracting them out of [RFC8259]
 data items without special scripting.

 * Specifying the relevant parts of the JSON data in a request by a
 client, so the server can reduce the amount of data in its
 response, minimizing bandwidth usage.

 So what does such a tool look like for JSON? When defining a
 JSONPath, how should expressions look?

 The XPath expression

 /store/book[1]/title

 looks like

 x.store.book[0].title

 or

 x['store']['book'][0]['title']

 in popular programming languages such as JavaScript, Python and PHP,
 with a variable x holding the JSON data item. Here we observe that
 such languages already have a fundamentally XPath-like feature built
 in.

 The JSONPath tool in question should:

https://datatracker.ietf.org/doc/html/rfc6901
https://datatracker.ietf.org/doc/html/rfc8259

Normington, et al. Expires 10 June 2021 [Page 4]

Internet-Draft JSONPath December 2020

 * be naturally based on those language characteristics.

 * cover only essential parts of XPath 1.0.

 * be lightweight in code size and memory consumption.

 * be runtime efficient.

1.3. Overview of JSONPath Expressions

 JSONPath expressions always apply to a JSON data item in the same way
 as XPath expressions are used in combination with an XML document.
 Since a JSON data item is usually anonymous and doesn't necessarily
 have a "root member object", JSONPath used the abstract name "$" to
 refer to the top level object of the data item.

 JSONPath expressions can use the _dot-notation_

 $.store.book[0].title

 or the _bracket-notation_

 $['store']['book'][0]['title']

 for paths input to a JSONPath processor. [1] Where a JSONPath
 processor uses JSONPath expressions as output paths, these will
 always be converted to the more general _bracket-notation_. [2]
 Bracket notation is more general than dot notation and can serve as a
 canonical form when a JSONPath processor uses JSONPath expressions as
 output paths.

 JSONPath allows the wildcard symbol "*" for member names and array
 indices. It borrows the descendant operator ".." from [E4X] and the
 array slice syntax proposal "[start:end:step]" [SLICE] from
 ECMASCRIPT 4.

 JSONPath was originally designed to employ an _underlying scripting
 language_ for computing expressions. The present specification
 defines a simple expression language that is independent from any
 scripting language in use on the platform.

 JSONPath can use expressions, written in parentheses: "(<expr>)", as
 an alternative to explicit names or indices as in:

 $.store.book[(@.length-1)].title

 The symbol "@" is used for the current object. Filter expressions
 are supported via the syntax "?(<boolean expr>)" as in

Normington, et al. Expires 10 June 2021 [Page 5]

Internet-Draft JSONPath December 2020

 $.store.book[?(@.price < 10)].title

 Here is a complete overview and a side by side comparison of the
 JSONPath syntax elements with their XPath counterparts.

 +=======+==================+=====================================+
 | XPath | JSONPath | Description |
 +=======+==================+=====================================+
 | / | $ | the root object/element |
 +-------+------------------+-------------------------------------+
 | . | @ | the current object/element |
 +-------+------------------+-------------------------------------+
 | / | "." or "[]" | child operator |
 +-------+------------------+-------------------------------------+
 | .. | n/a | parent operator |
 +-------+------------------+-------------------------------------+
 | // | .. | nested descendants (JSONPath |
 | | | borrows this syntax from E4X) |
 +-------+------------------+-------------------------------------+
 | * | * | wildcard: All objects/elements |
 | | | regardless of their names |
 +-------+------------------+-------------------------------------+
 | @ | n/a | attribute access: JSON data items |
 | | | do not have attributes |
 +-------+------------------+-------------------------------------+
 | [] | [] | subscript operator: XPath uses it |
 | | | to iterate over element collections |
 | | | and for predicates; native array |
 | | | indexing as in JavaScript here |
 +-------+------------------+-------------------------------------+
 | | | [,] | Union operator in XPath (results in |
 | | | a combination of node sets); |
 | | | JSONPath allows alternate names or |
 | | | array indices as a set |
 +-------+------------------+-------------------------------------+
 | n/a | [start:end:step] | array slice operator borrowed from |
 | | | ES4 |
 +-------+------------------+-------------------------------------+
 | [] | ?() | applies a filter (script) |
 | | | expression |
 +-------+------------------+-------------------------------------+
 | n/a | () | expression engine |
 +-------+------------------+-------------------------------------+
 | () | n/a | grouping in Xpath |
 +-------+------------------+-------------------------------------+

 Table 1: Overview over JSONPath, comparing to XPath

Normington, et al. Expires 10 June 2021 [Page 6]

Internet-Draft JSONPath December 2020

 XPath has a lot more to offer (location paths in unabbreviated
 syntax, operators and functions) than listed here. Moreover there is
 a significant difference how the subscript operator works in Xpath
 and JSONPath:

 * Square brackets in XPath expressions always operate on the _node
 set_ resulting from the previous path fragment. Indices always
 start at 1.

 * With JSONPath, square brackets operate on the _object_ or _array_
 addressed by the previous path fragment. Array indices always
 start at 0.

2. JSONPath Examples

 This section provides some more examples for JSONPath expressions.
 The examples are based on a simple JSON data item patterned after a
 typical XML example representing a bookstore (that also has
 bicycles):

Normington, et al. Expires 10 June 2021 [Page 7]

Internet-Draft JSONPath December 2020

 { "store": {
 "book": [
 { "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 { "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 { "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 { "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",
 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
 }
 }

 Figure 1: Example JSON data item

 The examples in Table 2 use the expression mechanism to obtain the
 number of items in an array, to test for the presence of a map
 member, and to perform numeric comparisons of map member values with
 a constant.

Normington, et al. Expires 10 June 2021 [Page 8]

Internet-Draft JSONPath December 2020

 +======================+=========================+==================+
 | XPath | JSONPath | Result |
 +======================+=========================+==================+
/store/book/author	$.store.book[*].author	the authors of
		all books in
		the store
+----------------------+-------------------------+------------------+		
//author	$..author	all authors
+----------------------+-------------------------+------------------+		
/store/*	$.store.*	all things in
		store, which
		are some books
		and a red
		bicycle
+----------------------+-------------------------+------------------+		
/store//price	$.store..price	the prices of
		everything in
		the store
+----------------------+-------------------------+------------------+		
//book[3]	$..book[2]	the third book
+----------------------+-------------------------+------------------+		
//book[last()]	"$..book[(@.length-1)]"	the last book
	"$..book[-1]"	in order
+----------------------+-------------------------+------------------+		
//book[position()<3]	"$..book[0,1]"	the first two
	"$..book[:2]"	books
+----------------------+-------------------------+------------------+		
//book[isbn]	$..book[?(@.isbn)]	filter all
		books with
		isbn number
+----------------------+-------------------------+------------------+		
//book[price<10]	$..book[?(@.price<10)]	filter all
		books cheaper
		than 10
+----------------------+-------------------------+------------------+		
//*	$..*	all elements
		in XML
		document; all
		members of
		JSON data item
 +----------------------+-------------------------+------------------+

 Table 2: Example JSONPath expressions applied to the example JSON
 data item

Normington, et al. Expires 10 June 2021 [Page 9]

Internet-Draft JSONPath December 2020

3. JSONPath Syntax and Semantics

3.1. Overview

 A JSONPath is a string which selects zero or more nodes of a piece of
 JSON. A valid JSONPath conforms to the ABNF syntax defined by this
 document.

 A JSONPath MUST be encoded using UTF-8. To parse a JSONPath
 according to the grammar in this document, its UTF-8 form SHOULD
 first be decoded into Unicode code points as described in [RFC3629].

3.2. Terminology

 A JSON value is logically a tree of nodes.

 Each node holds a JSON value (as defined by [RFC8259]) of one of the
 types object, array, number, string, or one of the literals "true",
 "false", or "null". The type of the JSON value held by a node is
 sometimes referred to as the type of the node.

3.3. Implementation

 An implementation of this specification, from now on referred to
 simply as "an implementation", SHOULD takes two inputs, a JSONPath
 and a JSON value, and produce a possibly empty list of nodes of the
 JSON value which are selected by the JSONPath or an error (but not
 both).

 If no node is selected and no error has occurred, an implementation
 MUST return an empty list of nodes.

 Syntax errors in the JSONPath SHOULD be detected before selection is
 attempted since these errors do not depend on the JSON value.
 Therefore, an implementation SHOULD take a JSONPath and produce an
 optional syntax error and then, if and only if an error was not
 produced, SHOULD take a JSON value and produce a list of nodes or an
 error (but not both).

 Alternatively, an implementation MAY take a JSONPath and a JSON value
 and produce a list of nodes or an optional error (but not both).

 For any implementation, if a syntactically invalid JSONPath is
 provided, the implementation MUST return an error.

 If a syntactially invalid JSON value is provided, any implementation
 SHOULD return an error.

https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc8259

Normington, et al. Expires 10 June 2021 [Page 10]

Internet-Draft JSONPath December 2020

3.4. Syntax

 Syntactically, a JSONPath consists of a root selector ("$"), which
 selects the root node of a JSON value, followed by a possibly empty
 sequence of _selectors_.

 json-path = root-selector *selector
 root-selector = %x24 ; $ selects document root node

 The syntax and semantics of each selector is defined below.

3.5. Semantics

 The root selector "$" not only selects the root node of the input
 document, but it also produces as output a list consisting of one
 node: the input document.

 A selector may select zero or more nodes for further processing. A
 syntactically valid selector MUST NOT produce errors. This means
 that some operations which might be considered erroneous, such as
 indexing beyond the end of an array, simply result in fewer nodes
 being selected.

 But a selector doesn't just act on a single node: each selector acts
 on a list of nodes and produces a list of nodes, as follows.

 After the root selector, the remainder of the JSONPath is processed
 by passing lists of nodes from one selector to the next ending up
 with a list of nodes which is the result of applying the JSONPath to
 the input JSON value.

 Each selector acts on its input list of nodes as follows. For each
 node in the list, the selector selects zero or more nodes, each of
 which is a descendant of the node or the node itself. The output
 list of nodes of a selector is the concatenation of the lists of
 selected nodes for each input node.

 A specific, non-normative example will make this clearer. Suppose
 the input document is: "{"a":[{"b":0},{"b":1},{"c":2}]}". As we will
 see later, the JSONPath "$.a[*].b" selects the following list of
 nodes: "0", "1". Let's walk through this in detail.

 The JSONPath consists of "$" followed by three selectors: ".a",
 "[*]", and ".b".

 Firstly, "$" selects the root node which is the input document. So
 the result is a list consisting of just the root node.

Normington, et al. Expires 10 June 2021 [Page 11]

Internet-Draft JSONPath December 2020

 Next, ".a" selects from any input node of type object and selects any
 value of the input node corresponding to the key ""a"". The result
 is again a list of one node: "[{"b":0},{"b":1},{"c":2}]".

 Next, "[*]" selects from any input node which is an array and selects
 all the elements of the input node. The result is a list of three
 nodes: "{"b":0}", "{"b":1}", and "{"c":2}".

 Finally, ".b" selects from any input node of type object with a key
 "b" and selects the value of the input node corresponding to that
 key. The result is a list containing "0", "1". This is the
 concatenation of three lists, two of length one containing "0", "1",
 respectively, and one of length zero.

 As a consequence of this approach, if any of the selectors selects no
 nodes, then the whole JSONPath selects no nodes.

 In what follows, the semantics of each selector are defined for each
 type of node.

3.6. Selectors

3.6.1. Dot Child Selector

Syntax

 A dot child selector has a key known as a dot child name or a single
 asterisk ("*").

 A dot child name corresponds to a name in a JSON object.

 selector = dot-child ; see below for alternatives
 dot-child = %x2E dot-child-name / ; .<dot-child-name>
 %x2E %x2A ; .*
 dot-child-name = 1*(
 %x2D / ; -
 DIGIT /
 ALPHA /
 %x5F / ; _
 %x80-10FFFF ; any non-ASCII Unicode character
)
 DIGIT = %x30-39 ; 0-9
 ALPHA = %x41-5A / %x61-7A ; A-Z / a-z

 More general child names, such as the empty string, are supported by
 "Union Child" (Section 3.6.2.3).

Normington, et al. Expires 10 June 2021 [Page 12]

Internet-Draft JSONPath December 2020

 Note that the "dot-child-name" rule follows the philosophy of JSON
 strings and is allowed to contain bit sequences that cannot encode
 Unicode characters (a single unpaired UTF-16 surrogate, for example).
 The behaviour of an implementation is undefined for child names which
 do not encode Unicode characters.

Semantics

 A dot child name which is not a single asterisk ("*") is considered
 to have a key. It selects the value corresponding to the key from
 any object node. It selects no nodes from a node which is not an
 object.

 The key of a dot child name is the sequence of Unicode characters
 contained in that name.

 A dot child name consisting of a single asterisk is a wild card. It
 selects all the values of any object node. It also selects all the
 elements of any array node. It selects no nodes from number, string,
 or literal nodes.

3.6.2. Union Selector

3.6.2.1. Syntax

 A union selector consists of one or more union elements.

 selector =/ union
 union = %x5B ws union-elements ws %x5D ; [...]
 ws = *%x20 ; zero or more spaces
 union-elements = union-element /
 union-element ws %x2C ws union-elements
 ; ,-separated list

3.6.2.2. Semantics

 A union selects any node which is selected by at least one of the
 union selectors and selects the concatenation of the lists (in the
 order of the selectors) of nodes selected by the union elements.

3.6.2.3. Child

Syntax

 A child is a quoted string.

Normington, et al. Expires 10 June 2021 [Page 13]

Internet-Draft JSONPath December 2020

 union-element = child ; see below for more alternatives
 child = %x22 *double-quoted %x22 / ; "string"
 %x27 *single-quoted %x27 ; 'string'

 double-quoted = dq-unescaped /
 escape (
 %x22 / ; " quotation mark U+0022
 %x2F / ; / solidus U+002F
 %x5C / ; \ reverse solidus U+005C
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX

 dq-unescaped = %x20-21 / %x23-5B / %x5D-10FFFF

 single-quoted = sq-unescaped /
 escape (
 %x27 / ; ' apostrophe U+0027
 %x2F / ; / solidus U+002F
 %x5C / ; \ reverse solidus U+005C
 %x62 / ; b backspace U+0008
 %x66 / ; f form feed U+000C
 %x6E / ; n line feed U+000A
 %x72 / ; r carriage return U+000D
 %x74 / ; t tab U+0009
 %x75 4HEXDIG) ; uXXXX U+XXXX

 sq-unescaped = %x20-26 / %x28-5B / %x5D-10FFFF

 escape = %x5C ; \

 HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"
 ; case insensitive hex digit

 Notes: 1. double-quoted strings follow JSON in [RFC8259]. Single-
 quoted strings follow an analogous pattern. 2. "HEXDIG" includes A-F
 and a-f.

Semantics

 If the child is a quoted string, the string MUST be converted to a
 key by removing the surrounding quotes and replacing each escape
 sequence with its equivalent Unicode character, as in the table
 below:

https://datatracker.ietf.org/doc/html/rfc8259

Normington, et al. Expires 10 June 2021 [Page 14]

Internet-Draft JSONPath December 2020

 +=================+===================+
 | Escape Sequence | Unicode Character |
 +=================+===================+
 | %x5C %x22 | U+0022 |
 +-----------------+-------------------+
 | %x5C %x27 | U+0027 |
 +-----------------+-------------------+
 | %x5C %x2F | U+002F |
 +-----------------+-------------------+
 | %x5C %x5C | U+005C |
 +-----------------+-------------------+
 | %x5C %x62 | U+0008 |
 +-----------------+-------------------+
 | %x5C %x66 | U+000C |
 +-----------------+-------------------+
 | %x5C %x6E | U+000A |
 +-----------------+-------------------+
 | %x5C %x72 | U+000D |
 +-----------------+-------------------+
 | %x5C %x74 | U+0009 |
 +-----------------+-------------------+
 | %x5C uXXXX | U+XXXX |
 +-----------------+-------------------+

 Table 3: Escape Sequence Replacements

 The child selects the value corresponding to the key from any object
 node with the key as a name. It selects no nodes from a node which
 is not an object.

3.6.2.4. Array Selector

Syntax

 An array selector selects zero or more elements of an array node. An
 array selector takes the form of an index, which selects at most one
 element, or a slice, which selects zero or more elements.

 union-element =/ array-index / array-slice

 An array index is an integer (in base 10).

 array-index = integer

 integer = ["-"] ("0" / (DIGIT1 *DIGIT))
 ; optional - followed by 0 or
 ; sequence of digits with no leading zero
 DIGIT1 = %x31-39 ; non-zero digit

Normington, et al. Expires 10 June 2021 [Page 15]

Internet-Draft JSONPath December 2020

 Note: the syntax does not allow integers with leading zeros such as
 "01" and "-01".

 An array slice consists of three optional integers (in base 10)
 separated by colons.

 array-slice = [start] ws ":" ws [end]
 [ws ":" ws [step]]
 start = integer
 end = integer
 step = integer

 Note: the array slices ":" and "::" are both syntactically valid, as
 are ":2:2", "2::2", and "2:4:".

Semantics

Informal Introduction

 This section is non-normative.

 Array indexing is a way of selecting a particular element of an array
 using a 0-based index. For example, the expression "[0]" selects the
 first element of a non-empty array.

 Negative indices index from the end of an array. For example, the
 expression "[-2]" selects the last but one element of an array with
 at least two elements.

 Array slicing is inspired by the behaviour of the
 "Array.prototype.slice" method of the JavaScript language as defined
 by the ECMA-262 standard [ECMA-262], with the addition of the "step"
 parameter, which is inspired by the Python slice expression.

 The array slice expression "[start:end:step]" selects elements at
 indices starting at "start", incrementing by "step", and ending with
 "end" (which is itself excluded). So, for example, the expression
 "[1:3]" (where "step" defaults to "1") selects elements with indices
 "1" and "2" (in that order) whereas "[1:5:2]" selects elements with
 indices "1" and "3".

 When "step" is negative, elements are selected in reverse order.
 Thus, for example, "[5:1:-2]" selects elements with indices "5" and
 "3", in that order and "[::-1]" selects all the elements of an array
 in reverse order.

Normington, et al. Expires 10 June 2021 [Page 16]

Internet-Draft JSONPath December 2020

 When "step" is "0", no elements are selected. This is the one case
 which differs from the behaviour of Python, which raises an error in
 this case.

 The following section specifies the behaviour fully, without
 depending on JavaScript or Python behaviour.

Detailed Semantics

 An array selector is either an array slice or an array index, which
 is defined in terms of an array slice.

 A slice expression selects a subset of the elements of the input
 array, in the same order as the array or the reverse order, depending
 on the sign of the "step" parameter. It selects no nodes from a node
 which is not an array.

 A slice is defined by the two slice parameters, "start" and "end",
 and an iteration delta, "step". Each of these parameters is
 optional. "len" is the length of the input array.

 The default value for "step" is "1". The default values for "start"
 and "end" depend on the sign of "step", as follows:

 +===========+=========+==========+
 | Condition | start | end |
 +===========+=========+==========+
 | step >= 0 | 0 | len |
 +-----------+---------+----------+
 | step < 0 | len - 1 | -len - 1 |
 +-----------+---------+----------+

 Table 4: Default array slice
 start and end values

 Slice expression parameters "start" and "end" are not directly usable
 as slice bounds and must first be normalized. Normalization is
 defined as:

 FUNCTION Normalize(i):
 IF i >= 0 THEN
 RETURN i
 ELSE
 RETURN len + i
 END IF

 The result of the array indexing expression "[i]" is defined to be
 the result of the array slicing expression "[i:Normalize(i)+1:1]".

Normington, et al. Expires 10 June 2021 [Page 17]

Internet-Draft JSONPath December 2020

 Slice expression parameters "start" and "end" are used to derive
 slice bounds "lower" and "upper". The direction of the iteration,
 defined by the sign of "step", determines which of the parameters is
 the lower bound and which is the upper bound:

 FUNCTION Bounds(start, end, step, len):
 n_start = Normalize(start)
 n_end = Normalize(end)

 IF step >= 0 THEN
 lower = MIN(MAX(n_start, 0), len)
 upper = MIN(MAX(n_end, 0), len)
 ELSE
 upper = MIN(MAX(n_start, -1), len-1)
 lower = MIN(MAX(n_end, -1), len-1)
 END IF

 RETURN (lower, upper)

 The slice expression selects elements with indices between the lower
 and upper bounds. In the following pseudocode, the "a(i)" construct
 expresses the 0-based indexing operation on the underlying array.

 IF step > 0 THEN

 i = lower
 WHILE i < upper:
 SELECT a(i)
 i = i + step
 END WHILE

 ELSE if step < 0 THEN

 i = upper
 WHILE lower < i:
 SELECT a(i)
 i = i + step
 END WHILE

 END IF

 When "step = 0", no elements are selected and the result array is
 empty.

Normington, et al. Expires 10 June 2021 [Page 18]

Internet-Draft JSONPath December 2020

 An implementation MUST raise an error if any of the slice expression
 parameters does not fit in the implementation's representation of an
 integer. If a successfully parsed slice expression is evaluated
 against an array whose size doesn't fit in the implementation's
 representation of an integer, the implementation MUST raise an error.

4. IANA Considerations

 TBD: Define a media type for JSON Path expressions.

5. Security Considerations

 This section gives security considerations, as required by [RFC3552].

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/info/rfc3629>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/info/rfc5234>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data
 Interchange Format", STD 90, RFC 8259,
 DOI 10.17487/RFC8259, December 2017,
 <https://www.rfc-editor.org/info/rfc8259>.

6.2. Informative References

 [E4X] ISO, "Information technology — ECMAScript for XML (E4X)
 specification", ISO/IEC 22537:2006 , 2006.

https://datatracker.ietf.org/doc/html/rfc3552
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc3629
https://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8259
https://www.rfc-editor.org/info/rfc8259

Normington, et al. Expires 10 June 2021 [Page 19]

Internet-Draft JSONPath December 2020

 [ECMA-262] Ecma International, "ECMAScript Language Specification,
 Standard ECMA-262, Third Edition", December 1999,
 <http://www.ecma-international.org/publications/files/
 ECMA-ST-ARCH/ECMA-
 262,%203rd%20edition,%20December%201999.pdf>.

 [JSONPath-orig]
 Gössner, S., "JSONPath – XPath for JSON", 21 February
 2007, <https://goessner.net/articles/JsonPath/>.

 [RFC3552] Rescorla, E. and B. Korver, "Guidelines for Writing RFC
 Text on Security Considerations", BCP 72, RFC 3552,
 DOI 10.17487/RFC3552, July 2003,
 <https://www.rfc-editor.org/info/rfc3552>.

 [RFC6901] Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed.,
 "JavaScript Object Notation (JSON) Pointer", RFC 6901,
 DOI 10.17487/RFC6901, April 2013,
 <https://www.rfc-editor.org/info/rfc6901>.

 [SLICE] "Slice notation", n.d.,
 <https://github.com/tc39/proposal-slice-notation>.

 [XPath] Berglund, A., Boag, S., Chamberlin, D., Fernandez, M.,
 Kay, M., Robie, J., and J. Simeon, "XML Path Language
 (XPath) 2.0 (Second Edition)", World Wide Web Consortium
 Recommendation REC-xpath20-20101214, 14 December 2010,
 <https://www.w3.org/TR/2010/REC-xpath20-20101214>.

Acknowledgements

 This specification is based on Stefan Gössner's original online
 article defining JSONPath [JSONPath-orig].

 The books example was taken from http://coli.lili.uni-
bielefeld.de/~andreas/Seminare/sommer02/books.xml -- a dead link now.

Contributors

 Carsten Bormann
 Universität Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

http://www.ecma-international.org/publications/files/
https://goessner.net/articles/JsonPath/
https://datatracker.ietf.org/doc/html/bcp72
https://datatracker.ietf.org/doc/html/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://datatracker.ietf.org/doc/html/rfc6901
https://www.rfc-editor.org/info/rfc6901
https://github.com/tc39/proposal-slice-notation
https://www.w3.org/TR/2010/REC-xpath20-20101214
http://coli.lili.uni-bielefeld.de/~andreas/Seminare/sommer02/books.xml
http://coli.lili.uni-bielefeld.de/~andreas/Seminare/sommer02/books.xml

Normington, et al. Expires 10 June 2021 [Page 20]

Internet-Draft JSONPath December 2020

Authors' Addresses

 Glyn Normington (editor)
 VMware, Inc.
 Winchester
 United Kingdom

 Email: glyn.normington@gmail.com

 Edward Surov (editor)
 TheSoul Publishing Ltd.
 Limassol
 Cyprus

 Email: esurov.tsp@gmail.com

 Marko Mikulicic
 VMware, Inc.
 Pisa
 Italy

 Email: mmikulicic@gmail.com

 Stefan Gössner
 Fachhochschule Dortmund
 Sonnenstraße 96
 D-44139 Dortmund
 Germany

 Email: stefan.goessner@fh-dortmund.de

Normington, et al. Expires 10 June 2021 [Page 21]

