Network Working Group M. Nottingham
Internet-Draft Fastly
Intended status: Standards Track November 1, 2019
Expires: May 4, 2020

Binary Structured HTTP Headers
draft-nottingham-binary-structured-headers-00
Abstract

This specification defines a binary serialisation of Structured
Headers for HTTP, along with a negotiation mechanism for its use in
HTTP/2. It also defines how to use Structured Headers for many
existing headers - thereby "backporting" them - when supported by two
peers.

Note to Readers
RFC EDITOR: please remove this section before publication

The issues list for this draft can be found at
https://github.com/mnot/I-D/labels/binary-structured-headers [1].

The most recent (often, unpublished) draft is at
https://mnot.github.io/I-D/binary-structured-headers/ [2].

Recent changes are listed at https://github.com/mnot/I-D/commits/gh-
pages/binary-structured-headers [3].

See also the draft's current status in the IETF datatracker, at
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-
headers/ [4].

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."

Nottingham Expires May 4, 2020 [Page 1]

https://github.com/mnot/I-D/labels/binary-structured-headers
https://mnot.github.io/I-D/binary-structured-headers/
https://github.com/mnot/I-D/commits/gh-pages/binary-structured-headers
https://github.com/mnot/I-D/commits/gh-pages/binary-structured-headers
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/

Internet-Draft Binary Structured HTTP Headers November 2019

This Internet-Draft will expire on May 4, 2020.
Copyright Notice

Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.

Table of Contents

(=

Introduction .
1.1. Notational Conventlons
Binary Structured Headers .
2.1. The Binary Literal Representation
Lists
Dictionaries
Items .
String Literals
Binary Structured Types
.2.1. Inner Lists
2.2.2. Parameters .
2.2.3. 1Item Payload Types
Using Binary Structured Headers in HTTP/2
1. Binary Structured Headers Setting
3.2. The BINHEADERS Frame . .
Using Binary Structured Headers w1th Ex1st1ng Flelds
1. Directly Represented Fields
Aliased Fields
.1. URLs
Dates
ETags
Links
.5. Cookies
IANA Considerations
Security Considerations
References e
7.1. Normative References
7.2. URIs

Author's Address

IN

NN ININININ
(IR [T /I
&w Nk

[(o8}
‘.b' w‘.w'
oE

‘-b
BN
N

EE S E
NN N
oW IN

N
N

LlhRRRRREEGERKKERG
OClOoINNNNNOoOODOmOmENNIERR N0 oo &S D jww|w

\\l o o1

https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Nottingham Expires May 4, 2020 [Page 2]

Internet-Draft Binary Structured HTTP Headers November 2019

1.

N

Introduction

HTTP messages often pass through several systems - clients,
intermediaries, servers, and subsystems of each - that parse and
process their header and trailer fields. This repeated parsing (and
often re-serialisation) adds latency and consumes CPU, energy, and
other resources.

Structured Headers for HTTP [I-D.ietf-httpbis-header-structure]
offers a set of data types that new headers can combine to express
their semantics. This specification defines a binary serialisation
of those structures in Section 2, and specifies its use in HTTP/2 -
specifically, as part of HPACK Literal Header Field Representations
([REC7541]) - in Section 3.

Section 4 defines how to use Structured Headers for many existing
headers when supported by two peers.

The primary goal of this specification are to reduce parsing overhead
and associated costs, as compared to the textual representation of
Structured Headers. A secondary goal is a more compact wire format
in common situations. An additional goal is to enable future work on
more granular header compression mechanisms.

Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [REC2119] [REC8174] when, and only when, they appear in all
capitals, as shown here.

Binary Structured Headers

This section defines a binary serialisation for the Structured Header
Types defined in [I-D.ietf-httpbis-header-structure].

The types permissable as the top-level of Structured Header field
values - Dictionary, List, and Item - are defined in terms of a
Binary Literal Representation (Section 2.1), which is a replacement
for the String Literal Representation in [RFC7541].

Binary representations of the remaining types are defined in
Section 2.2.

https://datatracker.ietf.org/doc/html/rfc7541
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc7541

Nottingham Expires May 4, 2020 [Page 3]

Internet-Draft Binary Structured HTTP Headers November 2019

2.1. The Binary Literal Representation

The Binary Literal Representation is a replacement for the String
Literal Representation defined in [RFC7541], Section 5.2, for use in
BINHEADERS frames (Section 3.2).

(0] 1 2 3 4 5 6 7
B s P T S

| Type (4) | PLength (4+) |
T +
| Payload Data (Length octets) |
e e e e e e e e mmmm - +

A binary literal representation contains the following fields:
o Type: Four bits indicating the type of the payload.

0 PLength: The number of octets used to represent the payload,
encoded as per [REC7541], Section 5.1, with a 4-bit prefix.

o Payload Data: The payload, as per below.
The following payload types are defined:
2.1.1. Lists

List values (type=0x1) have a payload consisting of a stream of
Binary Structured Types representing the members of the list.
Members that are Items are represented as per Section 2.2.3; members
that are inner-lists are represented as per Section 2.2.1.

If any member cannot be represented, the entire field value MUST be
serialised as a String Literal (Section 2.1.4).

2.1.2. Dictionaries

Dictionary values (type=0x2) have a payload consisting of a stream of
members.

Each member is represented by a key length, followed by that many
bytes of the member-name, followed by Binary Structured Types
representing the member-value.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Nottingham Expires May 4, 2020 [Page 4]

Internet-Draft Binary Structured HTTP Headers November 2019

0] 1 2 3 4 5 6 7 0] 1 2 3 4 5 6 7
T LT g R

| KL (8+) | member-name (KL octets)
B ST e e LT ST S Sy S

0] 1 2 3 4 5 6 7
Y R S S

| member-value
B LD Ty Sy "SR S,

A parameter's fields are:

0 KL: The number of octets used to represent the member-name,
encoded as per [RFC7541], Section 5.1, with a 8-bit prefix

o member-name: KL octets of the member-name
0 member-value: One or more Binary Structure Types
member-values that are Items are represented as per Section 2.2.3;

member-values that are inner-lists are represented as per
Section 2.2.1.

If any member cannot be represented, the entire field value MUST be
serialised as a String Literal (Section 2.1.4).

2.1.3. Items

Item values (type=0x3) have a payload consisting of Binary Structured
Types, as described in Section 2.2.3.

2.1.4. String Literals

String Literals (type=0x4) are the string value of a header field;
they are used to carry header field values that are not Binary
Structured Headers, and may not be Structured Headers at all. As
such, their semantics are that of String Literal Representations in
[REC7541], Section 5.2.

Their payload is the octets of the field value.

ISSUE: use Huffman coding? https://github.com/mnot/I-D/issues/305 [5]

2.2. Binary Structured Types

Every Binary Structured Type starts with a 5-bit type field that
identifies the format of its payload:

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2
https://github.com/mnot/I-D/issues/305

Nottingham Expires May 4, 2020 [Page 5]

Internet-Draft Binary Structured HTTP Headers November 2019

0] 1 2 3 4 5 6 7 0] 1 2 3 4 5 6 7
T LT g R

Type (5) | Payload...
B ST e e LT ST S Sy S

Some Binary Structured Types contain padding bits; senders MUST set
padding bits to 0; recipients MUST ignore their values.

2.2.1. Inner Lists
The Inner List data type (type=0x1) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
e A S

L(3+) | Members (L octets)
B T T s Sy S T pupy

Its fields are:

o L: The number of octets used to represent the members, encoded as
per [RFC7541], Section 5.1, with a 3-bit prefix

0 Members: L octets

Each member of the list will be represented as an Item
(Section 2.2.3); if any member cannot, the entire field value will be
serialised as a String Literal (Section 2.1.4).

The inner list's parameters, if present, are serialised in a
following Parameter type (Section 2.2.2); they do not form part of
the payload of the inner list.

2.2.2. Parameters
The Parameters data type (type=0x2) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
T S

L(3+) | Parameters (L octets)
B T T s Sy S T pupy

Its fields are:

0 L: The number of octets used to represent the token, encoded as
per [RFC7541], Section 5.1, with a 3-bit prefix

o Parameters: L octets

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Nottingham Expires May 4, 2020 [Page 6]

Internet-Draft Binary Structured HTTP Headers November 2019

Each parameter is represented by key length, followed by that many
bytes of the parameter-name, followed by a Binary Structured Type
representing the parameter-value.

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
T LT g R

| KL (8+) | parameter-name (KL octets)
B T T s S I T T sy e

0] 1 2 3 4 5 6 7
e Y N Y P S

| parameter-value (VL octets)
B LD Ty Sy "SR S,

A parameter's fields are:

0 KL: The number of octets used to represent the parameter-name,
encoded as per [RFC7541], Section 5.1, with a 8-bit prefix

0 parameter-name: KL octets of the parameter-name

0 parameter-value: A Binary Structured type representing a bare item
(Section 2.2.3)

Parameter-values are bare items; that is, they MUST NOT have
parameters themselves.

If the parameters cannot be represented, the entire field value will
be serialised as a String Literal (Section 2.1.4).

Parameters are always associated with the Binary Structured Type that
immediately preceded them. If parameters are not explicitly allowed
on the preceding type, or there is no preceding type, it is an error.

ISSUE: use Huffman coding for parameter-name?
https://github.com/mnot/I-D/issues/305 [6]

2.2.3. Item Payload Types

Individual Structured Header Items can be represented using the
Binary Payload Types defined below.

The item's parameters, if present, are serialised in a following
Parameter type (Section 2.2.2); they do not form part of the payload
of the item.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://github.com/mnot/I-D/issues/305

Nottingham Expires May 4, 2020 [Page 7]

Internet-Draft Binary Structured HTTP Headers November 2019

2.2.3.1. Integers
The Integer data type (type=0x3) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
s S

S | X | Length (8+)
R S T T sT IS Sy S

0] 1 2 3 4 5 6 7
Y R S S

| Integer (Length octets)

B LD Ty Sy "SR S,

Its fields are:

o S: sign bit; 0 is negative, 1 is positive

0 X: 2 bits of padding

o Length: The number of octets used to represent the integer,
encoded as per [RFC7541], Section 5.1, with a 2-bit prefix

o Integer: Length octets
2.2.3.2. Floats

The Float data type (type=0x4) have a payload in the format:

5 6 7 0] 1 2 3 4 5 6 7
s S g S S Sy

S | X | ILength (8+)
B T T s U Sy S s S

(0] 1 2 3 4 5 6 7
S

| Integer (ILength octets)
B e Lk Ty ey S S

0] 1 2 3 4 5 6 7
Fomete et e et e e e oo -

| FLength (8+)
B S LT e S

0] 1 2 3 4 5 6 7
i S

| Fractional (FLength octets)
B LD ATy Syup U R S

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Nottingham Expires May 4, 2020 [Page 8]

Internet-Draft Binary Structured HTTP Headers November 2019

Its fields are:

0o S: sign bit; 0 is negative, 1 is positive

0 X: 2 bits of padding

o IlLength: The number of octets used to represent the integer

component, encoded as per [RFC7541], Section 5.1, with a 2-bit
prefix.

o Integer - ILength octets

o FLength: The number of octets used to represent the fractional
component, encoded as per [RFC7541], Section 5.1, with a 2-bit
prefix.

o Fractional: FLength octets
2.2.3.3. Strings
The String data type (type=0x5) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
e S S

L(3+) | String (L octets)
B T T S U S S s S

Its fields are:

0 L: The number of octets used to represent the string, encoded as
per [RFC7541], Section 5.1, with a 3-bit prefix.

o String: L octets.

ISSUE: use Huffman coding? https://github.com/mnot/I-D/issues/305 [7]

2.2.3.4. Tokens
The Token data type (type=0x6) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
s S

L(3+) | Token (L octets)
T S T T, ST s Sy S,

Its fields are:

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://github.com/mnot/I-D/issues/305

Nottingham Expires May 4, 2020 [Page 9]

Internet-Draft Binary Structured HTTP Headers November 2019

0 L: The number of octets used to represent the token, encoded as
per [RFC7541], Section 5.1, with a 3-bit prefix.

o Token: L octets.

ISSUE: use Huffman coding? https://github.com/mnot/I-D/issues/305 [8]

2.2.3.5. Byte Sequences
The Byte Sequence data type (type=0x7) has a payload in the format:

5 6 7 0 1 2 3 4 5 6 7
e R S

L(3+) | Byte Sequence (L octets)
B e S Tk S Sy

Its fields are:

o L: The number of octets used to represent the byte sequence,
encoded as per [REC7541], Section 5.1, with a 3-bit prefix.

0 Byte Sequence: L octets.
2.2.3.6. Booleans
The Boolean data type (type=0x8) has a payload of two bits:

5 6 7
A

B X |
B RS

If B is 0, the value is False; if B is 1, the value is True. X 1is
padding.

[*S)

Using Binary Structured Headers in HTTP/2

When both peers on a connection support this specification, they can
take advantage of that knowledge to serialise headers that they know
to be Structured Headers (or compatible with them; see Section 4).

Peers advertise and discover this support using a HTTP/2 setting
defined in Section 3.1, and convey Binary Structured Headers in a
frame type defined in Section 3.2.

https://datatracker.ietf.org/doc/html/rfc7541#section-5.1
https://github.com/mnot/I-D/issues/305
https://datatracker.ietf.org/doc/html/rfc7541#section-5.1

Nottingham Expires May 4, 2020 [Page 10]

Internet-Draft Binary Structured HTTP Headers November 2019

w

.1. Binary Structured Headers Setting

Advertising support for Binary Structured Headers is accomplished
using a HTTP/2 setting, SETTINGS_BINARY_STRUCTURED_HEADERS (OXTODO).

Receiving SETTINGS_BINARY_STRUCTURED_HEADERS from a peer indicates
that:

1. The peer supports the Binary Structured Types defined in
Section 2.

2. The peer will process the BINHEADERS frames as defined in
Section 3.2.

3. When a downstream consumer does not likewise support that
encoding, the peer will transform them into HEADERS frames (if
the peer is HTTP/2) or a form it will understand (e.g., the
textual representation of Structured Headers data types defined
in [I-D.jetf-httpbis-header-structure]).

4. The peer will likewise transform all fields defined as Aliased
Fields (Section 4.2) into their non-aliased forms as necessary.

The default value of SETTINGS_BINARY_STRUCTURED_HEADERS is 0. Future
extensions to Structured Headers might use it to indicate support for
new types.

3.2. The BINHEADERS Frame

When a peer has indicated that it supports this specification
{#setting}, a sender can send the BINHEADERS Frame Type (©xTODO).

The BINHEADERS Frame Type behaves and is represented exactly as a
HEADERS Frame type ([RFC7540], Section 6.2), with one exception;
instead of using the String Literal Representation defined in
[REC7541], Section 5.2, it uses the Binary Literal Representation
defined in Section 2.1.

Fields that are Structured Headers can have their values represented
using the Binary Literal Representation corresponding to that
header's top-level type - List, Dictionary, or Item; their values
will then be serialised as a stream of Binary Structured Types.

Additionally, any field (including those defined as Structured
Headers) can be serialised as a String Literal (Section 2.1.4), which
accommodates headers that are not defined as Structured Headers, not
valid Structured Headers, or that the sending implementation does not
wish to send as Binary Structured Types for some other reason.

https://datatracker.ietf.org/doc/html/rfc7540#section-6.2
https://datatracker.ietf.org/doc/html/rfc7541#section-5.2

Nottingham Expires May 4, 2020 [Page 11]

Internet-Draft Binary Structured HTTP Headers November 2019

[

H

Note that Field Names are always serialised as String Literals
(Section 2.1.4).

This means that a BINHEADERS frame can be converted to a HEADERS
frame by converting the field values to the string representations of
the various Structured Headers Types, and String Literals

(Section 2.1.4) to their string counterparts.

Conversely, a HEADERS frame can be converted to a BINHEADERS frame by
encoding all of the Literal field values as Binary Structured Types.
In this case, the header types used are informed by the
implementations knowledge of the individual header field semantics;
see Section 4. Those which it cannot (do to either lack of knowledge
or an error) or does not wish to convert into Structured Headers are
conveyed in BINHEADERS as String Literals (Section 2.1.4).

Field values are stored in the HPACK [REC7541] dynamic table without
Huffman encoding, although specific Binary Structured Types might
specify the use of such encodings.

Note that BINHEADERS and HEADERS frames MAY be mixed on the same
connection, depending on the requirements of the sender. Also, note
that only the field values are encoded as Binary Structured Types;
field names are encoded as they are in HPACK.

Using Binary Structured Headers with Existing Fields

Any header field can potentially be parsed as a Structured Header
according to the algorithms in [I-D.ietf-httpbis-header-structure]
and serialised as a Binary Structured Header. However, many cannot,
so optimistically parsing them can be expensive.

This section identifies fields that will usually succeed in
Section 4.1, and those that can be mapped into Structured Headers by
using an alias field name in Section 4.2.

.1. Directly Represented Fields

The following HTTP field names can have their values parsed as
Structured Headers according to the algorithms in
[I-D.ietf-httpbis-header-structure], and thus can usually be
serialised using the corresponding Binary Structured Types.

When one of these fields' values cannot be represented using
Structured Types, its value can instead be represented as a String
Literal (Section 2.1.4).

o Accept - List

https://datatracker.ietf.org/doc/html/rfc7541

Nottingham Expires May 4, 2020 [Page 12]

Internet-Draft Binary Structured HTTP Headers November 2019

0 Accept-Encoding - List

0 Accept-Language - List

0 Accept-Patch - List

0 Accept-Ranges - List

0 Access-Control-Allow-Credentials - Item
0 Access-Control-Allow-Headers - List
0 Access-Control-Allow-Methods - List
0 Access-Control-Allow-0Origin - Item

0 Access-Control-Max-Age - Item

0 Access-Control-Request-Headers - List
0 Access-Control-Request-Method - Item
o0 Age - Item

o Allow - List

0 ALPN - List

o Alt-Svc - List

o Alt-Used - Item

o Cache-Control - Dictionary

o Content-Encoding - Item

o Content-Language - List

o Content-Length - Item

o Content-Type - Item

0o Expect - Item

o Forwarded - List

0 Host - Item

Nottingham Expires May 4, 2020 [Page 13]

Internet-Draft Binary Structured HTTP Headers November 2019

0 Origin - Item

o Pragma - Dictionary

0 Prefer - Dictionary

o Preference-Applied - Dictionary

0 Retry-After - Item (see caveat below)

0 Surrogate-Control - Dictionary

o TE - List

0 Trailer - List

o Transfer-Encoding - List

0o Vary - List

0 X-Content-Type-Options - Item

Note that only the delta-seconds form of Retry-After is supported; a
Retry-After value containing a http-date will need to be either

converted into delta-seconds or serialised as a String Literal
(Section 2.1.4).

4.2. Aliased Fields

The following HTTP field names can have their values represented in
Structured headers by mapping them into its data types and then
serialising the resulting Structured Header using an alternative
field name.

For example, the Date HTTP header field carries a http-date, which is
a string representing a date:

Date: Sun, 06 Nov 1994 08:49:37 GMT

Its value is more efficiently represented as an integer number of
delta seconds from the Unix epoch (00:00:00 UTC on 1 January 1970,
minus leap seconds). Thus, the example above would be represented in
(non-binary) Structured headers as:

SH-Date: 784072177

As with directly represented fields, if the intended value of an
aliased field cannot be represented using Structured Types

Nottingham Expires May 4, 2020 [Page 14]

Internet-Draft Binary Structured HTTP Headers November 2019

successfully, its value can instead be represented as a String
Literal (Section 2.1.4).

Note that senders MUST know that the next-hop recipient understands
these fields (typically, using the negotiation mechanism defined in
Section 3) before using them. Likewise, recipients MUST transform
them back to their unaliased form before forwarding the message to a
peer or other consuming components that do not have this capability.

Each field name listed below indicates a replacement field name and a
way to map its value to Structured Headers.

ISSUE: using separate names assures that the different syntax doesn't
"leak" into normal headers, but it isn't strictly necessary if
implementations always convert back to the correct form when giving
it to peers or consuming software that doesn't understand this.
https://github.com/mnot/I-D/issues/307 [9]

4.2.1. URLs
The following field names (paired with their replacement field names)
have values that can be represented in Binary Structured Headers by
considering their payload a string.
o Content-Location - SH-Content-Location
0o Location - SH-Location
o Referer - SH-Referer
For example, a (non-binary) Location:

SH-Location: "https://example.com/foo"

TOOD: list of strings, one for each path segment, to allow better
compression in the future?

4.2.2. Dates

The following field names (paired with their replacement field names)
have values that can be represented in Binary Structured Headers by
parsing their payload according to [RFC7230], Section 7.1.1.1, and
representing the result as an integer number of seconds delta from
the Unix Epoch (00:00:00 UTC on 1 January 1970, minus leap seconds).

o Date - SH-Date

0 Expires - SH-Expires

https://github.com/mnot/I-D/issues/307
https://datatracker.ietf.org/doc/html/rfc7230#section-7.1.1.1

Nottingham Expires May 4, 2020 [Page 15]

Internet-Draft Binary Structured HTTP Headers November 2019

o If-Modified-Since - SH-IMS
o If-Unmodified-Since - SH-IUS
0 Last-Modified - SH-LM
For example, a (non-binary) Expires:
SH-Expires: 1571965240
4.2.3. ETags
The following field names (paired with their replacement field names)
have values that can be represented in Binary Structured Headers by
representing the entity-tag as a string, and the weakness flag as a

boolean "w'" parameter on it, where true indicates that the entity-tag
is weak; if @ or unset, the entity-tag is strong.

o ETag - SH-ETag
For example, a (non-Binary) ETag:
SH-ETag: "abcdef"; w=?1
If-None-Match is a list of the structure described above.
o If-None-Match - SH-INM
For example, a (non-binary) If-None-Match:
SH-INM: "abcdef"; w=?1, "ghijk1l"
4.2.4. Links

The field-value of the Link header field [RFC8288] can be represented
in Binary Structured Headers by representing the URI-Reference as a
string, and link-param as parameters.

0 Link: SH-Link
For example, a (non-binary) Link:

SH-Link: "/terms"; rel="copyright"; anchor="#foo"

https://datatracker.ietf.org/doc/html/rfc8288

Nottingham Expires May 4, 2020 [Page 16]

Internet-Draft Binary Structured HTTP Headers November 2019

4

o

o

.2.5. Cookies

The field-value of the Cookie and Set-Cookie fields [RFC6265] can be
represented in Binary Structured Headers as a List with parameters
and a Dictionary, respectively. The serialisation is almost
identical, except that the Expires parameter is always a string (as
it can contain a comma), multiple cookie-strings can appear in Set-
Cookie, and cookie-pairs are delimited in Cookie by a comma, rather
than a semicolon.

Set-Cookie: SH-Set-Cookie Cookie: SH-Cookie

SH-Set-Cookie: lang=en-US, Expires="Wed, 09 Jun 2021 10:18:14 GMT"
SH-Cookie: SID=31d4d96e407aad42, lang=en-US

ISSUE: explicitly convert Expires to an integer?
https://github.com/mnot/I-D/issues/308 [10]

IANA Considerations
ISSUE: todo
Security Considerations

As is so often the case, having alternative representations of data
brings the potential for security weaknesses, when attackers exploit
the differences between those representations and their handling.

One mitigation to this risk is the strictness of parsing for both
non-binary and binary Structured Headers data types, along with the
"escape valve" of String Literals (Section 2.1.4). Therefore,
implementation divergence from this strictness can have security
impact.

References

.1. Normative References

[I-D.ietf-httpbis-header-structure]
Nottingham, M. and P. Kamp, "Structured Headers for HTTP",
draft-ietf-httpbis-header-structure-14 (work in progress),
October 2019.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.

https://datatracker.ietf.org/doc/html/rfc6265
https://github.com/mnot/I-D/issues/308
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-header-structure-14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119

Nottingham Expires May 4, 2020 [Page 17]

Internet-Draft Binary Structured HTTP Headers November 2019

[RFC6265] Barth, A., "HTTP State Management Mechanism", RFC 6265,
DOI 10.17487/RFC6265, April 2011,
<https://www.rfc-editor.org/info/rfc6265>.

[RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
Protocol (HTTP/1.1): Message Syntax and Routing",
RFEC 7230, DOI 10.17487/RFC7230, June 2014,
<https://www.rfc-editor.org/info/rfc7230>.

[RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
Transfer Protocol Version 2 (HTTP/2)", REC 7540,
DOI 10.17487/RFC7540, May 2015,
<https://www.rfc-editor.org/info/rfc7540>.

[RFC7541] Peon, R. and H. Ruellan, "HPACK: Header Compression for
HTTP/2", RFEC 7541, DOI 10.17487/RFC7541, May 2015,
<https://www.rfc-editor.org/info/rfc7541>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.

[RFC8288] Nottingham, M., "Web Linking", REC 8288,
DOI 10.17487/RFC8288, October 2017,
<https://www.rfc-editor.org/info/rfc8288>.

7.2. URIs

[1] https://github.com/mnot/I-D/labels/binary-structured-headers

[2] https://mnot.github.io/I-D/binary-structured-headers/

[3] https://github.com/mnot/I-D/commits/gh-pages/binary-structured-
headers

[4] https://datatracker.ietf.org/doc/draft-nottingham-binary-
structured-headers/

[5] https://github.com/mnot/I-D/issues/305

[6] https://github.com/mnot/I-D/issues/305

[7] https://github.com/mnot/I-D/issues/305

[8] https://github.com/mnot/I-D/issues/305

[9] https://github.com/mnot/I-D/issues/307

https://datatracker.ietf.org/doc/html/rfc6265
https://www.rfc-editor.org/info/rfc6265
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc7541
https://www.rfc-editor.org/info/rfc7541
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/rfc8288
https://www.rfc-editor.org/info/rfc8288
https://github.com/mnot/I-D/labels/binary-structured-headers
https://mnot.github.io/I-D/binary-structured-headers/
https://github.com/mnot/I-D/commits/gh-pages/binary-structured-headers
https://github.com/mnot/I-D/commits/gh-pages/binary-structured-headers
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://github.com/mnot/I-D/issues/305
https://github.com/mnot/I-D/issues/305
https://github.com/mnot/I-D/issues/305
https://github.com/mnot/I-D/issues/305
https://github.com/mnot/I-D/issues/307

Nottingham Expires May 4, 2020 [Page 18]

Internet-Draft Binary Structured HTTP Headers November 2019

[10] https://github.com/mnot/I-D/issues/308
Author's Address

Mark Nottingham
Fastly

Email: mnot@mnot.net
URI: https://www.mnot.net/

Nottingham Expires May 4, 2020 [Page 19]

https://github.com/mnot/I-D/issues/308
https://www.mnot.net/

