
Workgroup: Network Working Group

Internet-Draft:

draft-nottingham-binary-structured-headers-03

Published: 11 October 2022

Intended Status: Standards Track

Expires: 14 April 2023

Authors: M. Nottingham

Binary Structured HTTP Field Values

Abstract

This specification defines a binary serialisation of Structured

Field Values for HTTP, along with a negotiation mechanism for its

use in HTTP/2.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-nottingham-binary-structured-

headers/.

information can be found at https://mnot.github.io/I-D/.

Source for this draft and an issue tracker can be found at https://

github.com/mnot/I-D/labels/binary-structured-headers.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 April 2023.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://datatracker.ietf.org/doc/draft-nottingham-binary-structured-headers/
https://mnot.github.io/I-D/
https://github.com/mnot/I-D/labels/binary-structured-headers
https://github.com/mnot/I-D/labels/binary-structured-headers
https://datatracker.ietf.org/drafts/current/

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Notational Conventions

2. Binary Structured Types

2.1. Literal Values

2.2. Lists

2.3. Dictionaries

2.4. Inner Lists

2.4.1. Parameters

2.4.2. Integers

2.4.3. Decimals

2.4.4. Strings

2.4.5. Tokens

2.4.6. Byte Sequences

2.4.7. Booleans

3. Using Binary Structured Fields in HTTP/2

3.1. The SETTINGS_BINARY_STRUCTURED_FIELDS Setting

3.2. The BINARY_STRUCTRED HEADERS Flag

4. IANA Considerations

5. Security Considerations

6. Normative References

Author's Address

1. Introduction

Structured Field Values for HTTP [STRUCTURED-FIELDS] offers a set of

data types for use by HTTP fields, along with a serialisation of

them in a familiar textual syntax.

Section 2 defines an alternative, binary serialisation of those

structures, and Section 3 defines a mechanism for using that

serialisation in HTTP/2.

The primary goal of this specification is to reduce parsing overhead

and associated costs, as compared to the textual representation of

Structured Fields. A secondary goal is a more compact wire format in

common situations. An additional goal is to enable future work on

more granular field compression mechanisms.

¶

¶

¶

¶

https://trustee.ietf.org/license-info

1.1. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

This specification describes wire formats using the convention

described in Section 1.3 of [QUIC].

2. Binary Structured Types

This section defines a binary serialisation for Structured Field

Values as defined in [STRUCTURED-FIELDS].

A Structured Field Value can be a singular Item (such as a String,

an Integer, or a Boolean, possibly with parameters), or it can be a

compound type, such as a Dictionary or List, whose members are

composed of those Item types.

When a field value is serialised as a Binary Structured Field, each

of these types is preceded by an header octet that indicates the

relevant type, along with some type-specific flags. The type then

determines how the value is serialised in the following octet(s).

Use of each flag may not be specified by all types. When this is the

case, generators MUST send 0 for them, and recipients MUST ignore

them.

2.1. Literal Values

A Literal Value is a special type that carries the string value of a

field; they are used to carry field values that are not structured

using the data types defined in Section 3 of [STRUCTURED-FIELDS].

This might be because the field is not recognised as a Structured

Field, or it might be because a field that is understood to be a

Structured Field cannot be parsed successfully as one.

A literal value's payload consists of an integer Length field (using

the variable-length encoding from Section 16 of [QUIC]), followed by

that many octets of the field value. They are functionally

equivalent to String Literal Representations in Section 5.2 of

[RFC7541].

¶

¶

¶

¶

¶

Binary Structured Type {

 Type (5),

 Flags (3),

 [Payload (..)]

}

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-1.3
https://rfc-editor.org/rfc/rfc8941#section-3
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc7541#section-5.2

2.2. Lists

A List (Section 3.1 of [STRUCTURED-FIELDS]) uses its Flags to carry

a Short Member Count as three bits.

If the Short Member Count is zero, it indicates that the next byte

is the Member Count, represented using the variable-length encoding

from Section 16 of [QUIC]. Otherwise, it indicates the Member Count

itself. This allows a small list to be encoded without using an

extra byte for its length.

In either case, the payload indicates the number of List members

that follow.

2.3. Dictionaries

A Dictionary (Section 3.2 of [STRUCTURED-FIELDS]) uses its Flags to

indicate its number of members, in a fashion similar to Lists.

Each Dictionary member is represented by a length, followed by that

many bytes of the member-key, followed by the Binary Structured

Type(s) representing the member-value.

Literal Value {

 Type (5) = 0,

 Unused Flags (3) = 0,

 Length (i),

 Payload (..)

}

¶

¶

¶

¶

List {

 Type (5) = 1,

 Short Member Count (3),

 [Member Count (i)],

 Binary Structured Type (..) ...

}

¶

¶

Dictionary {

 Type (5) = 2,

 Short Member Count (3),

 [Member Count (i)],

 Dictionary Member (..) ...

}

¶

¶

Dictionary Member {

 Key Length (i),

 Member Key (..),

 Binary Structured Type (..),

}

¶

https://rfc-editor.org/rfc/rfc8941#section-3.1
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.2

A Dictionary Member MUST NOT be a Parameters (0x2).

2.4. Inner Lists

An Inner List (Section 3.1.1 of [STRUCTURED-FIELDS]) has a payload

consisting a Member Count field (using the variable-length encoding

from Section 16 of [QUIC]), followed by one or more fields

representing the members of the list.

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

Parameters on the Inner List itself, if present, are serialised in a

following Parameter type (Section 2.4.1); they do not form part of

the payload of the Inner List (and therefore are not counted in

Member Count).

2.4.1. Parameters

Parameters (Section 3.1.2 of [STRUCTURED-FIELDS]) uses its Flags to

indicate its number of members, in a fashion similar to Lists.

Each Parameter conveys a key and a value:

¶

¶

Inner List {

 Type (5) = 3,

 Parameters (1),

 Unused Flags (2),

 Member Count (i),

 Binary Structured Type (..) ...

 [Parameters (..)]

}

¶

¶

¶

¶

Parameters {

 Type (5) = 4,

 Short Parameter Count (3),

 [Parameter Count (i)],

 Parameter (..) ...

}

¶

¶

Parameter {

 Parameter Key Length (i),

 Parameter Key (..),

 Binary Structured Type (..)

}

¶

https://rfc-editor.org/rfc/rfc8941#section-3.1.1
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.1.2

A parameter's fields are:

Parameter Key Length: The number of octets used for the

parameter-key (using the variable-length encoding from Section 16

of [QUIC])

Parameter Key: Parameter Key Length octets of the parameter-key

Binary Structured Type: The parameter value

The Binary Structured Type in a Parameter MUST NOT be an Inner List

(0x1) or Parameters (0x2).

Parameters are always associated with the Binary Structured Type

that immediately preceded them. Therefore, Parameters MUST NOT be

the first Binary Structured Type in a Binary Structured Field Value,

and MUST NOT follow another Parameters.

2.4.2. Integers

An Integer (Section 3.3.1 of [STRUCTURED-FIELDS]) has a payload

consisting of a single integer (using the variable-length encoding

from Section 16 of [QUIC]). The Sign flag conveys whether the value

is positive (1) or negative (0).

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

2.4.3. Decimals

A Decimal (Section 3.3.2 of [STRUCTURED-FIELDS]) has a payload

consisting of two integers (using the variable-length encoding from

Section 16 of [QUIC]) that are divided to convey the decimal value.

The Sign flag conveys whether the value is positive (1) or negative

(0).

¶

*

¶

* ¶

* ¶

¶

¶

¶

Integer {

 Type (5) = 5,

 Parameters (1),

 Sign (1),

 Unused Flag (1) = 0,

 Payload (i)

}

¶

¶

¶

https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.3.1
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.3.2
https://rfc-editor.org/rfc/rfc9000#section-16

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

2.4.4. Strings

A String (Section 3.3.3 of [STRUCTURED-FIELDS]) has a payload

consisting of an integer Length field (using the variable-length

encoding from Section 16 of [QUIC]), followed by that many octets of

payload.

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

Its payload is Length octets long and ASCII-encoded.

2.4.5. Tokens

A Token (Section 3.3.4 of [STRUCTURED-FIELDS]) has a payload

consisting of an integer Length field (using the variable-length

encoding from Section 16 of [QUIC]), followed by that many octets of

payload.

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

Decimal {

 Type (5) = 6,

 Parameters (1),

 Sign (1),

 Unused Flag (1) = 0,

 Dividend (i),

 Divisor (i)

}

¶

¶

¶

String {

 Type (5) = 7,

 Parameters (1),

 Unused Flags (2) = 0,

 Length (i),

 Payload (..)

}

¶

¶

¶

¶

Token {

 Type (5) = 8,

 Parameters (1),

 Unused Flags (2) = 0,

 Length (i),

 Payload (..)

}

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.3.3
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.3.4
https://rfc-editor.org/rfc/rfc9000#section-16

Its payload is Length octets long and ASCII-encoded.

2.4.6. Byte Sequences

A Byte Sequence (Section 3.3.5 of [STRUCTURED-FIELDS]) has a payload

consisting of an integer Length field (using the variable-length

encoding from Section 16 of [QUIC]), followed by that many octets of

payload.

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

The payload is is Length octets long, containing the raw octets of

the byte sequence.

2.4.7. Booleans

A String (Section 3.3.6 of [STRUCTURED-FIELDS]) uses the Payload

flag to indicate its value; if Payload is 0, the value is False; if

Payload is 1, the value is True.

The Boolean data type (type=0x8) carries its payload in the Payload

Flag:

The Parameters Flag indicates whether the value is followed by

Parameters (see Section 2.4.1).

3. Using Binary Structured Fields in HTTP/2

When both peers on a connection support this specification, they can

negotiate to serialise fields that they know to be Structured Fields

as binary data, rather than strings.

¶

¶

Byte Sequence {

 Type (5) = 9,

 Parameters (1),

 Unused Flags (2) = 0,

 Length (i),

 Payload (..)

}

¶

¶

¶

¶

¶

Boolean {

 Type (5) = 10,

 Parameters (1),

 Payload (1),

 Unused Flag (1) = 0,

}

¶

¶

¶

https://rfc-editor.org/rfc/rfc8941#section-3.3.5
https://rfc-editor.org/rfc/rfc9000#section-16
https://rfc-editor.org/rfc/rfc8941#section-3.3.6

Peers advertise and discover this support using a HTTP/2 setting

defined in Section 3.1, and convey Binary Structured Fields in

streams whose HEADERS frame uses the flag defined in Section 3.2.

3.1. The SETTINGS_BINARY_STRUCTURED_FIELDS Setting

Advertising support for Binary Structured Fields is accomplished

using a HTTP/2 setting, SETTINGS_BINARY_STRUCTURED_FIELDS (0xTODO).

Receiving SETTINGS_BINARY_STRUCTURED_FIELDS with a non-zero value

from a peer indicates that:

The peer supports all of the Binary Structured Types defined in

Section 2.

The peer will process the BINARY_STRUCTRED HEADERS flag as

defined in Section 3.2.

When passing the message to a downstream consumer (whether on

the network or not) who does not support this extension or

otherwise explicitly negotiate an equivalent mechanism, the

peer will:

Transform all fields defined as Mapped Fields in Section

1.3 of [RETROFIT] into their unmapped forms, removing the

mapped fields.

Serialize all fields into the appropriate form for that

peer (e.g., the textual representation of Structured

Fields data types defined in [STRUCTURED-FIELDS]).

The default value of SETTINGS_BINARY_STRUCTURED_FIELDS is 0, whereas

a value of 1 indicates that this specification is supported with no

further extensions. Future specifications might use values greater

than one to indicate support for extensions.

3.2. The BINARY_STRUCTRED HEADERS Flag

When a peer has indicated that it supports this specification as per

Section 3.1, a sender can send the BINARY_STRUCTURED flag (0xTODO)

on the HEADERS frame.

This flag indicates that the HEADERS frame containing it and

subsequent CONTINUATION frames on the same stream use the Binary

Structured Types defined in Section 2 instead of the String Literal

Representation defined in Section 5.2 of [RFC7541] to represent all

field values. Field names are still serialised as String Literal

Representations.

¶

¶

¶

1.

¶

2.

¶

3.

¶

1.

¶

2.

¶

¶

¶

¶

https://rfc-editor.org/rfc/rfc7541#section-5.2

[QUIC]

[RETROFIT]

[RFC2119]

In such frames, all field values MUST be sent as Binary Structured

Field Values. Note that this includes Binary Literals (Section 2.1)

for those field values that are not recognised as Structured Fields,

as well as textual values that cannot be successfully parsed as

Structured Fields. Implementations MAY also send a field value as a

Binary Literal even when it is possible to represent it as a

Structured Field (e.g., for efficiency purposes).

Binary Structured Field Values are stored in the HPACK [RFC7541]

dynamic table, and their lengths are used for the purposes of

maintaining dynamic table size (see [RFC7541], Section 4).

Note that HEADERS frames with and without the BINARY_STRUCTURED flag

MAY be mixed on the same connection, depending on the requirements

of the sender.

4. IANA Considerations

ISSUE: todo

5. Security Considerations

As is so often the case, having alternative representations of data

brings the potential for security weaknesses, when attackers exploit

the differences between those representations and their handling.

One mitigation to this risk is the strictness of parsing for both

non-binary and binary Structured Fields data types, along with the

"escape valve" of Binary Literals (Section 2.1). Therefore,

implementation divergence from this strictness can have security

impact.

6. Normative References

Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based

Multiplexed and Secure Transport", RFC 9000, DOI

10.17487/RFC9000, May 2021, <https://www.rfc-editor.org/

rfc/rfc9000>.

Nottingham, M., "Retrofit Structured Fields for HTTP",

Work in Progress, Internet-Draft, draft-ietf-httpbis-

retrofit-04, 8 June 2022, <https://datatracker.ietf.org/

doc/html/draft-ietf-httpbis-retrofit-04>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

¶

* ¶

¶

¶

https://rfc-editor.org/rfc/rfc7541#section-4
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-retrofit-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-retrofit-04

[RFC7541]

[RFC8174]

[STRUCTURED-FIELDS]

RFC2119, March 1997, <https://www.rfc-editor.org/rfc/

rfc2119>.

Peon, R. and H. Ruellan, "HPACK: Header Compression for

HTTP/2", RFC 7541, DOI 10.17487/RFC7541, May 2015,

<https://www.rfc-editor.org/rfc/rfc7541>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

Nottingham, M. and P-H. Kamp, "Structured Field

Values for HTTP", RFC 8941, DOI 10.17487/RFC8941,

February 2021, <https://www.rfc-editor.org/rfc/rfc8941>.

Author's Address

Mark Nottingham

Prahran

Australia

Email: mnot@mnot.net

URI: https://www.mnot.net/

https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc7541
https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8941
mailto:mnot@mnot.net
https://www.mnot.net/

	Binary Structured HTTP Field Values
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Notational Conventions

	2. Binary Structured Types
	2.1. Literal Values
	2.2. Lists
	2.3. Dictionaries
	2.4. Inner Lists
	2.4.1. Parameters
	2.4.2. Integers
	2.4.3. Decimals
	2.4.4. Strings
	2.4.5. Tokens
	2.4.6. Byte Sequences
	2.4.7. Booleans

	3. Using Binary Structured Fields in HTTP/2
	3.1. The SETTINGS_BINARY_STRUCTURED_FIELDS Setting
	3.2. The BINARY_STRUCTRED HEADERS Flag

	4. IANA Considerations
	5. Security Considerations
	6. Normative References
	Author's Address

