
Network Working Group M. Nottingham
Internet-Draft Akamai
Intended status: Informational E. Wilde
Expires: June 12, 2014 EMC
 December 9, 2013

Problem Details for HTTP APIs
draft-nottingham-http-problem-05

Abstract

 This document defines a "problem detail" as a way to carry machine-
 readable details of errors in a HTTP response, to avoid the need to
 invent new error response formats for HTTP APIs.

Note to Readers

 This draft should be discussed on the apps-discuss mailing list [1].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on June 12, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must

Nottingham & Wilde Expires June 12, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Problem Details December 2013

 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Requirements . 4
3. The Problem Details JSON Object 4
3.1. Required Members . 5
3.2. Optional Members . 5
3.3. Extension Members . 6

4. Defining New Problem Types 6
4.1. Example . 7
4.2. Pre-Defined Problem Types 7

5. Using Problem Details with Other Formats 8
6. Security Considerations 8
7. IANA Considerations . 9
8. Acknowledgements . 10
9. References . 10
9.1. Normative References 10
9.2. Informative References 11

Appendix A. HTTP Problems and XML 12
 Authors' Addresses . 13

Nottingham & Wilde Expires June 12, 2014 [Page 2]

Internet-Draft Problem Details December 2013

1. Introduction

 HTTP [RFC2616] status codes are sometimes not sufficient to convey
 enough information about an error to be helpful. While humans behind
 Web browsers can be informed about the nature of the problem with an
 HTML [W3C.REC-html401-19991224] response body, non-human consumers of
 so-called "HTTP APIs" are usually not.

 This specification defines simple JSON [RFC4627] and XML
 [W3C.REC-xml-20081126] document formats to suit this purpose. They
 are designed to be reused by HTTP APIs, which can identify distinct
 "problem types" specific to their needs.

 Thus, API clients can be informed of both the high-level error class
 (using the status code) and the finer-grained details of the problem
 (using one of these formats).

 For example, consider a response that indicates that the client's
 account doesn't have enough credit. The 403 Forbidden status code
 might be deemed most appropriate to use, as it will inform HTTP-
 generic software (such as client libraries, caches and proxies) of
 the general semantics of the response.

 However, that doesn't give the API client enough information about
 why the request was forbidden, the applicable account balance, or how
 to correct the problem. If these details are included in the
 response body in a machine-readable format, the client can treat it
 appropriately; for example, triggering a transfer of more credit into
 the account.

 This specification does this by identifying a specific type of
 problem (e.g., "out of credit") with a URI [RFC3986]; HTTP APIs can
 do this by nominating new URIs under their control, or by reusing
 existing ones.

 Additionally, problems can contain other information, such as a URI
 that identifies the specific occurrence of the problem (effectively
 giving an identifier to the concept "The time Joe didn't have enough
 credit last Thursday"), which may be useful for support or forensic
 purposes.

 The data model for problem details is a JSON [RFC4627] object; when
 formatted as a JSON document, it uses the "application/problem+json"
 media type. Appendix A defines how to express them in an equivalent
 XML format, which uses the "application/problem+xml" media type.

 Note that problem details are (naturally) not the only way to convey
 the details of a problem in HTTP; if the response is still a

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627

Nottingham & Wilde Expires June 12, 2014 [Page 3]

Internet-Draft Problem Details December 2013

 representation of a resource, for example, it's often preferable to
 accommodate describing the relevant details in that application's
 format. Likewise, in many situations, there is an appropriate HTTP
 status code that does not require extra detail to be conveyed.

 Instead, the aim of this specification is to define common error
 formats for those applications that need one, so that they aren't
 required to define their own, or worse, tempted to re-define the
 semantics of existing HTTP status codes.

2. Requirements

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

3. The Problem Details JSON Object

 The canonical model for problem details is a JSON [RFC4627] object.

 When serialised as a JSON document, that format is identified with
 the "application/problem+json" media type.

 For example, a HTTP response carrying JSON problem details:

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+json
 Content-Language: en

 {
 "type": "http://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "http://example.net/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["http://example.net/account/12345",
 "http://example.net/account/67890"]
 }

 Here, the out-of-credit problem (identified by its type URI)
 indicates the reason for the 403 in "title", gives a reference for
 the specific problem occurrence with "instance", gives occurrence-
 specific details in "detail", and adds two extensions; "balance"
 conveys the account's balance, and "accounts" gives a link where the
 account can be topped up.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627

Nottingham & Wilde Expires June 12, 2014 [Page 4]

Internet-Draft Problem Details December 2013

 Note that "type" is case-sensitive in the JSON object, as are all
 other member names.

3.1. Required Members

 A problem details object MUST have the following members:

 o "type" (string) - An absolute URI [RFC3986] that identifies the
 problem type. When dereferenced, it SHOULD provide human-readable
 documentation for the problem type (e.g., using HTML
 [W3C.REC-html401-19991224]).
 o "title" (string) - A short, human-readable summary of the problem
 type. It SHOULD NOT change from occurrence to occurrence of the
 problem, except for purposes of localisation.

 Consumers MUST use the type string as the primary identifier for the
 problem type; the title string is advisory, and included only for
 users who are not aware of the semantics of the URI, and don't have
 the ability to discover them (e.g., offline log analysis). Consumers
 SHOULD NOT automatically dereference the type URI.

3.2. Optional Members

 Furthermore, a problem details object MAY have the following members:

 o "status" (number) - The HTTP status code ([RFC2616], Section 6)
 generated by the origin server for this occurrence of the problem.
 o "detail" (string) - An human readable explanation specific to this
 occurrence of the problem.
 o "instance" (string) - An absolute URI that identifies the specific
 occurrence of the problem. It may or may not yield further
 information if dereferenced.

 The status member, if present, is only advisory; it conveys the HTTP
 status code used for the convenience of the consumer. Generators
 MUST use the same status code in the actual HTTP response, to assure
 that generic HTTP software that does not understand this format still
 behaves correctly. See Section 6 for further caveats regarding its
 use.

 The detail member, if present, SHOULD focus on helping the client
 correct the problem, rather than giving debugging information.

 Consumers SHOULD NOT parse the detail member for information;
 extensions are more suitable and less error-prone ways to obtain such
 information.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc2616#section-6

Nottingham & Wilde Expires June 12, 2014 [Page 5]

Internet-Draft Problem Details December 2013

3.3. Extension Members

 Finally, problem type definitions MAY extend the problem details
 object with additional members.

 Clients consuming problem details MUST ignore any such extensions
 that they don't recognise; this allows problem types to evolve and
 include additional information in the future.

4. Defining New Problem Types

 When an HTTP API needs to define a response that indicates an error
 condition, it might be appropriate to do so by defining a new problem
 type.

 Before doing so, it's important to understand what they are good for,
 and what's better left to other mechanisms.

 Problem details are not a debugging tool for the underlying
 implementation; rather, they are a way to expose greater detail about
 the HTTP interface itself. New problem types need to carefully
 consider the Security Considerations (Section 6); in particular the
 risk of exposing attack vectors by exposing implementation internals
 through error messages.

 Likewise, truly generic problems - i.e., conditions that could
 potentially apply to any resource on the Web - are usually better
 expressed as plain status codes. For example, a "write access
 disallowed" problem is probably unnecessary, since a 403 Forbidden
 status code on a PUT request is self-explanatory.

 Finally, an application may have a more appropriate way to carry an
 error in a format that it already defines. Problem details are
 intended to avoid the necessity of establishing new "fault" or
 "error" document formats, not to replace existing domain-specific
 formats.

 That said, it is possible to add support for problem details to
 existing HTTP APIs using HTTP content negotiation (e.g., using the
 Accept request header to indicate a preference for this format).

 New problem type definitions MUST document:
 1. A type URI (typically, with the "http" scheme),
 2. A title that appropriately describes it (think short), and
 3. The HTTP status code for it to be used with.

 Problem types MAY specify the use of the Retry-After response header

Nottingham & Wilde Expires June 12, 2014 [Page 6]

Internet-Draft Problem Details December 2013

 in appropriate circumstances.

 A problem's type URI SHOULD resolve to HTML
 [W3C.REC-html401-19991224] documentation that explains how to resolve
 the problem.

 A problem type definition MAY specify additional members on the
 Problem Details object. For example, an extension might use typed
 links [RFC5988] to another resource that can be used by machines to
 resolve the problem.

 If such additional members are defined, their names SHOULD start with
 a letter (ALPHA, as per [RFC5234]) and SHOULD consist of characters
 from ALPHA, DIGIT, and "_" (so that it can be serialized in formats
 other than JSON), and SHOULD be three characters or longer.

4.1. Example

 For example, if you are publishing an HTTP API to your online
 shopping cart, you might need to indicate that the user is out of
 credit (our example from above), and therefore cannot make the
 purchase.

 If you already have an application-specific format that can
 accommodate this information, it's probably best to do that.
 However, if you don't, you might consider using one of the problem
 details formats; JSON if your API is JSON-based, or XML if it uses
 that convention.

 To do so, you might look for an already-defined type URI that suits
 your purposes. If one is available, you can reuse that URI.

 If one isn't available, you could mint and document a new type URI
 (which ought to be under your control and stable over time), an
 appropriate title and the HTTP status code that it will be used with,
 along with what it means and how it should be handled.

 In summary: an instance URI will always identify a specific
 occurrence of a problem. On the other hand, type URIs can be reused
 if an appropriate description of a problem type is already available
 someplace else, or they can be created for new problem types.

4.2. Pre-Defined Problem Types

 This specification reserves the use of one URI as a problem type.

 The "about:blank" URI [RFC6694], when used as a problem type,
 indicates that the problem has no additional semantics beyond that of

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc6694

Nottingham & Wilde Expires June 12, 2014 [Page 7]

Internet-Draft Problem Details December 2013

 the HTTP status code.

 When "about:blank" is used, the title SHOULD be the same as the
 recommended HTTP status phrase for that code (e.g., "Not Found" for
 404, and so on), although it MAY be localized to suit client
 preferences (expressed with the Accept-Language request header).

5. Using Problem Details with Other Formats

 In some situations, it can be advantageous to embed Problem Details
 in formats other than those described here. For example, an API that
 uses HTML [W3C.REC-html401-19991224] might want to also use HTML for
 expressing its problem details.

 Problem details can be embedded in other formats by either
 encapsulating one of the existing serializations (JSON or XML) into
 that format, or by translating the model of a Problem Detail (as
 specified in Section 3) into the format's conventions.

 For example, in HTML, a problem could be embedded by encapsulating
 JSON in a script tag:

 <script type="application/problem+json">
 {
 "type": "http://example.com/probs/out-of-credit",
 "title": "You do not have enough credit.",
 "detail": "Your current balance is 30, but that costs 50.",
 "instance": "http://example.net/account/12345/msgs/abc",
 "balance": 30,
 "accounts": ["http://example.net/account/12345",
 "http://example.net/account/67890"]
 }
 </script>
 }

 or by inventing a mapping into RDFa [W3C.REC-rdfa-core-20120607].

 This specification does not make specific recommendations regarding
 embedding Problem Details in other formats; the appropriate way to
 embed them depends both upon the format in use and application of
 that format.

6. Security Considerations

 When defining a new problem type, the information included must be
 carefully vetted. Likewise, when actually generating a problem -

Nottingham & Wilde Expires June 12, 2014 [Page 8]

Internet-Draft Problem Details December 2013

 however it is serialized - the details given must also be
 scrutinized.

 Risks include leaking information that can be exploited to compromise
 the system, access to the system, or the privacy of users of the
 system.

 Generators providing links to occurrence information are encouraged
 to avoid making implementation details such as a stack dump available
 through the HTTP interface, since this can expose sensitive details
 of the server implementation, its data, and so on.

 The "status" member duplicates the information available in the HTTP
 status code itself, thereby bringing the possibility of disagreement
 between the two. Their relative precedence is not clear, since a
 disagreement might indicate that (for example) an intermediary has
 modified the HTTP status code in transit. As such, those defining
 problem types as well as generators and consumers of problems need to
 be aware that generic software (such as proxies, load balancers,
 firewalls, virus scanners) are unlikely to know of or respect the
 status code conveyed in this member.

7. IANA Considerations

 This specification defines two new Internet media types [RFC6838]:

 Type name: application
 Subtype name: problem+json
 Required parameters: None
 Optional parameters: None; unrecognised parameters
 should be ignored
 Encoding considerations: Same as [RFC4627]
 Security considerations: see [this document]
 Interoperability considerations: None.
 Published specification: [this document]
 Applications that use this media type: HTTP
 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a
 Person & email address to contact for further information:
 Mark Nottingham <mnot@mnot.net>
 Intended usage: COMMON
 Restrictions on usage: None.
 Author: Mark Nottingham <mnot@mnot.net>
 Change controller: IESG

https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc4627

Nottingham & Wilde Expires June 12, 2014 [Page 9]

Internet-Draft Problem Details December 2013

 Type name: application
 Subtype name: problem+xml
 Required parameters: None
 Optional parameters: None; unrecognized parameters
 should be ignored
 Encoding considerations: Same as [RFC3023]
 Security considerations: see [this document]
 Interoperability considerations: None.
 Published specification: [this document]
 Applications that use this media type: HTTP
 Additional information:
 Magic number(s): n/a
 File extension(s): n/a
 Macintosh file type code(s): n/a
 Person & email address to contact for further information:
 Mark Nottingham <mnot@mnot.net>
 Intended usage: COMMON
 Restrictions on usage: None.
 Author: Mark Nottingham <mnot@mnot.net>
 Change controller: IESG

8. Acknowledgements

 The authors would like to thank Jan Algermissen, Mike Amundsen, Subbu
 Allamaraju, Roy Fielding, Eran Hammer, Sam Johnston, Mike McCall,
 Julian Reschke, and James Snell for review of this specification.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5234] Crocker, D. and P. Overell, "Augmented BNF for Syntax

https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627

Nottingham & Wilde Expires June 12, 2014 [Page 10]

Internet-Draft Problem Details December 2013

 Specifications: ABNF", STD 68, RFC 5234, January 2008.

9.2. Informative References

 [ISO-19757-2]
 International Organization for Standardization,
 "Information Technology --- Document Schema Definition
 Languages (DSDL) --- Part 2: Grammar-based Validation ---
 RELAX NG", ISO/IEC 19757-2, 2003.

 [RFC3023] Murata, M., St. Laurent, S., and D. Kohn, "XML Media
 Types", RFC 3023, January 2001.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6694] Moonesamy, S., "The "about" URI Scheme", RFC 6694,
 August 2012.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, January 2013.

 [W3C.REC-html401-19991224]
 Hors, A., Raggett, D., and I. Jacobs, "HTML 4.01
 Specification", World Wide Web Consortium
 Recommendation REC-html401-19991224, December 1999,
 <http://www.w3.org/TR/1999/REC-html401-19991224>.

 [W3C.REC-rdfa-core-20120607]
 Adida, B., Birbeck, M., McCarron, S., and I. Herman, "RDFa
 Core 1.1", World Wide Web Consortium Recommendation REC-
 rdfa-core-20120607, June 2012,
 <http://www.w3.org/TR/2012/REC-rdfa-core-20120607>.

 [W3C.REC-xml-20081126]
 Yergeau, F., Maler, E., Paoli, J., Sperberg-McQueen, C.,
 and T. Bray, "Extensible Markup Language (XML) 1.0 (Fifth
 Edition)", World Wide Web Consortium Recommendation REC-
 xml-20081126, November 2008,
 <http://www.w3.org/TR/2008/REC-xml-20081126>.

URIs

 [1] <https://www.ietf.org/mailman/listinfo/apps-discuss>

https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc3023
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6694
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
http://www.w3.org/TR/1999/REC-html401-19991224
http://www.w3.org/TR/2012/REC-rdfa-core-20120607
http://www.w3.org/TR/2008/REC-xml-20081126
https://www.ietf.org/mailman/listinfo/apps-discuss

Nottingham & Wilde Expires June 12, 2014 [Page 11]

Internet-Draft Problem Details December 2013

Appendix A. HTTP Problems and XML

 Some HTTP-based APIs use XML [W3C.REC-xml-20081126] as their primary
 format convention. Such APIs MAY express problem details using the
 format defined in this appendix.

 The OPTIONAL RELAX NG schema [ISO-19757-2] for the XML format is:

 default namespace ns = "urn:ietf:rfc:XXXX"

 start = problem

 problem =
 element problem {
 (element type { xsd:anyURI }
 & element title { xsd:string }
 & element detail { xsd:string }?
 & element status { xsd:positiveInteger }?
 & element instance { xsd:anyURI }?),
 anyNsElement
 }

 anyNsElement =
 (element ns:* { anyNsElement | text }
 | attribute * { text })*

 The media type for this format is "application/problem+xml".

 Extension arrays and objects can be serialized into the XML format by
 considering an element containing a child or children to represent an
 object, except for elements that contain only child element(s) named
 'i', which are considered arrays. For example, an alternate version
 of the example above would appear in XML as:

Nottingham & Wilde Expires June 12, 2014 [Page 12]

Internet-Draft Problem Details December 2013

 HTTP/1.1 403 Forbidden
 Content-Type: application/problem+xml
 Content-Language: en

 <?xml version="1.0" encoding="UTF-8"?>
 <problem xmlns="urn:ietf:rfc:XXXX">
 <type>http://example.com/probs/out-of-credit</type>
 <title>You do not have enough credit.</title>
 <detail>Your current balance is 30, but that costs 50.</detail>
 <instance>
 http://example.net/account/12345/msgs/abc
 </instance>
 <balance>30</balance>
 <accounts>
 <i>http://example.net/account/12345</i>
 <i>http://example.net/account/67890</i>
 </accounts>
 </problem>

 Note that this format uses an XML Namespace. This is primarily to
 allow embedding it into other formats; it does not imply that it can
 be extended with content from other namespaces. The RELAX NG schema
 explicitly only allows elements from the one namespace used in the
 XML format. Any extension arrays and objects MUST be serialized into
 XML markup using that namespace.

Authors' Addresses

 Mark Nottingham
 Akamai

 Email: mnot@mnot.net
 URI: http://www.mnot.net/

 Erik Wilde
 EMC
 6801 Koll Center Parkway
 Pleasanton, CA 94566
 U.S.A.

 Phone: +1-925-6006244
 Email: erik.wilde@emc.com
 URI: http://dret.net/netdret/

http://www.mnot.net/
http://dret.net/netdret/

Nottingham & Wilde Expires June 12, 2014 [Page 13]

