
Network Working Group M. Nottingham
Internet-Draft February 1, 2017
Intended status: Informational
Expires: August 5, 2017

Retrying HTTP Requests
draft-nottingham-httpbis-retry-01

Abstract

 HTTP allows requests to be automatically retried under certain
 circumstances. This draft explores how this is implemented,
 requirements for similar functionality from other parts of the stack,
 and potential future improvements.

Note to Readers

 This draft is not intended to be published as an RFC.

 The issues list for this draft can be found at
https://github.com/mnot/I-D/labels/httpbis-retry .

 The most recent (often, unpublished) draft is at
https://mnot.github.io/I-D/httpbis-retry/ .

 Recent changes are listed at https://github.com/mnot/I-D/commits/gh-
pages/httpbis-retry .

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on August 5, 2017.

Nottingham Expires August 5, 2017 [Page 1]

https://github.com/mnot/I-D/labels/httpbis-retry
https://mnot.github.io/I-D/httpbis-retry/
https://github.com/mnot/I-D/commits/gh-pages/httpbis-retry
https://github.com/mnot/I-D/commits/gh-pages/httpbis-retry
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Retrying HTTP Requests February 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3

2. Background . 3
2.1. Retries and Replays: A Taxonomy of Repetition 3
2.2. What the Spec Says: Automatic Retries 4
2.3. What the Specs Say: Replay 5
2.3.1. TCP Fast Open . 5
2.3.2. TLS 1.3 . 5
2.3.3. QUIC . 6

3. Discussion . 6
3.1. Automatic Retries In Practice 6
3.2. Replays Are Different 7

4. Possible Areas of Work 8
4.1. Updating HTTP's Requirements for Retries 8
4.2. Protocol Extensions 9
4.3. Feedback to Transport 0RTT Efforts 9

5. Security Considerations 9
6. Acknowledgements . 9
7. References . 10
7.1. Normative References 10
7.2. Informative References 10
7.3. URIs . 11

Appendix A. When Clients Retry 11
A.1. Squid . 11
A.2. Traffic Server . 12
A.3. Firefox . 14
A.4. Chromium . 16
A.5. Curl . 17

 Author's Address . 18

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Nottingham Expires August 5, 2017 [Page 2]

Internet-Draft Retrying HTTP Requests February 2017

1. Introduction

 One of the benefits of HTTP's well-defined method semantics is that
 they allow failed requests to be retried, under certain
 circumstances.

 However, interest in extending, redefining or just clarifying HTTP's
 retry semantics is increasing, for a number of reasons:

 o Since HTTP/1.1's requirements were written, there has been a
 substantial amount of experience deploying and using HTTP, leading
 implementations to refine their behaviour, often diverging from
 the specification.

 o Likewise, changes such as HTTP/2 [RFC7540] might change the
 underlying assumptions that these requirements were based upon.

 o Emerging lower-layer developments such as TCP Fast Open [RFC7413],
 TLS/1.3 [I-D.ietf-tls-tls13] and QUIC [I-D.ietf-quic-transport]
 introduce the possibility of replayed requests in the beginning of
 a connection, thanks to Zero Round Trip (0RT) modes. In some
 ways, these are similar to retries - but not completely.

 o Applications sometimes want requests to be retried by
 infrastructure, but can't easily express them in a non-idempotent
 request (such as GET).

 This draft gives some background in Section 2, discusses aspects of
 these issues in Section 3, suggesting possible areas of work in

Section 4, and cataloguing current implementation behaviours in
Appendix A.

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Background

2.1. Retries and Replays: A Taxonomy of Repetition

 In HTTP, there are three similar but separate phenomena that deserve
 consideration for the purposes of this document:

 1. *User Retries* happen when a user initiates an action that
 results in a duplicate HTTP request message being emitted. For
 example, a user retry might occur when a "reload" button is

https://datatracker.ietf.org/doc/html/rfc7540
https://datatracker.ietf.org/doc/html/rfc7413
https://datatracker.ietf.org/doc/html/rfc2119

Nottingham Expires August 5, 2017 [Page 3]

Internet-Draft Retrying HTTP Requests February 2017

 pressed, a URL is typed in again, "return" is pressed in the URL
 bar again, or a navigation link or form button is pressed twice
 while still on screen.

 2. *Automatic Retries* happen when an HTTP client implementation
 resends a previous request message without user intervention or
 initiation. This might happen when a GET request fails to return
 a complete response, or when a connection drops before the
 request is sent. Note that automatic retries can (and are)
 performed both by user agents and intermediary clients.

 3. *Replays* happen when the underlying transport units (e.g., TCP
 packets, QUIC frames) containing a HTTP request message are re-
 sent on the network *and* appear to be separate requests to the
 downstream server, either automatically as part of transport
 protocol operation, or by an attacker. The upstream HTTP client
 might not have any indication that a replay has occurred.

 Note that retries initiated by code shipped to the client by the
 server (e.g., in JavaScript) occupy a grey area here. Because they
 are not initiated by the generic HTTP client implementation itself,
 we will consider them user retries for the time being.

 Also, this document doesn't include transport layer loss recovery
 (e.g., TCP retransmission). This is distinguished from replays
 because the transport automatically suppresses duplicates.

2.2. What the Spec Says: Automatic Retries

[RFC7230], Section 6.3.1 allows HTTP requests to be retried in
 certain circumstances:

 When an inbound connection is closed prematurely, a client MAY
 open a new connection and automatically retransmit an aborted
 sequence of requests if all of those requests have idempotent
 methods (Section 4.2.2 of [RFC7231]). A proxy MUST NOT
 automatically retry non-idempotent requests.

 A user agent MUST NOT automatically retry a request with a non-
 idempotent method unless it has some means to know that the
 request semantics are actually idempotent, regardless of the
 method, or some means to detect that the original request was
 never applied. For example, a user agent that knows (through
 design or configuration) that a POST request to a given resource
 is safe can repeat that request automatically. Likewise, a user
 agent designed specifically to operate on a version control
 repository might be able to recover from partial failure
 conditions by checking the target resource revision(s) after a

https://datatracker.ietf.org/doc/html/rfc7230#section-6.3.1
https://datatracker.ietf.org/doc/html/rfc7231#section-4.2.2

Nottingham Expires August 5, 2017 [Page 4]

Internet-Draft Retrying HTTP Requests February 2017

 failed connection, reverting or fixing any changes that were
 partially applied, and then automatically retrying the requests
 that failed.

 A client SHOULD NOT automatically retry a failed automatic retry.

 Note that the complete list of idempotent methods is maintained in
 the IANA HTTP Method Registry [4].

2.3. What the Specs Say: Replay

2.3.1. TCP Fast Open

[RFC7413], Section 6.3.1 addresses HTTP Request Replay with TCP Fast
 Open:

 While TFO is motivated by Web applications, the browser should not
 use TFO to send requests in SYNs if those requests cannot tolerate
 replays. One example is POST requests without application-layer
 transaction protection (e.g., a unique identifier in the request
 header).

 On the other hand, TFO is particularly useful for GET requests.
 GET request replay could happen across striped TCP connections:
 after a server receives an HTTP request but before the ACKs of the
 requests reach the browser, the browser may time out and retry the
 same request on another (possibly new) TCP connection. This
 differs from a TFO replay only in that the replay is initiated by
 the browser, not by the TCP stack.

 The same specification addresses HTTP over TLS in Section 6.3.2:

 For Transport Layer Security (TLS) over TCP, it is safe and useful
 to include a TLS client_hello in the SYN packet to save one RTT in
 the TLS handshake. There is no concern about violating
 idempotency. In particular, it can be used alone with the
 speculative connection above.

2.3.2. TLS 1.3

 [I-D.ietf-tls-tls13], Section 2.3 explains the properties of Zero-RTT
 Data in TLS 1.3:

 IMPORTANT NOTE: The security properties for 0-RTT data (regardless
 of the cipher suite) are weaker than those for other kinds of TLS
 data. Specifically:

https://datatracker.ietf.org/doc/html/rfc7413#section-6.3.1

Nottingham Expires August 5, 2017 [Page 5]

Internet-Draft Retrying HTTP Requests February 2017

 1. This data is not forward secret, because it is encrypted
 solely with the PSK.

 2. There are no guarantees of non-replay between connections.
 Unless the server takes special measures outside those
 provided by TLS, the server has no guarantee that the same
 0-RTT data was not transmitted on multiple 0-RTT connections
 (See Section 4.2.6.2 for more details). This is especially
 relevant if the data is authenticated either with TLS client
 authentication or inside the application layer protocol.
 However, 0-RTT data cannot be duplicated within a connection
 (i.e., the server will not process the same data twice for the
 same connection) and an attacker will not be able to make
 0-RTT data appear to be 1-RTT data (because it is protected
 with different keys.)

Section 4.2.6 defines a mechanism to limit the exposure to replay.

2.3.3. QUIC

 [I-D.ietf-quic-tls] Section 7.2 says this about the risks of replay
 during the 0RTT handshake:

 If 0-RTT keys are available, the lack of replay protection means
 that restrictions on their use are necessary to avoid replay
 attacks on the protocol.

 A client MUST only use 0-RTT keys to protect data that is
 idempotent. A client MAY wish to apply additional restrictions on
 what data it sends prior to the completion of the TLS handshake.
 A client otherwise treats 0-RTT keys as equivalent to 1-RTT keys.

 A client that receives an indication that its 0-RTT data has been
 accepted by a server can send 0-RTT data until it receives all of
 the server's handshake messages. A client SHOULD stop sending
 0-RTT data if it receives an indication that 0-RTT data has been
 rejected.

 A server MUST NOT use 0-RTT keys to protect packets.

3. Discussion

3.1. Automatic Retries In Practice

 In practice, it has been observed (see Appendix A) that some client
 implementations (both user agent and intermediary) do automatically
 retry requests. However, they do not do so consistently, and

Nottingham Expires August 5, 2017 [Page 6]

Internet-Draft Retrying HTTP Requests February 2017

 arguably not in the spirit of the specification, unless this vague
 catch-all:

 some means to detect that the original request was never applied

 is interpreted very broadly.

 On the server side, it has been widely observed that content on the
 Web doesn't always honour HTTP idemotency semantics, with many GET
 requests incurring side effects, and with some sites even requiring
 browsers to retry POST requests in order to properly interoperate.

 Despite this situation, the Web seems to work reasonably well to date
 (with notable exceptions [5]).

 The status quo, therefore, is that no Web application can read HTTP's
 retry requirements as a guarantee that any given request won't be
 retried, even for methods that are not idempotent. As a result,
 applications that care about avoiding duplicate requests need to
 build a way to detect not only user retries but also automatic
 retries into the application "above" HTTP itself.

3.2. Replays Are Different

 TCP Fast Open [RFC7413], TLS/1.3 [I-D.ietf-tls-tls13] and QUIC
 [I-D.ietf-quic-transport] all have mechanisms to carry application
 data on the first packet sent by a client, to avoid the latency of
 connection setup.

 The request(s) in this first packet might be _replayed_, either
 because the first packet (now carrying a HTTP request) is thought to
 be lost and retransmitted, or because an attacker observes the packet
 and sends a duplicate at some point in the future.

 At first glance, it seems as if the idempotency semantics of HTTP
 request methods could be used to determine what requests are suitable
 for inclusion in the first packet of various 0RTT mechanisms being
 discussed (as suggested by TCP Fast Open). For example, we could
 disallow POST (and other non-idempotent methods) in 0RTT data.

 Upon reflection, though, the observations above lead us to believe
 that since any request might be retried (automatically or by users),
 applications will still need to have a means of detecting duplicate
 requests, thereby preventing side effects from replays as well as
 retries. Thus, any HTTP request can be included in the first packet
 of a 0RTT, despite the risk of replay.

https://datatracker.ietf.org/doc/html/rfc7413

Nottingham Expires August 5, 2017 [Page 7]

Internet-Draft Retrying HTTP Requests February 2017

 Two types of attack specific to replayed HTTP requests need to be
 taken into account, however:

 1. A replay is a potential Denial of Service vector. An attacker
 that can replay a request many times can probe for weaknesses in
 retry protections, and can bring a server that needs to do any
 substantial processing down.

 2. An attacker might use a replayed request to leak information
 about the response over time. If they can observe the encrypted
 payload on the wire, they can infer the size of the response
 (e.g., it might get bigger if the user's bank account has more in
 it).

 The first attack cannot be mitigated by HTTP; the 0RT mechanism
 itself needs some transport-layer means of scoping the usability of
 the first packet on a connection so that it cannot be reused broadly.
 For example, this might be by time, or by network location.

 The second attack is more difficult to mitigate; scoping the
 usability of the first packet helps, but does not completely prevent
 the attack. If the replayed request is state-changing, the
 application's retry detection should kick in and prevent information
 leakage (since the response will likely contain an error, instead of
 the desired information).

 If it is not (e.g., a GET), the information being targeted is
 vulnerable as long as both the first packet and the credentials in
 the request (if any) are valid.

4. Possible Areas of Work

4.1. Updating HTTP's Requirements for Retries

 The currently language in [RFC7230] about retries is vague about the
 conditions under which a request can be retried, leading to
 significant variance in implementation behaviour. For example, it's
 been observed that many automated clients fail under circumstances
 when browsers succeed, because they do not retry in the same way.

 As a result, more carefully specifying the conditions under which a
 request can be retried would be helpful. Such work would need to
 take into account varying conditions, such as:

 o Connection closes

 o TCP RST

https://datatracker.ietf.org/doc/html/rfc7230

Nottingham Expires August 5, 2017 [Page 8]

Internet-Draft Retrying HTTP Requests February 2017

 o Connection timeouts

 o Whether or not any part of the response has been received

 o Whether or not it is the first request on the connection

 o Variance due to use of HTTP/2, TLS/1.3, TCP Fast Open and QUIC.

 Furthermore, readers might mistake the language in RFC7230 as
 guaranteeing that some requests (e.g., POST) are never automatically
 retried; this should be clarified.

4.2. Protocol Extensions

 A number of mechanisms have been mooted at various times, e.g.:

 o Adding a header to automatically retried requests, to aid de-
 duplication by servers

 o Defining a request header to by added by intermediaries when they
 have received a request in a way that could have been replayed

 o Defining a status code to allow servers to indicate that the
 request needs to be sent in a way that can't be replayed

4.3. Feedback to Transport 0RTT Efforts

 If the observations above hold, we should disabuse any notion that
 HTTP method idempotency is a useful way to avoid problems with replay
 attacks. Instead, we should encourage development of mechanisms to
 mitigate the aspects of replay that are different than retries (e.g.,
 potential for DOS attacks).

5. Security Considerations

 Yep.

6. Acknowledgements

 Thanks to Brad Fitzpatrick, Leif Hedstrom, Subodh Iyengar, Amos
 Jeffries, Patrick McManus, Matt Menke, Miroslav Ponec, Daniel
 Stenberg and Martin Thomson for their input and feedback.

 Thanks also to the participants in the 2016 HTTP Workshop for their
 lively discussion of this topic.

https://datatracker.ietf.org/doc/html/rfc7230

Nottingham Expires August 5, 2017 [Page 9]

Internet-Draft Retrying HTTP Requests February 2017

7. References

7.1. Normative References

 [I-D.ietf-quic-tls]
 Thomson, M. and (. (Unknown), "Using Transport Layer
 Security (TLS) to Secure QUIC", draft-ietf-quic-tls-01
 (work in progress), January 2017.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <http://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <http://www.rfc-editor.org/info/rfc7231>.

 [RFC7413] Cheng, Y., Chu, J., Radhakrishnan, S., and A. Jain, "TCP
 Fast Open", RFC 7413, DOI 10.17487/RFC7413, December 2014,
 <http://www.rfc-editor.org/info/rfc7413>.

7.2. Informative References

 [I-D.ietf-quic-transport]
 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", draft-ietf-quic-transport-01 (work
 in progress), January 2017.

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-18 (work in progress),
 October 2016.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <http://www.rfc-editor.org/info/rfc7540>.

https://datatracker.ietf.org/doc/html/draft-ietf-quic-tls-01
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
http://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
http://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7413
http://www.rfc-editor.org/info/rfc7413
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-01
https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-18
https://datatracker.ietf.org/doc/html/rfc7540
http://www.rfc-editor.org/info/rfc7540

Nottingham Expires August 5, 2017 [Page 10]

Internet-Draft Retrying HTTP Requests February 2017

7.3. URIs

 [1] https://www.iana.org/assignments/http-methods/http-methods.xhtml

 [2] https://signalvnoise.com/archives2/google_web_accelerator_hey_not
_so_fast_an_alert_for_web_app_designers.php

 [3] http://bazaar.launchpad.net/~squid/squid/trunk/view/head:/src/
FwdState.cc#L594

 [4] https://git-wip-
us.apache.org/repos/asf?p=trafficserver.git;a=blob;f=proxy/http/H

 ttpTransact.cc;h=8a1f5364d47654b118296a07a2a95284f119d84b;hb=HEAD
 #l6408

 [5] https://git-wip-
us.apache.org/repos/asf?p=trafficserver.git;a=blob;f=proxy/http/

 HttpTransact.cc;hb=48d7b25ba8a8229b0471d37cdaa6ef24cc634bb0#l3634

 [6] http://mxr.mozilla.org/mozilla-
release/source/netwerk/protocol/http/nsHttpTransaction.cpp#938

 [7] http://mxr.mozilla.org/mozilla-
release/source/netwerk/protocol/http/nsHttpRequestHead.cpp#67

 [8] https://www.fxsitecompat.com/en-CA/docs/2016/post-request-fails-
on-certain-sites-showing-connection-reset-page/

 [9] https://chromium.googlesource.com/chromium/src.git/+/master/net/
 http/http_network_transaction.cc#1657

 [10] https://github.com/curl/curl/blob/master/lib/transfer.c#L1892

Appendix A. When Clients Retry

 In implementations, clients have been observed to retry requests in a
 number of circumstances.

 _Note: This section is intended to inform the discussion, not to be
 published as a standard. If you have relevant information about
 these or other implementations (open or closed), please get in
 touch._

A.1. Squid

 Squid is a caching proxy server that retries requests that it
 considers safe *or* idempotent, as long as there is not a request
 body:

https://www.iana.org/assignments/http-methods/http-methods.xhtml
https://signalvnoise.com/archives2/google_web_accelerator_hey_not_so_fast_an_alert_for_web_app_designers.php
https://signalvnoise.com/archives2/google_web_accelerator_hey_not_so_fast_an_alert_for_web_app_designers.php
http://bazaar.launchpad.net/~squid/squid/trunk/view/head:/src/FwdState.cc#L594
http://bazaar.launchpad.net/~squid/squid/trunk/view/head:/src/FwdState.cc#L594
https://git-wip-us.apache.org/repos/asf?p=trafficserver
https://git-wip-us.apache.org/repos/asf?p=trafficserver
https://git-wip-us.apache.org/repos/asf?p=trafficserver
https://git-wip-us.apache.org/repos/asf?p=trafficserver
http://mxr.mozilla.org/mozilla-release/source/netwerk/protocol/http/nsHttpTransaction.cpp#938
http://mxr.mozilla.org/mozilla-release/source/netwerk/protocol/http/nsHttpTransaction.cpp#938
http://mxr.mozilla.org/mozilla-release/source/netwerk/protocol/http/nsHttpRequestHead.cpp#67
http://mxr.mozilla.org/mozilla-release/source/netwerk/protocol/http/nsHttpRequestHead.cpp#67
https://www.fxsitecompat.com/en-CA/docs/2016/post-request-fails-on-certain-sites-showing-connection-reset-page/
https://www.fxsitecompat.com/en-CA/docs/2016/post-request-fails-on-certain-sites-showing-connection-reset-page/
https://chromium.googlesource.com/chromium/src
https://github.com/curl/curl/blob/master/lib/transfer.c#L1892

Nottingham Expires August 5, 2017 [Page 11]

Internet-Draft Retrying HTTP Requests February 2017

/// Whether we may try sending this request again after a failure.
bool
FwdState::checkRetriable()
{
 // Optimize: A compliant proxy may retry PUTs, but Squid lacks the [rather
 // complicated] code required to protect the PUT request body from being
 // nibbled during the first try. Thus, Squid cannot retry some PUTs today.
 if (request->body_pipe != NULL)
 return false;

 // RFC2616 9.1 Safe and Idempotent Methods
 return (request->method.isHttpSafe() || request->method.isIdempotent());
}

 (source [6])

 Currently, it considers GET, HEAD, OPTIONS, REPORT, PROPFIND, SEARCH
 and PRI to be safe, and GET, HEAD, PUT, DELETE, OPTIONS, TRACE,
 PROPFIND, PROPPATCH, MKCOL, COPY, MOVE, UNLOCK, and PRI to be
 idempotent.

A.2. Traffic Server

 Apache Traffic Server, a caching proxy server, ties retry-ability to
 whether the request required a "tunnel" - i.e., forwarding the
 request body to the next server. This is indicated by
 "request_body_start", which is set when a POST tunnel is used.

https://datatracker.ietf.org/doc/html/rfc2616

Nottingham Expires August 5, 2017 [Page 12]

Internet-Draft Retrying HTTP Requests February 2017

// bool HttpTransact::is_request_retryable
//
// If we started a POST/PUT tunnel then we can
// not retry failed requests
//
bool
HttpTransact::is_request_retryable(State *s)
{
 if (s->hdr_info.request_body_start == true) {
 return false;
 }

 if (s->state_machine->plugin_tunnel_type != HTTP_NO_PLUGIN_TUNNEL) {
 // API can override
 if (s->state_machine->plugin_tunnel_type == HTTP_PLUGIN_AS_SERVER &&
 s->api_info.retry_intercept_failures == true) {
 // This used to be an == comparison, which made no sense. Changed
 // to be an assignment, hoping the state is correct.
 s->state_machine->plugin_tunnel_type = HTTP_NO_PLUGIN_TUNNEL;
 } else {
 return false;
 }
 }

 return true;
}

 (source [7])

 When connected to an origin server, Traffic Server attempts to retry
 under a number of failure conditions:

///
// Name : handle_response_from_server
// Description: response is from the origin server
//
// Details :
//
// response from the origin server. one of three things can happen now.
// if the response is bad, then we can either retry (by first downgrading
// the request, maybe making it non-keepalive, etc.), or we can give up.
// the latter case is handled by handle_server_connection_not_open and
// sends an error response back to the client. if the response is good
// handle_forward_server_connection_open is called.
//
//
// Possible Next States From Here:
//

Nottingham Expires August 5, 2017 [Page 13]

Internet-Draft Retrying HTTP Requests February 2017

///
void
HttpTransact::handle_response_from_server(State *s)
{

[...]

 switch (s->current.state) {
 case CONNECTION_ALIVE:
 DebugTxn("http_trans", "[hrfs] connection alive");
 SET_VIA_STRING(VIA_DETAIL_SERVER_CONNECT, VIA_DETAIL_SERVER_SUCCESS);
 s->current.server->clear_connect_fail();
 handle_forward_server_connection_open(s);
 break;

[...]

 case OPEN_RAW_ERROR:
 /* fall through */
 case CONNECTION_ERROR:
 /* fall through */
 case STATE_UNDEFINED:
 /* fall through */
 case INACTIVE_TIMEOUT:
 // Set to generic I/O error if not already set specifically.
 if (!s->current.server->had_connect_fail())
 s->current.server->set_connect_fail(EIO);

 if (is_server_negative_cached(s)) {
 max_connect_retries = s->txn_conf-
>connect_attempts_max_retries_dead_server;
 } else {
 // server not yet negative cached - use default number of retries
 max_connect_retries = s->txn_conf->connect_attempts_max_retries;
 }
 if (s->pCongestionEntry != NULL)
 max_connect_retries = s->pCongestionEntry->connect_retries();

 if (is_request_retryable(s) && s->current.attempts < max_connect_retries) {

 (source [8])

A.3. Firefox

 Firefox is a Web browser that retries under the following conditions:

Nottingham Expires August 5, 2017 [Page 14]

Internet-Draft Retrying HTTP Requests February 2017

// if the connection was reset or closed before we wrote any part of the
// request or if we wrote the request but didn't receive any part of the
// response and the connection was being reused, then we can (and really
// should) assume that we wrote to a stale connection and we must therefore
// repeat the request over a new connection.
//
// We have decided to retry not only in case of the reused connections, but
// all safe methods(bug 1236277).
//
// NOTE: the conditions under which we will automatically retry the HTTP
// request have to be carefully selected to avoid duplication of the
// request from the point-of-view of the server. such duplication could
// have dire consequences including repeated purchases, etc.
//
// NOTE: because of the way SSL proxy CONNECT is implemented, it is
// possible that the transaction may have received data without having
// sent any data. for this reason, mSendData == FALSE does not imply
// mReceivedData == FALSE. (see bug 203057 for more info.)
//

[...]

 if (!mReceivedData &&
 ((mRequestHead && mRequestHead->IsSafeMethod()) ||
 !reallySentData || connReused)) {
 // if restarting fails, then we must proceed to close the pipe,
 // which will notify the channel that the transaction failed.

 (source [9])

 ... and it considers GET, HEAD, OPTIONS, TRACE, PROPFIND, REPORT, and
 SEARCH to be safe:

Nottingham Expires August 5, 2017 [Page 15]

Internet-Draft Retrying HTTP Requests February 2017

 bool
 nsHttpRequestHead::IsSafeMethod() const
 {
 // This code will need to be extended for new safe methods, otherwise
 // they'll default to "not safe".
 if (IsGet() || IsHead() || IsOptions() || IsTrace()) {
 return true;
 }

 if (mParsedMethod != kMethod_Custom) {
 return false;
 }

 return (!strcmp(mMethod.get(), "PROPFIND") ||
 !strcmp(mMethod.get(), "REPORT") ||
 !strcmp(mMethod.get(), "SEARCH"));
 }

 (source [10])

 Note that "connReused" is tested; if a connection has been used
 before, Firefox will retry _any_ request, safe or not. A recent
 change attempted to remove this behaviour, but it caused
 compatibility problems [11], and is being backed out.

A.4. Chromium

 Chromium is a Web browser that appears to retry any request when a
 connection is broken, as long as it's successfully used the
 connection before, and hasn't received any response headers yet:

bool HttpNetworkTransaction::ShouldResendRequest() const {
 bool connection_is_proven = stream_->IsConnectionReused();
 bool has_received_headers = GetResponseHeaders() != NULL;

 // NOTE: we resend a request only if we reused a keep-alive connection.
 // This automatically prevents an infinite resend loop because we'll run
 // out of the cached keep-alive connections eventually.
 if (connection_is_proven && !has_received_headers)
 return true;
 return false;
}

 (source [12])

Nottingham Expires August 5, 2017 [Page 16]

Internet-Draft Retrying HTTP Requests February 2017

A.5. Curl

 Curl is both a command-line client and widely-used library for HTTP.
 Like Chromium, it will retry a request if the response hasn't
 started.

CURLcode Curl_retry_request(struct connectdata *conn,
 char **url)
{
 struct Curl_easy *data = conn->data;

 *url = NULL;

 /* if we're talking upload, we can't do the checks below, unless the protocol
 is HTTP as when uploading over HTTP we will still get a response */
 if(data->set.upload &&
 !(conn->handler->protocol&(PROTO_FAMILY_HTTP|CURLPROTO_RTSP)))
 return CURLE_OK;

 if((data->req.bytecount + data->req.headerbytecount == 0) &&
 conn->bits.reuse &&
 (data->set.rtspreq != RTSPREQ_RECEIVE)) {
 /* We didn't get a single byte when we attempted to re-use a
 connection. This might happen if the connection was left alive when we
 were done using it before, but that was closed when we wanted to use it
 again. Bad luck. Retry the same request on a fresh connect! */
 infof(conn->data, "Connection died, retrying a fresh connect\n");
 *url = strdup(conn->data->change.url);
 if(!*url)
 return CURLE_OUT_OF_MEMORY;

 connclose(conn, "retry"); /* close this connection */
 conn->bits.retry = TRUE; /* mark this as a connection we're about
 to retry. Marking it this way should
 prevent i.e HTTP transfers to return
 error just because nothing has been
 transferred! */

 if(conn->handler->protocol&PROTO_FAMILY_HTTP) {
 struct HTTP *http = data->req.protop;
 if(http->writebytecount)
 return Curl_readrewind(conn);
 }
 }
 return CURLE_OK;
}

Nottingham Expires August 5, 2017 [Page 17]

Internet-Draft Retrying HTTP Requests February 2017

 (source [13])

Author's Address

 Mark Nottingham

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

Nottingham Expires August 5, 2017 [Page 18]

https://www.mnot.net/

