
Network Working Group M. Nottingham
Internet-Draft May 8, 2013
Intended status: Informational
Expires: November 9, 2013

Home Documents for HTTP APIs
draft-nottingham-json-home-03

Abstract

 This document proposes a "home document" format for non-browser HTTP
 clients.

Note to Readers

 This draft should be discussed on the apps-discuss mailing list; see
 [apps-discuss].

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 9, 2013.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Nottingham Expires November 9, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Home Documents for HTTP APIs May 2013

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
1.1. Notational Conventions 3

2. JSON Home Documents . 3
3. Resource Objects . 5
3.1. Resolving Templated Links 6

4. Resource Hints . 6
4.1. allow . 7
4.2. formats . 7
4.3. accept-patch . 7
4.4. accept-post . 8
4.5. accept-ranges . 8
4.6. accept-prefer . 8
4.7. docs . 8
4.8. precondition-req . 9
4.9. auth-req . 9
4.10. status . 9

5. Representation Hints . 10
6. Creating and Serving Home Documents 10
6.1. Managing Change in Home Documents 10
6.2. Evolving and Mixing APIs with Home Documents 11
6.3. Documenting APIs that use Home Documents 11

7. Consuming Home Documents 11
8. Security Considerations 12
9. IANA Considerations . 12
9.1. HTTP Resource Hint Registry 12
9.2. HTTP Representation Hint Registry 12
9.3. Media Type Registration 12

10. References . 13
10.1. Normative References 13
10.2. Informative References 13

Appendix A. Acknowledgements 14
Appendix B. Frequently Asked Questions 14
B.1. Why not Microformats? 14

 B.2. Why doesn't the format allow references or inheritance? . 15
B.3. What about authentication? 15
B.4. What about "Faults" (i.e., errors)? 15
B.5. How Do I find the schema for a format? 15
B.6. How do I express complex query arguments? 15

Appendix C. Open Issues . 16
 Author's Address . 16

Nottingham Expires November 9, 2013 [Page 2]

Internet-Draft Home Documents for HTTP APIs May 2013

1. Introduction

 There is an emerging preference for non-browser Web applications
 (colloquially, "HTTP APIs") to use a link-driven approach to their
 interactions to assure loose coupling, thereby enabling extensibility
 and API evolution.

 This is based upon experience with previous APIs that specified
 static URI paths (such as
 "http://api.example.com/v1.0/widgets/abc123/properties"), which have
 resulted in brittle, tight coupling between clients and servers.

 Sometimes, these APIs are documented by a document format like [WADL]
 that is used as a design-time description; i.e., the URIs and other
 information they describe are "baked into" client implementations.

 In contrast, a "follow your nose" API advertises the resources
 available to clients using link relations [RFC5988] and the formats
 they support using internet media types [RFC6838]. A client can then
 decide - at run time - which resources to interact with based upon
 its capabilities (as described by link relations), and the server can
 safely add new resources and formats without disturbing clients that
 are not yet aware of them.

 As such, clients need to be able to discover this information quickly
 and efficiently use it to interact with the server. Just as with a
 human-targeted "home page" for a site, we can create a "home
 document" for a HTTP API that describes it to non-browser clients.

 Of course, an HTTP API might use any format to do so; however, there
 are advantages to having a standard home document format. This
 specification suggests one for consideration, using the JSON format
 [RFC4627].

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. JSON Home Documents

 A JSON Home Document uses the format described in [RFC4627] and has
 the media type "application/json-home".

 Its content consists of a root object with a "resources" property,
 whose member names are link relation types (as defined by [RFC5988]),

https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6838
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5988

Nottingham Expires November 9, 2013 [Page 3]

Internet-Draft Home Documents for HTTP APIs May 2013

 and values are Resource Objects, defined below.

 For example:

 GET / HTTP/1.1
 Host: example.org
 Accept: application/json-home

 HTTP/1.1 200 OK
 Content-Type: application/json-home
 Cache-Control: max-age=3600
 Connection: close

 {
 "resources": {
 "http://example.org/rel/widgets": {
 "href": "/widgets/"
 },
 "http://example.org/rel/widget": {
 "href-template": "/widgets/{widget_id}",
 "href-vars": {
 "widget_id": "http://example.org/param/widget"
 },
 "hints": {
 "allow": ["GET", "PUT", "DELETE", "PATCH"],
 "formats": {
 "application/json": {}
 },
 "accept-patch": ["application/json-patch"],
 "accept-post": ["application/xml"],
 "accept-ranges": ["bytes"]
 }
 }
 }
 }

 Here, we have a home document that links to a resource, "/widgets/"
 with the relation "http://example.org/rel/widgets". It also links to
 an unknown number of resources with the relation type
 "http://example.org/rel/widget" using a URI Template [RFC6570], along
 with a mapping of identifiers to a variable for use in that template.

 It also gives several hints about interacting with the latter
 "widget" resources, including the HTTP methods usable with them, the
 patch formats they accept, and the fact that they support partial
 requests [I-D.ietf-httpbis-p5-range] using the "bytes" range-
 specifier.

https://datatracker.ietf.org/doc/html/rfc6570

Nottingham Expires November 9, 2013 [Page 4]

Internet-Draft Home Documents for HTTP APIs May 2013

 It gives no such hints about the "widgets" resource. This does not
 mean that it (for example) doesn't support any HTTP methods; it means
 that the client will need to discover this by interacting with the
 resource, and/or examining the documentation for its link relation
 type.

 Effectively, this names a set of behaviors, as described by a
 resource object, with a link relation type. This means that several
 link relations might apply to a common base URL; e.g.:

 {
 "resources": {
 "http://example.org/rel/search-by-id": {
 "href-template": "/search?id={widget}",
 "href-vars": {
 "widget_name": "http://example.org/param/widget"
 }
 },
 "http://example.org/rel/search-by-name": {
 "href-template": "/search?name={widget_name}",
 "href-vars": {
 "widget_name": "http://example.org/param/widget_name"
 }
 }
 }
 }

3. Resource Objects

 A Resource Object links to resources of the defined type using one of
 two mechanisms; either a direct link (in which case there is exactly
 one resource of that relation type associated with the API), or a
 templated link, in which case there are zero to many such resources.

 Direct links are indicated with an "href" property, whose value is a
 URI [RFC3986].

 Templated links are indicated with an "href-template" property, whose
 value is a URI Template [RFC6570]. When "href-template" is present,
 the Resource Object MUST have a "href-vars" property; see "Resolving
 Templated Links".

 Resource Objects MUST have exactly one of the "href" and "href-vars"
 properties.

 In both forms, the links that "href" and "href-template" refer to are
 URI-references [RFC3986] whose base URI is that of the JSON Home

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/rfc3986

Nottingham Expires November 9, 2013 [Page 5]

Internet-Draft Home Documents for HTTP APIs May 2013

 Document itself.

 Resource Objects MAY also have a "hints" property, whose value is an
 object that uses named Resource Hints (see Section 4) as its
 properties.

3.1. Resolving Templated Links

 A URI can be derived from a Templated Link by treating the "href-
 template" value as a Level 3 URI Template [RFC6570], using the "href-
 vars" property to fill the template.

 The "href-vars" property, in turn, is an object that acts as a
 mapping between variable names available to the template and absolute
 URIs that are used as global identifiers for the semantics and syntax
 of those variables.

 For example, given the following Resource Object:

 "http://example.org/rel/widget": {
 "href-template": "/widgets/{widget_id}",
 "href-vars": {
 "widget_id": "http://example.org/param/widget"
 },
 "hints": {
 "allow": ["GET", "PUT", "DELETE", "PATCH"],
 "formats": {
 "application/json": {}
 },
 "accept-patch": ["application/json-patch"],
 "accept-post": ["application/xml"],
 "accept-ranges": ["bytes"]
 }
 }

 If you understand that "http://example.org/param/widget" is an
 numeric identifier for a widget (perhaps by dereferencing that URL
 and reading the documentation), you can then find the resource
 corresponding to widget number 12345 at
 "http://example.org/widgets/12345" (assuming that the Home Document
 is located at "http://example.org/").

4. Resource Hints

 Resource hints allow clients to find relevant information about
 interacting with a resource beforehand, as a means of optimising
 communications, as well as advertising available behaviours (e.g., to

https://datatracker.ietf.org/doc/html/rfc6570

Nottingham Expires November 9, 2013 [Page 6]

Internet-Draft Home Documents for HTTP APIs May 2013

 aid in laying out a user interface for consuming the API).

 Hints are just that - they are not a "contract", and are to only be
 taken as advisory. The runtime behaviour of the resource always
 overrides hinted information.

 For example, a resource might hint that the PUT method is allowed on
 all "widget" resources. This means that generally, the user has the
 ability to PUT to a particular resource, but a specific resource
 might reject a PUT based upon access control or other considerations.
 More fine-grained information might be gathered by interacting with
 the resource (e.g., via a GET), or by another resource "containing"
 it (such as a "widgets" collection) or describing it (e.g., one
 linked to it with a "describedby" link relation).

 This specification defines a set of common hints, based upon
 information that's discoverable by directly interacting with
 resources. See Section 9.1 for information on defining new hints.

4.1. allow

 o Resource Hint Name: allow
 o Description: Hints the HTTP methods that the current client will
 be able to use to interact with the resource; equivalent to the
 Allow HTTP response header.
 o Specification: [this document]

 Content MUST be an array of strings, containing HTTP methods.

4.2. formats

 o Resource Hint Name: formats
 o Description: Hints the representation types that the resource
 produces and consumes, using the GET and PUT methods respectively,
 subject to the 'allow' hint.
 o Specification: [this document]

 Content MUST be an object, whose keys are media types, and values are
 objects containing Representation Hints (see Section 5).

4.3. accept-patch

 o Resource Hint Name: accept-patch
 o Description: Hints the PATCH [RFC5789] request formats accepted by
 the resource for this client; equivalent to the Accept-Patch HTTP
 response header.

https://datatracker.ietf.org/doc/html/rfc5789

Nottingham Expires November 9, 2013 [Page 7]

Internet-Draft Home Documents for HTTP APIs May 2013

 o Specification: [this document]

 Content MUST be an array of strings, containing media types.

 When this hint is present, "PATCH" SHOULD be listed in the "allow"
 hint.

4.4. accept-post

 o Resource Hint Name: accept-post
 o Description: Hints the POST request formats accepted by the
 resource for this client.
 o Specification: [this document]

 Content MUST be an array of strings, containing media types.

 When this hint is present, "POST" SHOULD be listed in the "allow"
 hint.

4.5. accept-ranges

 o Resource Hint Name: accept-ranges
 o Description: Hints the range-specifiers available to the client
 for this resource; equivalent to the Accept-Ranges HTTP response
 header [I-D.ietf-httpbis-p5-range].
 o Specification: [this document]

 Content MUST be an array of strings, containing HTTP range-
 specifiers.

4.6. accept-prefer

 o Resource Hint Name: accept-prefer
 o Description: Hints the preferences [I-D.snell-http-prefer]
 supported by the resource. Note that, as per that specifications,
 a preference can be ignored by the server.
 o Specification: [this document]

 Content MUST be an array of strings, contain preferences.

4.7. docs

 o Resource Hint Name: docs
 o Description: Hints the location for human-readable documentation
 for the relation type of the resource.
 o Specification: [this document]

 Content MUST be a string containing an absolute-URI [RFC3986]

https://datatracker.ietf.org/doc/html/rfc3986

Nottingham Expires November 9, 2013 [Page 8]

Internet-Draft Home Documents for HTTP APIs May 2013

 referring to documentation that SHOULD be in HTML format.

4.8. precondition-req

 o Resource Hint Name: precondition-req
 o Description: Hints that the resource requires state-changing
 requests (e.g., PUT, PATCH) to include a precondition, as per
 [I-D.ietf-httpbis-p4-conditional], to avoid conflicts due to
 concurrent updates.
 o Specification: [this document]

 Content MUST be an array of strings, with possible values "etag" and
 "last-modified" indicating type of precondition expected.

4.9. auth-req

 o Resource Hint Name: auth-req
 o Description: Hints that the resource requires authentication using
 the HTTP Authentication Framework [I-D.ietf-httpbis-p7-auth].
 o Specification: [this document]

 Content MUST be an array of objects, each with a "scheme" property
 containing a string that corresponds to a HTTP authentication scheme,
 and optionally a "realms" property containing an array of zero to
 many strings that identify protection spaces that the resource is a
 member of.

 For example, a Resource Object might contain the following hint:

 {
 "auth-req": [
 {
 "scheme": "Basic",
 "realms": ["private"]
 }
]
 }

4.10. status

 o Resource Hint Name: status
 o Description: Hints the status of the resource.
 o Specification: [this document]

 Content MUST be a string; possible values are:

Nottingham Expires November 9, 2013 [Page 9]

Internet-Draft Home Documents for HTTP APIs May 2013

 o "deprecated" - indicates that use of the resource is not
 recommended, but it is still available.
 o "gone" - indicates that the resource is no longer available; i.e.,
 it will return a 410 Gone HTTP status code if accessed.

5. Representation Hints

 TBD

6. Creating and Serving Home Documents

 When making a home document available, there are a few things to keep
 in mind:

 o A home document is best located at a memorable URI, because its
 URI will effectively become the URI for the API itself to clients.
 o Home documents can be personalised, just as "normal" home pages
 can. For example, you might advertise different URIs, and/or
 different kinds of link relations, depending on the client's
 identity.
 o Home documents SHOULD be assigned a freshness lifetime (e.g.,
 "Cache-Control: max-age=3600") so that clients can cache them, to
 avoid having to fetch it every time the client interacts with the
 service.
 o Custom link relation types, as well as the URIs for variables,
 should lead to documentation for those constructs.

6.1. Managing Change in Home Documents

 The URIs used in home documents MAY change over time. However,
 changing them can cause issues for clients that are relying on cached
 home documents containing old links.

 To mitigate the impact of such changes, servers SHOULD consider:

 o Reducing the freshness lifetime of home documents before a link
 change, so that clients are less likely to refer to an "old"
 document.
 o Regarding the "old" and "new" URIs as equally valid references for
 an "overlap" period.
 o After that period, handling requests for the "old" URIs
 appropriately; e.g., with a 404 Not Found, or by redirecting the
 client to the new URI.

Nottingham Expires November 9, 2013 [Page 10]

Internet-Draft Home Documents for HTTP APIs May 2013

6.2. Evolving and Mixing APIs with Home Documents

 Using home documents affords the opportunity to change the "shape" of
 the API over time, without breaking old clients.

 This includes introducing new functions alongside the old ones - by
 adding new link relation types with corresponding resource objects -
 as well as adding new template variables, media types, and so on.

 It's important to realise that a home document can serve more than
 one "API" at a time; by listing all relevant relation types, it can
 effectively "mix" different APIs, allowing clients to work with
 different resources as they see fit.

6.3. Documenting APIs that use Home Documents

 Another use case for "static" API description formats like WSDL and
 WADL is to generate documentation for the API from them.

 An API that uses the home document format correctly won't have a need
 to do so, provided that the link relation types and media types it
 uses are well-documented already.

7. Consuming Home Documents

 Clients might use home documents in a variety of ways.

 In the most common case - actually consuming the API - the client
 will scan the Resources Object for the link relation(s) that it is
 interested in, and then to interact with the resource(s) referred to.
 Resource Hints can be used to optimise communication with the client,
 as well as to inform as to the permissible actions (e.g., whether PUT
 is likely to be supported).

 Note that the home document is a "living" document; it does not
 represent a "contract", but rather is expected to be inspected before
 each interaction. In particular, links from the home document MUST
 NOT be assumed to be valid beyond the freshness lifetime of the home
 document, as per HTTP's caching model [I-D.ietf-httpbis-p6-cache].

 As a result, clients SHOULD cache the home document (as per
 [I-D.ietf-httpbis-p6-cache]), to avoid fetching it before every
 interaction (which would otherwise be required).

 Likewise, a client encountering a 404 Not Found on a link SHOULD
 obtain a fresh copy of the home document, to assure that it is up-to-
 date.

Nottingham Expires November 9, 2013 [Page 11]

Internet-Draft Home Documents for HTTP APIs May 2013

8. Security Considerations

 Clients need to exercise care when using hints. For example, a naive
 client might send credentials to a server that uses the auth-req
 hint, without checking to see if those credentials are appropriate
 for that server.

9. IANA Considerations

9.1. HTTP Resource Hint Registry

 This specification defines the HTTP Resource Hint Registry. See
Section 4 for a general description of the function of resource

 hints.

 In particular, resource hints are generic; that is, they are
 potentially applicable to any resource, not specific to one
 application of HTTP, nor to one particular format. Generally, they
 ought to be information that would otherwise be discoverable by
 interacting with the resource.

 Hint names MUST be composed of the lowercase letters (a-z), digits
 (0-9), underscores ("_") and hyphens ("-"), and MUST begin with a
 lowercase letter.

 Hint content SHOULD be described in terms of JSON [RFC4627]
 constructs.

 New hints are registered using the Expert Review process described in
 [RFC5226] to enforce the criteria above. Requests for registration
 of new resource hints are to use the following template:

 o Resource Hint Name: [hint name]
 o Description: [a short description of the hint's semantics]
 o Specification: [reference to specification document]

 Initial registrations are enumerated in Section 4.

9.2. HTTP Representation Hint Registry

 TBD

9.3. Media Type Registration

 TBD

https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/rfc5226

Nottingham Expires November 9, 2013 [Page 12]

Internet-Draft Home Documents for HTTP APIs May 2013

10. References

10.1. Normative References

 [I-D.ietf-httpbis-p6-cache]
 Fielding, R., Nottingham, M., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Caching",

draft-ietf-httpbis-p6-cache-22 (work in progress),
 February 2013.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,

RFC 3986, January 2005.

 [RFC4627] Crockford, D., "The application/json Media Type for
 JavaScript Object Notation (JSON)", RFC 4627, July 2006.

 [RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 5226,
 May 2008.

 [RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

 [RFC6570] Gregorio, J., Fielding, R., Hadley, M., Nottingham, M.,
 and D. Orchard, "URI Template", RFC 6570, March 2012.

10.2. Informative References

 [I-D.ietf-httpbis-p4-conditional]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Conditional Requests",

draft-ietf-httpbis-p4-conditional-22 (work in progress),
 February 2013.

 [I-D.ietf-httpbis-p5-range]
 Fielding, R., Lafon, Y., and J. Reschke, "Hypertext
 Transfer Protocol (HTTP/1.1): Range Requests",

draft-ietf-httpbis-p5-range-22 (work in progress),
 February 2013.

 [I-D.ietf-httpbis-p7-auth]
 Fielding, R. and J. Reschke, "Hypertext Transfer Protocol
 (HTTP/1.1): Authentication", draft-ietf-httpbis-p7-auth-22
 (work in progress), February 2013.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p6-cache-22
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc4627
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc5226
https://datatracker.ietf.org/doc/html/rfc5988
https://datatracker.ietf.org/doc/html/rfc6570
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p4-conditional-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p5-range-22
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-p7-auth-22

Nottingham Expires November 9, 2013 [Page 13]

Internet-Draft Home Documents for HTTP APIs May 2013

 [I-D.snell-http-prefer]
 Snell, J., "Prefer Header for HTTP",

draft-snell-http-prefer-18 (work in progress),
 January 2013.

 [MICROFORMATS]
 microformats.org, "Microformats",
 <http://microformats.org/>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
RFC 5789, March 2010.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,

RFC 6838, January 2013.

 [WADL] Hadley, M. and Sun Microsystems, "Web Application
 Description Language",
 <http://www.w3.org/Submission/wadl/>.

 [apps-discuss]
 IETF, "IETF Apps-Discuss Mailing List",
 <https://www.ietf.org/mailman/listinfo/apps-discuss>.

Appendix A. Acknowledgements

 Thanks to Jan Algermissen, Mike Amundsen, Bill Burke, Graham Klyne,
 Leif Hedstrom, Jeni Tennison, Erik Wilde and Jorge Williams for their
 suggestions and feedback.

Appendix B. Frequently Asked Questions

B.1. Why not Microformats?

 Browser-centric Web applications use HTML as their representation
 format of choice. While it is possible to augment HTML for non-
 browser clients (using techniques like Microformats [MICROFORMATS]),
 a few issues become evident when doing so:

 o HTML has a very forgiving syntax. While this is appropriate for
 browsers (especially considering that there are many million HTML
 authors in the world), it makes for a less-than-precise language
 for machines, resulting in both overhead (parsing and
 transmission) as well as lack of precision.

https://datatracker.ietf.org/doc/html/draft-snell-http-prefer-18
http://microformats.org/
https://datatracker.ietf.org/doc/html/rfc5789
https://datatracker.ietf.org/doc/html/bcp13
https://datatracker.ietf.org/doc/html/rfc6838
http://www.w3.org/Submission/wadl/
https://www.ietf.org/mailman/listinfo/apps-discuss

Nottingham Expires November 9, 2013 [Page 14]

Internet-Draft Home Documents for HTTP APIs May 2013

 o HTML is presentation-centric, making it tempting to reformat it
 from time to time, to improve the "look and feel" of a page.
 However, doing so can cause comparatively brittle non-browser
 clients to lose their understanding of the content's semantics,
 unless very careful controls are in place.

 Because of this, it's most practical to define a separate format, and
 JSON is easily machine-readable, precise, and has a better chance of
 being managed for stability.

B.2. Why doesn't the format allow references or inheritance?

 Adding inheritance or references would allow more modularity in the
 format and make it more compact, at the cost of considerable
 complexity and the associated potential for errors (both in the
 specification and by its users).

 Since good tools and compression are effective ways to achieve the
 same ends, this specification doesn't attempt them.

B.3. What about authentication?

 In HTTP, authentication is discoverable by interacting with the
 resource (usually, by getting a 401 Unauthorized response status
 code, along with one or more challenges). While the home document
 could hint it, this isn't yet done, to avoid possible security
 complications.

B.4. What about "Faults" (i.e., errors)?

 In HTTP, errors are conveyed by HTTP status codes. While this
 specification could (and even may) allow enumeration of possible
 error conditions, there's a concern that this will encourage
 applications to define many such "faults", leading to tight coupling
 between the application and its clients.

B.5. How Do I find the schema for a format?

 That isn't addressed by home documents. Ultimately, it's up to the
 media type accepted and generated by resources to define and
 constrain (or not) their syntax.

B.6. How do I express complex query arguments?

 Complex queries - i.e., those that exceed the expressive power of
 Link Templates or would require ambiguous properties of a "resources"
 object - aren't intended to be defined by a home document. The
 appropriate way to do this is with a "form" language, much as HTML

Nottingham Expires November 9, 2013 [Page 15]

Internet-Draft Home Documents for HTTP APIs May 2013

 defines.

 Note that it is possible to support multiple query syntaxes on the
 same base URL, using more than one link relation type; see the
 example at the start of the document.

Appendix C. Open Issues

 The following is a list of placeholders for open issues.

 o top-level object(s)
 * contact details
 * overall documentation
 * release info?
 * ToS
 * rate limiting (per-resource?)
 o Resource Hints
 * indicate a POST to 201 Created pattern
 * indicate an "action" POST
 * outbound links
 * forms?
 o Representation Hints
 * format profiles
 * deprecation
 o Defining new top-level and resource object properties - how new
 ones are minted, registry, etc.
 o Discovery (e.g., conneg, .well-known, etc.)
 o LIMITED include function?

Author's Address

 Mark Nottingham

 Email: mnot@mnot.net
 URI: http://www.mnot.net/

http://www.mnot.net/

Nottingham Expires November 9, 2013 [Page 16]

