
Network Working Group M. Nottingham

Internet-Draft M. Kelly

Intended status: Informational November 25, 2011

Expires: May 28, 2012

Linked Cache Invalidation

draft-nottingham-linked-cache-inv-01

Abstract

This memo defines Web link types that invalidate HTTP caches, along

with an HTTP cache-control extension that allows caches that understand

those link types to use responses containing them. Together, these

mechanisms offer a way to avoid use of a response that has become stale

due to another request that changes server-side state. Collectively,

this is referred to as Linked Cache Invalidation (LCI).

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on May 28, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document.

Table of Contents

1. Introduction

1.1. Example

2. Notational Conventions

3. The 'invalidates' link relation type

*

*

*

*

4. The 'inv-by' link relation type

5. The 'inv-maxage' response cache-control extension

6. Security Considerations

7. IANA Considerations

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Acknowledgements

Authors' Addresses

1. Introduction

In normal operation, a HTTP [RFC2616] cache will invalidate a stored

response if a state-changing request (e.g., POST, PUT or DELETE) is

made for that URI. HTTP also provides for such a state-changing request

to invalidate related resources (using the Location and Content-

Location headers in the response), but this is of limited utility,

because those headers have defined semantics, and can only occur once

each.

Because of this, it is not practical to make a response that depends on

the state of another resource cacheable. For example, an update to a

blog entry might change several different resources, such as the user's

summary page, the blog's "front" page, the blog's Atom feed, and of

course the blog entry itself. If any of these resources is made

cacheable, it will not reflect those changes, causing confusion if the

user tries to verify that their changes have been correctly applied.

This memo introduces new Web link relation types [RFC5988] that allow

more fine-grained relationships between resources to be defined, so

that caches can invalidate all related resources when the state of one

changes. It also introduces a cache-control response extension, so that

responses using the relations can be cached by implementations that

understand these relations.

1.1. Example

Taking the blog use case described above, imagine that we have the

following related resources:

http://example.com/blog/2011/05/04/hi {the blog entry}

http://example.com/blog/2011/05/04/hi/comments {full comments for

the entry}

*

*

*

*

*

*

*

*

*

*

*

http://example.com/blog/ {the blog "home"}

http://example.com/users/bob/ {the user page, listing his

entries}

When someone comments on Bob's blog entry, they might send a request

like this:

POST /cgi-bin/blog.cgi HTTP/1.1

Host: example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 7890

[...]

This request (if successful) should have the effect of invalidating the

related resources listed above.

If the comment is successful, it's typical to redirect the client back

to the original blog page, with a response like this:

HTTP/1.1 302 Moved Temporarily

Location: http://example.com/blog/2011/05/04/hi

Content-Length: 0

Which would invalidate the blog entry URI, as per HTTP's normal

operation.

To invalidate the full comments page for the entry, the relationship

can be described in that page's response headers:

HTTP/1.1 200 OK

Content-Type: text/html

Content-Length: 5555

Link: </blog/2011/05/04/hi>; rel="inv-by"

Cache-Control: no-cache, inv-maxage=600

[...]

This declares that whenever the entry page (the target of the link

header) changes, this response (the full comments page) changes as

well; it's invalidated by the link target.

Note that the full comments page also carries a Cache-Control header

that instructs "normal" caches not to reuse this response, but allows

those caches that are aware of LCI to consider it fresh for ten

minutes.

To invalidate the blog home page and user page, it's impractical to

list all of the resources that might change if a new entry is posted;

not only are there many of them, but their URLs might not be known when

the pages are cached. To address this, the POST response itself can

*

*

nominate resources to invalidate, using the 'invalidates' relation,

making that response:

HTTP/1.1 302 Moved Temporarily

Location: http://example.com/blog/2011/05/04/hi

Link: <http://example.com/blog/>; rel="invalidates",

 <http://example.com/users/bob/>; rel="invalidates"

Content-Length: 0

Depending on how important it is to see updates on the home page and

user page, those responses can either allow caching regardless of

support for LCI, like this:

Cache-Control: max-age=300

... or they can only allow caching by LCI-aware caches, like this:

Cache-Control: no-cache, inv-maxage=300

Together, these techniques can be used to invalidate a variety of

related responses.

It is important to note that the invalidations are only effective in

the caches that the client's request stream travels through. Typically,

this means that the client making the changes (e.g., the blog update

above) will see the effects immediately, while other users whose

requests travel through different caches will only see the changes once

the content becomes stale (if it is cached).

This makes Linked Cache Invalidation useful in a number of cases, but

not all; when it's important that changes be propagated quickly, the

freshness lifetime of cached responses can be reduced, but there will

still be lag.

When multiple caches are close together, the HyperText Caching Protocol

(HTCP) [RFC2756] can be used to propagate invalidation events between

caches, reducing (but not eliminating) these effects.

2. Notational Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

This document uses the Augmented Backus-Naur Form (ABNF) notation of

[RFC2616], and explicitly includes the following rules from it: delta-

seconds.

3. The 'invalidates' link relation type

The 'invalidates' link relation type allows a response that is an

signifies a state change on the server to indicate one or more

associated URIs whose states have also changed.

Relation name: invalidates

Description: Indicates that when the link context changes, the

link target also has changed.

Reference: [this document]

Notes:

4. The 'inv-by' link relation type

The 'inv-by' link relation type allows a response to nominate one or

more other resources that affect the state of the resource it's

associated with. That is, when one of the nominated resources changes,

it also changes the state of this response's resource.

Relation name: inv-by

Description: Indicates that when the link target changes, the

link's context has also changed.

Reference: [this document]

Notes:

5. The 'inv-maxage' response cache-control extension

When present, the 'inv-maxage' cache-control extension indicates the

number of seconds that caches who implement Linked Cache invalidation

can consider responses fresh for.

"inv-maxage" "=" delta-seconds

HTTP caches MAY, if they fully implement this specification, disregard

the HTTP response cache-control directives 'no-cache', 'max-age' and

's-maxage' and use the value of inv-maxage as a replacement for max-

age.

HTTP caches using inv-maxage to calculate freshness MUST invalidate all

stored responses whose request-URIs (after normalisation) are indicated

by the 'invalidates' link relation type contained in a successful

response to a state-changing request, provided that they are allowed.

HTTP caches using inv-maxage to calculate freshness MUST invalidate all

stored responses containing the 'inv-by' relation that indicates the

current request-URI (after normalisation) upon receipt of a successful

response to a state-changing request.

Here, a response is considered to "contain" a link relation if it is

carried in the Link HTTP header [RFC5988]. I.e., it is not necessary to

look at the response body.

*

*

*

*

*

*

*

*

"Invalidate" means that the cache will either remove all stored

responses related to the effective request URI, or will mark these as

"invalid" and in need of a mandatory validation before they can be

returned in response to a subsequent request.

A "successful" response is one with a 2xx or redirecting 3xx (e.g.,

301, 302, 303, 307) status code.

A "state-changing" request is one with an unsafe method (e.g., POST,

PUT, DELETE, PATCH), or one that is not known to be safe.

In this context, "normalisation" means, in the case of a relative

request-URI, that it is absolutised using the value of the Host request

header and the appropriate protocol scheme.

Finally, an invalidation based upon "invalidates" is "allowed" if the

host part of the request-URI (if absolute) or Host request header (if

the request-URI is relative) matches the host part of the target URI.

This prevents some types of denial-of-service attacks.

Implementations SHOULD effect invalidations when they become aware of

changes through other means; e.g., HTCP [RFC2756] CLR messages, upon

invalidations caused by other links (i.e., chained "cascades" of linked

invalidations), or when a changed response is seen (such as when HTTP

validation is unsuccessful).

6. Security Considerations

Linked Cache Invalidation does not guarantee that invalidations will be

effected; e.g., they can be lost due to network issues or cache

downtime. Furthermore, it does not guarantee that all caches that

understand LCI will be made aware of invalidations that happen, because

of how they originate.

Therefore, care should be taken that LCI invalidations are not relied

upon (e.g., to purge sensitive content).

Furthermore, while some care is taken to avoid denial-of-service

attacks through invalidation, cache efficiency may still be impaired

under certain circumstances (e.g., arranging for one request to

invalidate a large number of responses), leading to a reduction in

service quality.

7. IANA Considerations

This document registers two entries in the Link Relation Type Registry;

see Section 3 and Section 4.

8. References

8.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2616]

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC5988] Nottingham, M., "Web Linking", RFC 5988, October 2010.

8.2. Informative References

[RFC2756]
Vixie, P. and D. Wessels, "Hyper Text Caching Protocol

(HTCP/0.0)", RFC 2756, January 2000.

Appendix A. Acknowledgements

Thanks to Michael Hausenblas for his input.

The authors take all responsibility for errors and omissions.

Authors' Addresses

Mark Nottingham Nottingham EMail: mnot@mnot.net URI: http://

www.mnot.net/

Mike Kelly Kelly EMail: mike@stateless.co URI: http://stateless.co/

mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5988
mailto:vixie@isc.org
mailto:wessels@nlanr.net
http://tools.ietf.org/html/rfc2756
http://tools.ietf.org/html/rfc2756
mailto:mnot@mnot.net
http://www.mnot.net/
http://www.mnot.net/
mailto:mike@stateless.co
http://stateless.co/

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Example
	2. Notational Conventions
	3. The 'invalidates' link relation type
	4. The 'inv-by' link relation type
	5. The 'inv-maxage' response cache-control extension
	6. Security Considerations
	7. IANA Considerations
	8. References
	8.1. Normative References
	8.2. Informative References
	Appendix A. Acknowledgements
	Authors' Addresses

