
Network Working Group M. Nottingham
Internet-Draft Fastly
Updates: 7234 (if approved) September 28, 2017
Intended status: Standards Track
Expires: April 1, 2018

HTTP Variants
draft-nottingham-variants-00

Abstract

 This specification introduces the HTTP "Variants" response header
 field to communicate what representations are available for a given
 resource.

Note to Readers

 RFC EDITOR: please remove this section before publication

 The issues list for this draft can be found at
https://github.com/mnot/I-D/labels/variant.

 The most recent (often, unpublished) draft is at
https://mnot.github.io/I-D/variant/.

 Recent changes are listed at https://github.com/mnot/I-D/commits/gh-
pages/variant.

 See also the draft's current status in the IETF datatracker, at
https://datatracker.ietf.org/doc/draft-nottingham-variant/.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 1, 2018.

Nottingham Expires April 1, 2018 [Page 1]

https://datatracker.ietf.org/doc/html/rfc7234
https://github.com/mnot/I-D/labels/variant
https://mnot.github.io/I-D/variant/
https://github.com/mnot/I-D/commits/gh-pages/variant
https://github.com/mnot/I-D/commits/gh-pages/variant
https://datatracker.ietf.org/doc/draft-nottingham-variant/
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft HTTP Variants September 2017

Copyright Notice

 Copyright (c) 2017 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Notational Conventions 4

2. The "Variants" HTTP Header Field 4
2.1. Defining Content Negotiation Using Variants 5
2.2. Cache Behaviour . 6
2.2.1. Relationship to Vary 7

2.3. Examples . 7
2.3.1. Single Variant 7
2.3.2. Multiple Variants 8
2.3.3. Partial Coverage 9

3. IANA Considerations . 9
4. Security Considerations 9
5. Acknowledgments . 10
6. References . 10
6.1. Normative References 10
6.2. Informative References 11

Appendix A. Variants and Defined Content Negotiation Mechanisms 11
A.1. Content-Encoding . 11
A.2. Content-Language . 12

 Author's Address . 13

1. Introduction

 HTTP proactive content negotiation ([RFC7231], Section 3.4.1) is
 starting to be used more widely again. The most widely seen use -
 determining a response's content-coding - is being joined by renewed
 interest in negotiation for language and other, newer attributes (for
 example, see [I-D.ietf-httpbis-client-hints]).

 Successfully reusing negotiated responses that have been stored in a
 HTTP cache requires establishment of a secondary cache key

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info
https://datatracker.ietf.org/doc/html/rfc7231#section-3.4.1

Nottingham Expires April 1, 2018 [Page 2]

Internet-Draft HTTP Variants September 2017

 ([RFC7234], Section 4.1) using the Vary header ([RFC7231],
 Section 7.1.4), which identifies the request headers that form the
 secondary cache key for a given response.

 HTTP's caching model allows a certain amount of latitude in
 normalising request header fields to match those stored in the cache,
 so as to increase the chances of a cache hit while still respecting
 the semantics of that header. However, this is often inadequate;
 even with understanding of the headers' semantics to facilitate such
 normalisation, a cache does not know enough about the possible
 alternative representations available on the origin server to make an
 appropriate decision.

 For example, if a cache has stored the following request/response
 pair:

 GET /foo HTTP/1.1
 Host: www.example.com
 Accept-Language: en;q=1.0, fr;q=0.5

 HTTP/1.1 200 OK
 Content-Type: text/html
 Content-Language: fr
 Vary: Accept-Language
 Transfer-Encoding: chunked

 [French content]

 Provided that the cache has full knowledge of the semantics of
 "Accept-Language" and "Content-Language", it will know that a French
 representation is available and might be able to infer that an
 English representation is not available. But, it does not know (for
 example) whether a Japanese representation is available without
 making another request, thereby incurring possibly unnecessary
 latency.

 This specification introduces the HTTP "Variants" response header
 field to enumerate the available variant representations on the
 origin server, to provide clients and caches with enough information
 to properly satisfy requests - either by selecting a response from
 cache or by forwarding the request towards the origin.

 "Variants" is best used when content negotiation takes place over a
 constrained set of representations; since each variant needs to be
 listed in the header field, it is ill-suited for open-ended sets of
 representations. Likewise, it works best for content negotiation
 over header fields whose semantics are well-understood, since it
 requires a selection algorithm to be specified ahead of time.

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4
https://datatracker.ietf.org/doc/html/rfc7231#section-7.1.4

Nottingham Expires April 1, 2018 [Page 3]

Internet-Draft HTTP Variants September 2017

1.1. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This specification uses the Augmented Backus-Naur Form (ABNF)
 notation of [RFC5234] with a list extension, defined in Section 7 of
 [RFC7230], that allows for compact definition of comma-separated
 lists using a '#' operator (similar to how the '*' operator indicates
 repetition).

 Additionally, it uses the "field-name", "OWS" and "token" rules from
 [RFC7230].

2. The "Variants" HTTP Header Field

 The "Variant" HTTP response header field is used to indicate what
 other representations are available for a given resource at the time
 that the response is produced.

 Variants = 1#variant
 variant = field-name *(OWS ";" OWS available-value)
 available-value = token

 Each "variant" indicates a response header field that carries a value
 that clients might proactively negotiate for; each parameter on it
 indicates a value for which there is an available representation on
 the origin server.

 So, given this example header field:

 Variants: Content-Encoding;gzip

 a recipient can infer that the only content-coding available for that
 resource is "gzip" (along with the "identity" non-encoding; see
 {{content-encoding}).

 Given:

 Variants: content-encoding

 a recipient can infer that no content-codings are supported. Note
 that as always with header field names, it is case-insensitive.

 A more complex example:

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174
https://datatracker.ietf.org/doc/html/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7230

Nottingham Expires April 1, 2018 [Page 4]

Internet-Draft HTTP Variants September 2017

 Variants: Content-Encoding;gzip;brotli, Content-Language;en ;fr

 Here, recipients can infer that two Content-Encodings are available,
 as well as two content languages. Note that, as with all HTTP header
 fields that use the "#" list rule (see [RFC7230], Section 7), they
 might occur in the same header field or separately, like this:

 Variants: Content-Encoding;gzip;brotli
 Variants: Content-Language;en ;fr

 The ordering of available-values after the field-name is significant,
 as it might be used by the header's algorithm for selecting a
 response.

 Senders SHOULD consistently send "Variant" header fields on all
 cacheable (as per [RFC7234], Section 3) responses for a resource,
 since its absence will trigger caches to fall back to "Vary"
 processing.

 Likewise, servers MUST send the "Content-*" response headers
 nominated by "Variants" when sending that header.

2.1. Defining Content Negotiation Using Variants

 To be usable with Variants, proactive content negotiation mechanisms
 need to be specified to take advantage of it. Specifically, they:

 o MUST define a request header field that advertises the clients
 preferences or capabilities, whose field-name SHOULD begin with
 "Accept-".

 o MUST define a response header field that indicates the result of
 selection, whose field-name SHOULD begin with "Content-" and whose
 field-value SHOULD be a token.

 o MUST define an algorithm for selecting a result. It MUST return
 an ordered list of selected responses, given the incoming request,
 a list of selected responses, and the list of available values
 from "Variants". If the result is an empty list, it implies that
 the cache does not contain an appropriate response.

Appendix A fulfils these requirements for some existing proactive
 content negotiation mechanisms in HTTP.

 Note that unlike Vary, Variants does not use stored request headers
 to help select a response; this is why defining a response header to
 aid identification and selection is required.

https://datatracker.ietf.org/doc/html/rfc7230#section-7
https://datatracker.ietf.org/doc/html/rfc7234#section-3

Nottingham Expires April 1, 2018 [Page 5]

Internet-Draft HTTP Variants September 2017

2.2. Cache Behaviour

 Caches that implement the "Variants" header field and the relevant
 semantics of the field-name it contains can use that knowledge to
 either select an appropriate stored representation, or forward the
 request if no appropriate representation is stored.

 They do so by running this algorithm (or its functional equivalent)
 upon receiving a request, "incoming-request":

 1. Let "selected-responses" be a list of the stored responses
 suitable for reuse as defined in [RFC7234] Section 4, excepting
 the requirement to calculate a secondary cache key.

 2. Order "selected-responses" by the "Date" header field, most
 recent to least recent.

 3. If the freshest (as per [RFC7234], Section 4.2) has one or more
 "Variants" header field(s):

 1. Select one member of "selected-responses" and let its
 "Variants" header field-value(s) be "Variants". This SHOULD
 be the most recent response, but MAY be from an older one as
 long as it is still fresh.

 2. For each "variant" in "Variants":

 1. If the "field-name" corresponds to the response header
 field identified by a content negotiation mechanism that
 the implementation supports:

 1. Let "available-values" be a list containing all
 "available-value" for the "variant".

 2. Let "selected-responses" be the result of running the
 algorithm defined by the content negotiation
 mechanism with "incoming-request", "selected-
 responses" and "available-values".

 3. For the purposes of selecting a response, ignore the
 content negotiation's identified request header
 field-name in the "Vary" header field of each member
 of "selected-responses", if present.

 4. Process any member of "selected-responses" that has a "Vary"
 response header field whose field-value still contains one or
 more "field-name"s, removing that members if it does not match
 (as per [RFC7234], Section 4.1).

https://datatracker.ietf.org/doc/html/rfc7234#section-4
https://datatracker.ietf.org/doc/html/rfc7234#section-4.2
https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Nottingham Expires April 1, 2018 [Page 6]

Internet-Draft HTTP Variants September 2017

 5. Return the first member of "selected-responses". If "selected-
 responses" is empty, return "null".

 This algorithm will either return the appropriate stored response to
 use, or "null" if the cache needs to forward the request towards the
 origin server.

2.2.1. Relationship to Vary

 Caches that fully implement this specification MUST ignore request
 header-fields in the "Vary" header for the purposes of secondary
 cache key calculation ([RFC7234], Section 4.1) when their semantics
 are understood, implemented as per this specification, and their
 corresponding response header field is listed in "Variants".

 Request header fields listed in "Vary" that are not implemented in
 terms of this specification or not present in the "Variants" field
 SHOULD still form part of the secondary cache key.

 The algorithm in Section 2.2 implements these requirements.

2.3. Examples

2.3.1. Single Variant

 Given a request/response pair:

 GET /foo HTTP/1.1
 Host: www.example.com
 Accept-Language: en;q=1.0, fr;q=0.5

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Cache-Control: max-age=3600
 Variants: Content-Language;en;de
 Vary: Accept-Language
 Transfer-Encoding: chunked

 Upon receipt of this response, the cache knows that two
 representations of this resource are available, one with a "Content-
 Language" of "en", and another whose "Content-Language" is "de".

 Subsequent requests (while this response is fresh) will cause the
 cache to either reuse this response or forward the request, depending
 on what the selection algorithm "Accept-Language" and "Content-
 Language" determines.

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1

Nottingham Expires April 1, 2018 [Page 7]

Internet-Draft HTTP Variants September 2017

 So, a request with "en" in "Accept-Language" is received and its
 q-value indicates that it is acceptable, the stored response is used.
 A request that indicates that "de" is acceptable will be forwarded to
 the origin, thereby populating the cache. A cache receiving a
 request that indicates both languages are acceptable will use the
 q-value to make a determination of what response to return.

 A cache receiving a request that does not list either language as
 acceptable (or does not contain an Accept-Language at all) will
 return the "en" representation (possibly fetching it from the
 origin), since it is listed first in the "Variants" list.

 Note that "Accept-Language" is listed in Vary, to assure backwards-
 compatibility with caches that do not support "Variants".

 Also, note that is is the response header which is listed in
 Variants, not the request header (the opposite of Vary).

2.3.2. Multiple Variants

 A more complicated request/response pair:

 GET /bar HTTP/1.1
 Host: www.example.net
 Accept-Language: en;q=1.0, fr;q=0.5
 Accept-Encoding: gzip, br

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Content-Encoding: br
 Variants: Content-Language;en;jp;de
 Variants: Content-Encoding;br;gzip
 Vary: Accept-Language, Accept-Encoding
 Transfer-Encoding: chunked

 Here, the cache knows that there are two axes that the response
 varies upon; "Content-Language" and "Content-Encoding". Thus, there
 are a total of six possible representations for the resource, and the
 cache needs to consider the selection algorithms for both axes.

 Upon a subsequent request, if both selection algorithms return a
 stored representation, it can be served from cache; otherwise, the
 request will need to be forwarded to origin.

Nottingham Expires April 1, 2018 [Page 8]

Internet-Draft HTTP Variants September 2017

2.3.3. Partial Coverage

 Now, consider the previous example, but where only one of the varied
 axes is listed in "Variants":

 GET /bar HTTP/1.1
 Host: www.example.net
 Accept-Language: en;q=1.0, fr;q=0.5
 Accept-Encoding: gzip, br

 HTTP/1.1 200 OK
 Content-Type: image/gif
 Content-Language: en
 Content-Encoding: br
 Variants: Content-Encoding;br;gzip
 Vary: Accept-Language, Accept-Encoding
 Transfer-Encoding: chunked

 Here, the cache will need to calculate a secondary cache key as per
[RFC7234], Section 4.1 - but considering only "Accept-Language" to be

 in its field-value - and then continue processing "Variants" for the
 set of stored responses that the algorithm described there selects.

3. IANA Considerations

 This specification registers one value in the Permanent Message
 Header Field Names registry established by [RFC3864]:

 o Header field name: Variants

 o Applicable protocol: http

 o Status: standard

 o Author/Change Controller: IETF

 o Specification document(s): [this document]

 o Related information:

4. Security Considerations

 If the number or advertised characteristics of the representations
 available for a resource are considered sensitive, the "Variants"
 header by its nature will leak them.

https://datatracker.ietf.org/doc/html/rfc7234#section-4.1
https://datatracker.ietf.org/doc/html/rfc3864

Nottingham Expires April 1, 2018 [Page 9]

Internet-Draft HTTP Variants September 2017

 Note that the "Variants" header is not a commitment to make
 representations of a certain nature available; the runtime behaviour
 of the server always overrides hints like "Variants".

5. Acknowledgments

 This protocol is conceptually similar to, but simpler than,
 Transparent Content Negotiation [RFC2295]. Thanks to its authors for
 their inspiration.

 It is also a generalisation of a Fastly VCL feature designed by
 Rogier 'DocWilco' Mulhuijzen.

 Thanks to Hooman Beheshti for his review and input.

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997, <https://www.rfc-

editor.org/info/rfc2119>.

 [RFC4647] Phillips, A. and M. Davis, "Matching of Language Tags",
BCP 47, RFC 4647, DOI 10.17487/RFC4647, September 2006,

 <https://www.rfc-editor.org/info/rfc4647>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008, <https://www.rfc-

editor.org/info/rfc5234>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014, <https://www.rfc-

editor.org/info/rfc7231>.

 [RFC7234] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "Hypertext Transfer Protocol (HTTP/1.1): Caching",

RFC 7234, DOI 10.17487/RFC7234, June 2014,
 <https://www.rfc-editor.org/info/rfc7234>.

https://datatracker.ietf.org/doc/html/rfc2295
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/bcp47
https://datatracker.ietf.org/doc/html/rfc4647
https://www.rfc-editor.org/info/rfc4647
https://datatracker.ietf.org/doc/html/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://www.rfc-editor.org/info/rfc5234
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7234
https://www.rfc-editor.org/info/rfc7234

Nottingham Expires April 1, 2018 [Page 10]

Internet-Draft HTTP Variants September 2017

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

6.2. Informative References

 [I-D.ietf-httpbis-client-hints]
 Grigorik, I., "HTTP Client Hints", draft-ietf-httpbis-

client-hints-04 (work in progress), April 2017.

 [RFC2295] Holtman, K. and A. Mutz, "Transparent Content Negotiation
 in HTTP", RFC 2295, DOI 10.17487/RFC2295, March 1998,
 <https://www.rfc-editor.org/info/rfc2295>.

 [RFC3864] Klyne, G., Nottingham, M., and J. Mogul, "Registration
 Procedures for Message Header Fields", BCP 90, RFC 3864,
 DOI 10.17487/RFC3864, September 2004, <https://www.rfc-

editor.org/info/rfc3864>.

Appendix A. Variants and Defined Content Negotiation Mechanisms

 This appendix defines the required information to use existing
 proactive content negotiation mechanisms (as defined in [RFC7231],
 Section 5.3) with the "Variants" header field.

A.1. Content-Encoding

 When negotiating for the "Content-Encoding" response header field's
 value, the applicable request header field is "Accept-Encoding", as
 per [RFC7231] Section 5.3.4.

 To perform content negotiation for Content-Encoding given an
 "incoming-request", "stored-responses" and "available-values":

 1. Let "preferred-codings" be a list of the "coding"s in the
 "Accept-Encoding" header field of "incoming-request", ordered by
 their "weight", highest to lowest. If "Accept-Encoding" is not
 present or empty, "preferred-codings" will be empty.

 2. If "identity" is not a member of "preferred-codings", append
 "identity" to "preferred-codings" with a "weight" of 0.001.

 3. Remove any member of "preferred-codings" whose "weight" is 0.

 4. Append "identity" to "available-values".

 5. Remove any member of "available-values" not present in
 "preferred-codings", comparing in a case-insensitive fashion.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-hints-04
https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-client-hints-04
https://datatracker.ietf.org/doc/html/rfc2295
https://www.rfc-editor.org/info/rfc2295
https://datatracker.ietf.org/doc/html/bcp90
https://datatracker.ietf.org/doc/html/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://www.rfc-editor.org/info/rfc3864
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.4

Nottingham Expires April 1, 2018 [Page 11]

Internet-Draft HTTP Variants September 2017

 6. Let "filtered-responses" be an empty list.

 7. For each "available-value" of "available-values":

 1. If there is a member of "stored-responses" whose "Content-
 Encoding" field-value has "content-coding"s ([RFC7231],
 Section 3.1.2.2) that all match members of "available-value"
 in a case-insensitive fashion, append that stored response to
 "filtered-responses".

 8. If there is a member of "stored-responses" that does not have a
 "Content-Encoding" header field, append that stored response to
 "filtered-responses".

 9. Return "filtered-responses".

 This algorithm selects the stored response(s) in order of preference
 by the client; if none are stored in cache, the request will be
 forwarded towards the origin. It defaults to the "identity" non-
 encoding.

 Implementations MAY remove members of "filtered-responses" based upon
 their "weight" or other criteria before returning. For example, they
 might wish to return an empty list when the client's most-preferred
 available response is not stored, so as to populate the cache as well
 as honour the client's preferences.

A.2. Content-Language

 When negotiating for the "Content-Language" response header field's
 value, the applicable request header field is "Accept-Language", as
 per [RFC7231] Section 5.3.5.

 To perform content negotiation for Content-Language given an
 "incoming-request", "stored-responses" and "available-values":

 1. Let "preferred-langs" be a list of the "language-range"s in the
 "Accept-Language" header field ([RFC7231], Section 5.3.5) of
 "incoming-request", ordered by their "weight", highest to lowest.

 2. If "preferred-langs" is empty, append "*" with a "weight" of
 0.001.

 3. Remove any member of "preferred-langs" whose "weight" is 0.

 4. Filter "available-values" using "preferred-langs" with either the
 Basic Filtering scheme defined in [RFC4647] Section 3.3.1, or the

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2.2
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.2.2
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc7231#section-5.3.5
https://datatracker.ietf.org/doc/html/rfc4647#section-3.3.1

Nottingham Expires April 1, 2018 [Page 12]

Internet-Draft HTTP Variants September 2017

 Lookup scheme defined in Section 3.4 of that document. Use the
 first member of "available-values" as the default.

 5. Let "filtered-responses" be an empty list.

 6. For each "available-value" of "available-values":

 1. If there is a member of "stored-responses" whose "Content-
 Language" field-value has a "language-tag" ([RFC7231],
 Section 3.1.3.2) that matches "available-value" in a case-
 insensitive fashion, append that stored response to
 "filtered-responses".

 7. Return "filtered-responses".

 This algorithm selects the available response(s) (according to
 "Variants") in order of preference by the client; if none are stored
 in cache, the request will be forwarded towards the origin. If no
 preferred language can be selected, the first "available-value" will
 be used as the default.

 Implementations MAY remove members of "filtered-responses" based upon
 their "weight" or other criteria before returning. For example, they
 might wish to return an empty list when the client's most-preferred
 available response is not stored, so as to populate the cache as well
 as honour the client's preferences.

Author's Address

 Mark Nottingham
 Fastly

 Email: mnot@mnot.net
 URI: https://www.mnot.net/

https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.3.2
https://datatracker.ietf.org/doc/html/rfc7231#section-3.1.3.2
https://www.mnot.net/

Nottingham Expires April 1, 2018 [Page 13]

