
Workgroup: openpgp

Internet-Draft: draft-nwjw-openpgp-cert-d-00

Published: 31 May 2022

Intended Status: Informational

Expires: 2 December 2022

Authors: N. Widdecke

Sequoia PGP

J. Winter

Sequoia PGP

Shared OpenPGP Certificate Directory

Abstract

This document defines a generic OpenPGP certificate store that can

be shared between implementations. It also defines a way to root

trust, and a way to associate petnames with certificates. Sharing

certificates and trust decisions increases security by enabling more

applications to take advantage of OpenPGP. It also improves privacy

by reducing the required certificate discoveries that go out to the

network.

About This Document

This note is to be removed before publishing as an RFC.

The latest revision of this draft can be found at https://sequoia-

pgp.gitlab.io/pgp-cert-d. Status information for this document may

be found at https://datatracker.ietf.org/doc/draft-nwjw-openpgp-

cert-d/.

Discussion of this document takes place on the OpenPGP Working Group

mailing list (mailto:openpgp@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/openpgp/.

Source for this draft and an issue tracker can be found at https://

gitlab.com/sequoia-pgp/pgp-cert-d.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

¶

¶

¶

¶

¶

¶

¶

¶

https://sequoia-pgp.gitlab.io/pgp-cert-d
https://sequoia-pgp.gitlab.io/pgp-cert-d
https://datatracker.ietf.org/doc/draft-nwjw-openpgp-cert-d/
https://datatracker.ietf.org/doc/draft-nwjw-openpgp-cert-d/
mailto:openpgp@ietf.org
https://mailarchive.ietf.org/arch/browse/openpgp/
https://gitlab.com/sequoia-pgp/pgp-cert-d
https://gitlab.com/sequoia-pgp/pgp-cert-d
https://datatracker.ietf.org/drafts/current/

This Internet-Draft will expire on 2 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements Language

1.2. Terminology

1.3. Related work

1.3.1. OpenPGP keyrings

1.3.2. X.509 certificate stores

1.3.3. Maildir

2. Requirements

2.1. Addressing of certs

2.2. Trust root

2.3. Petname mapping

2.4. Trusted introducers

3. Implementation

3.1. Default store's location

3.2. Mapping names to paths

3.2.1. Fingerprints

3.2.2. Special names

3.3. Locking the store for writes

3.4. How to insert or update certs

3.5. Rooting trust

3.5.1. Trust root

3.5.2. Petname mapping

3.5.3. Trusted introducers

3.6. Proprietary and experimental extensions

3.7. Reserved filenames

3.8. Platform-specific conventions

4. Examples

5. Reference implementation

5.1. Opening the store

5.2. Certificate lookup

¶

¶

¶

https://trustee.ietf.org/license-info

5.3. Certificate update

5.4. Store enumeration

5.5. Input/Output Types

5.5.1. NAME

5.5.2. TAG

5.5.3. CERT

5.5.4. KEY

5.6. Failure Modes

6. Guidance for Implementers

7. Security Considerations

8. Document Considerations

8.1. Document History

8.2. Future Work

9. Acknowledgements

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

1. Introduction

Using OpenPGP for encryption requires a certificate for each

communication partner. Likewise, verification of an OpenPGP

signature requires the signer's certificate.

An OpenPGP certificate must be discovered before it can be used.

There are a number of ways to do that, for example via

[keys.openpgp.org] or [I-D.draft-koch-openpgp-webkey-service-12].

Furthermore, an OpenPGP certificate evolves over time. The

certificate itself or one of its components may be revoked; a User

ID may be added; certificate subkeys may be rotated, and meta-data

stored on signatures updated. Crucially, the security of OpenPGP

depends on distributing each update to every involved party. A

certificate update may be passively collected (e.g. by consuming an

[Autocrypt] header), or actively sought out using the key discovery

options mentioned above.

However, actively reaching out to a network source leaks information

about the expected communication partner or partners, so requests

should be kept to a minimum. Now, if a user has more than one

application supporting OpenPGP, then every application has to

discover certificates and updates, increasing the meta-data leakage.

The obvious solution here is to provide a way to share the

certificates instead. This is the purpose of this specification.

Looking at X.509, we can see that on most systems, there is a shared

store of root certificates. Now, this root certificate store solves

a different problem: X.509 certificates do not need to be

¶

¶

¶

¶

discovered. Instead, the shared store ensures that every application

uses the same set of trust roots, which is also desirable for

OpenPGP. The important aspect we want to point out is that the store

is shared across different applications and TLS implementations. We

will come back to the differences later in this text.

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

1.2. Terminology

This document uses the term "key" to refer exclusively to OpenPGP

Transferable Secret Keys (see section 11.2 of [RFC4880]).

It uses the term "certificate", or "cert" for short, to refer to

OpenPGP Transferable Public Key (see section 11.1 of [RFC4880]).

1.3. Related work

1.3.1. OpenPGP keyrings

The classic way of sharing data between OpenPGP implementations is

via a keyring (see section 3.6 of [RFC4880]). The only defined

format is simply a sequence of certs, stored in binary (not ASCII-

armored) format. The advantage is that only OpenPGP data structures

are used, and hence support for keyrings is widespread in OpenPGP

implementations.

But, because an OpenPGP keyring does not have an index, this data

structure scales badly: Both lookups and updates take O(N) time,

where N is the number of certs. Worse, if the keyring contains a

flooded certificate, it will negatively affect the performance of

every operation, not just operations on the flooded cert itself.

Because of these limitations, an OpenPGP keyring as defined in

[RFC4880] should really only be used as interchange format (i.e. for

import and export), not for continuous sharing of certs between

applications and implementations.

1.3.2. X.509 certificate stores

Looking at X.509, we can see that on most systems, there is a shared

store of root certificates (see e.g. [FedoraSharedX.509CertStore],

[WindowsSharedX.509CertStore], [macOSSharedX.509CertStore]). Now,

¶

¶

¶

¶

¶

¶

¶

this root certificate store solves a slightly different problem: It

ensures that every application uses the same set of trust roots.

During the Transport Layer Security ([TLS]) handshake, the party

that wants to authenticate itself (usually the server) presents the

certificate, along with all intermediate certificates in the

authentication chain up to a root certificate. In this setting, we

don't need to discover any certificates. Instead, the store is used

to check if the presented root certificate is in the set of trusted

root certificates. Additionally, the store may contain certificate

revocations.

In both OpenPGP and X.509, trust must be rooted. While the

predominant trust model in X.509 uses a fixed set of vendor-

specified trusted third parties, in OpenPGP the user is expected to

provide this set. See Section 2.4 for how this is modeled in this

spec.

The main takeaway here is that to ensure a consistent behavior and

user experience, the certificate store with all its information

should be shared across all applications that use OpenPGP to

authenticate communication partners.

1.3.3. Maildir

Maildir is an on-disk data structure that is designed to allow

concurrent access by programs storing mails into and retrieving them

(see [Maildir]). It allows lock-free operations by relying on the

atomicity of rename(2). It is supported by a wide range of mail

servers, delivery agents, and mail user agents.

Maildir is mainly concerned with storing blobs and orchestrating

concurrent access to the store. It does not provide any indices. For

example, if you need efficient full text search, you will need to

construct an index on top of the maildir, and keep it up to date

(see [Notmuch]).

Maildir's design and success is a major inspiration for this spec.

2. Requirements

This specification is motivated by the following requirements:

The performance should not be affected by the number of

certificates in the store, or by the size of individual

certificates.

We expect a read-heavy workload. As such, readers should not have

to synchronize with each other or with writers.

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

*

¶

Updates must be robust, i.e., they must not lose information in

the event of concurrent updates.

No extra data structures besides the file system and OpenPGP

should be used to facilitate adoption by OpenPGP implementations.

Furthermore, the following requirements are required for secure and

ergonomic use of OpenPGP. Since any application using OpenPGP needs

to behave consistently so as not to jeopardize security and

ergonomics, this information needs to be shared well. Hence the

ideal place is the certificate store:

Address book-like mapping from petnames to certificates.

Configuring a set of trusted introducers.

We also like to have some non-functional properties:

The data structure should be efficient to backup.

The data structure should be efficient to synchronize between

machines.

2.1. Addressing of certs

Conceptually, the cert store is a name-value store. We use cert

fingerprints as names, as well as a set of special names. This is

accomplished by mapping names to paths, then relying on the

filesystem for efficient lookups.

2.2. Trust root

One certificate in the store is used to root trust. It is used for

mapping petnames to certs (see Section 2.3), and to designate

trusted introducers (see Section 2.4).

2.3. Petname mapping

Petnames span a namespace that is secure and human-meaningful, but

not distributed. A common example of a petname scheme are address

books in mobile phones that securely map human-meaningful names to

numbers (which are secure and distributed, but not human-

meaningful). See [Zookos-Triangle] for a more in-depth discussion.

Using petnames, we can securely map human-meaningful names, like

"Mom" or "juliett@example.org", to OpenPGP certificates. In contrast

to many other trust models, this is a concept that most users are

already familiar with. Therefore, it should be easy to train users,

increasing the chance that they will use it in a secure manner.

*

¶

*

¶

¶

* ¶

* ¶

¶

* ¶

*

¶

¶

¶

¶

¶

The petname mapping can also be used to integrate into existing

address book-like functionality provided by the platform.

2.4. Trusted introducers

To improve the ergonomics of public-key systems, users often

delegate questions about the identity of a communications partner to

some set of trusted third parties.

In X.509, these decisions are delegated to a fixed set of vendor-

specified trusted third parties known as root certification

authorities (see [X509-PKI]). These trusted third parties then

usually certify intermediate certification authorities, which in

turn certify the binding between a peer's key and its identity. The

trust relation forms a polyforest (i.e., a directed graph with

multiple roots).

Using this trust relation as a client during the [TLS] handshake is

straightforward: The server presents its certificate along with the

chain of all intermediate certificates up to the root. The client

simply checks if all links in the chain are valid, and whether the

terminal certificate is in its set of root certification

authorities. If so, the server's certificate is authenticated.

In contrast, the trust relation in OpenPGP forms a directed graph.

Any certificate can certify that a cert belongs to an identity.

Furthermore, the user is expected to provide not only the set of

trust roots (the equivalent of X.509's root certification

authorities), but also to identify acceptable intermediate

authorities, which are known as "trusted introducers" in OpenPGP

parlance.

Traditionally, OpenPGP implementations have used idiosyncratic

mechanisms to configure both the trust roots and the trusted

introducers. That has the downside of being a proprietary mechanism

that cannot easily be shared between implementations. In contrast,

this specification uses a single distinguished certificate as a

trust root that delegates authority to the trusted introducers.

3. Implementation

This section describes in detail how to interact with a certificate

store. Note that we also provide a library that abstracts this away

behind a simple-to-use API.

3.1. Default store's location

If not explicitly requested otherwise, an application SHOULD use the

default store. The location is platform specific, see Section 3.8

for details.

¶

¶

¶

¶

¶

¶

¶

¶

The default store may be overridden by the user by setting the

environment variable PGP_CERT_D.

The application may explicitly choose to use a different location

entirely. Note, however, that this should be done only with good

reasons, because it jeopardizes security, privacy, and ergonomics.

The location of the store MUST be a directory. If it does not exist,

it MAY be created on demand.

3.2. Mapping names to paths

Names are either fingerprints or special names.

3.2.1. Fingerprints

The store is indexed by fingerprint. This is achieved by using the

file system as a dictionary, storing each certificate using a path

derived from the cert's fingerprint.

To compute the path to the certificate file:

compute the cert's fingerprint,

format it using lowercase hex digits,

take a two-digit prefix as sub-directory name,

use the remaining digits as the filename.

For example, the certificate with the fingerprint

eb85bb5fa33a75e15e944e63f231550c4f47e38e will be stored at $

{BASEPATH}/eb/85bb5fa33a75e15e944e63f231550c4f47e38e.

3.2.2. Special names

There is a set of special names that can be used to address

certificates in the store. The names map to fixed locations in the

store.

Special name Location

trust-root trust-root

Table 1

3.3. Locking the store for writes

Before a cert can be inserted or updated, you MUST acquire an

exclusive lock on the store. Note that this lock only synchronizes

writers: Concurrent readers can continue to use the store, and will

always see consistent certs.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

¶

The lock to the store is represented by a file located at $

{BASEPATH}/writelock which does not contain any data. If that file

does not exist, the store SHOULD be assumed unlocked and the file

MUST be created before any locking operation. The locking is

achieved with file descriptors using platform specific means, see

Section 3.8 for details.

3.4. How to insert or update certs

The following procedure MUST be followed to ensure that concurrent

readers are not disturbed:

First, acquire an exclusive lock. See Section 3.3.

Then, look up the cert you want to insert or update in the store.

If the store contains a copy of the cert, merge it with your

copy.

Write the cert to a temporary file. This file MUST be on the same

filesystem if the platform requires this for atomic replacement

in the next step (e.g. on POSIX, rename(2) fails if the rename

crosses filesystem boundaries).

Atomically replace the existing cert with the temporary file

(i.e. using rename(2) on POSIX).

Release the exclusive lock.

If a certificate is stored using a fingerprint as name, the name

MUST match the certificate's fingerprint.

3.5. Rooting trust

3.5.1. Trust root

The trust root is an OpenPGP certificate that is stored under the

special name trust-root.

The certificate:

MUST be certification capable.

SHOULD have a User ID to increase compatibility.

SHOULD NOT have any subkeys.

SHOULD use direct key signatures or binding signatures that are

marked as non-exportable.

¶

¶

* ¶

* ¶

*

¶

*

¶

*

¶

* ¶

¶

¶

¶

* ¶

* ¶

* ¶

*

¶

MAY have a secret key, password protected or not.

If the certificate has a secret key, then any conforming OpenPGP

implementation can use it to add a petname or a trusted introducer.

Otherwise, only an implementation with access to the secret key

material can do so.

3.5.2. Petname mapping

To add a petname to a certificate, create a User ID with the desired

petname, and bind it to the target certificate using the trust root.

The binding signature SHOULD be marked as non-exportable.

To remove a petname from a certificate, revoke the User ID using the

trust root. The revocation signature SHOULD be marked as non-

exportable.

To look up certificates by petname, iterate over the store returning

all certificates that contain the petname as User ID bound by the

trust root.

This lookup SHOULD be facilitated using an index data structure.

Currently, we do not define such an index structure, but we define

an extension mechanism so that the index can be stored in the store

(see Section 3.6).

3.5.3. Trusted introducers

To mark a certificate as trusted introducer, create a direct key

signature for the trusted introducer using the trust root, with a

subpacket marking it as trust signature. The trust signature MAY be

scoped. The signature SHOULD be marked as non-exportable.

To rescind a trust delegation, create a new direct key signature for

the trusted introducer using the trust root, without a subpacket

marking it as trust signature. The signature SHOULD be marked as

non-exportable.

The trust root can be used in conjunction with the default OpenPGP

trust model to authenticate nicknames attached to certificates. To

look up certificates by nickname, explore the trust relation of

certs in the store starting with the trust root. Return all

certificates that contain the desired nickname as User ID which are

corroborated by a path from the root to the certificate.

This lookup should be facilitated using an index data structure.

Currently, we do not define such an index structure, but we define

an extension mechanism so that the index can be stored in the store

(see Section 3.6).

* ¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

3.6. Proprietary and experimental extensions

Files or directories in the toplevel directory starting with an

underscore (_) may be freely used for proprietary and experimental

extensions. Please use a unique and descriptive prefix to minimize

the chance of collisions, e.g. _foopgp_subkey_map.sqlite.

Unknown or unsupported extensions MUST be ignored.

3.7. Reserved filenames

Any files or directories in the toplevel directory other than

fingerprints mapped to paths (see Section 3.2)

known special names mapped to paths (see Section 3.2.2)

files starting with an underscore (_) (see Section 3.6)

are reserved for future extensions and MUST be ignored.

3.8. Platform-specific conventions

Platform Default store location Locking mechanism

POSIX $XDG_DATA_HOME/pgp.cert.d
flock(2) with

LOCK_EX

macOS
$HOME/Library/Application Support/

pgp.cert.d

flock(2) with

LOCK_EX

Windows {FOLDERID_RoamingAppData}/pgp.cert.d
LockFile

(fileapi.h)

Table 2

4. Examples

Importing the certificates described [I-D.draft-bre-openpgp-

samples-00] yields the following certificate store:

¶

¶

¶

* ¶

* ¶

* ¶

¶

¶

$ export PGP_CERT_D=$(mktemp -d)

$ pgp-cert-d import < alice.pgp

$ (cd $PGP_CERT_D ; find -type f)

./eb/85bb5fa33a75e15e944e63f231550c4f47e38e

$ pgp-cert-d import < bob.pgp

$ (cd $PGP_CERT_D ; find -type f)

./eb/85bb5fa33a75e15e944e63f231550c4f47e38e

./d1/a66e1a23b182c9980f788cfbfcc82a015e7330

¶

5. Reference implementation

We provide a reference implementation in the form of a library

implemented in Rust (see [reference-implementation-api]). This

library also has a C API, so it is easy to use from other languages.

The library deals with the low-level mechanics of accessing the

store, and computing the fingerprints of inserted certs. It does not

concern itself with emergent features like petname and authenticated

nickname lookups.

5.1. Opening the store

There are two ways to open a store. The first one uses the default

location, the second takes a path to the store's location.

5.2. Certificate lookup

Looking up a certificate returns the certs data and a tag if the

certificate exists in the store, or a special value indicating that

the cert was not found.

The tag can be used in subsequent lookups to quickly check if the

cert has actually changed. This can be used to efficiently update

index data structures.

Usually, this function returns a CERT (Section 5.5.3), but if NAME

(Section 5.5.1) is a special name, it may return a KEY (Section

5.5.4).

5.3. Certificate update

Inserting or updating a cert requires the CERT (Section 5.5.3) and a

callback function.

The callback is invoked with the existing cert data (if any), and

SHOULD merge the two copies of the certificate together. The

function MAY decide to omit (parts of) the existing data, but this

should be done with great care as not to lose any vital information.

The insertion method returns the merged certificate data and the tag

for the new state.

Locking is handled by the library.

¶

¶

¶

function new() -> Store;

function open(Path) -> Store;

¶

¶

¶

¶

function Store::get(NAME) -> Maybe(TAG, CERT-or-KEY);

function Store::get_if_changed(TAG, NAME) -> Maybe(TAG, CERT-or-KEY);

¶

¶

¶

¶

¶

5.4. Store enumeration

The user can iterate over all certificates in the store. The

iterator returns tuples of fingerprints and tags, which can be used

to efficiently update index data structures.

Note: The iterator does not return any special names like the trust

root (see Section 3.2.2).

5.5. Input/Output Types

5.5.1. NAME

A string representing a fingerprint or a special name (see Section

3.2).

5.5.2. TAG

An opaque value corresponding to a cert in store. If the cert is

updated, its tag will change. This can be used to quickly determine

if an index data structure must be updated.

5.5.3. CERT

Exactly one OpenPGP certificate (section 11.1 of [RFC4880]), aka

"Transferable Public Key". The certificate MUST NOT be ASCII

Armored.

5.5.4. KEY

Exactly one OpenPGP Transferable Secret Key (section 11.2 of

[RFC4880]). The certificate MUST NOT be ASCII Armored.

5.6. Failure Modes

Mnemonic Meaning

OK Success

BAD_NAME
The name was neither a valid fingerprint, nor a known

special name

NOT_A_STORE The base directory cannot possibly contain a store

BAD_DATA
The data was not valid OpenPGP cert or key in binary

format

IO_ERROR Unspecified I/O error occurred

Table 3

function Store::insert(CERT, Merge) -> (TAG, CERT)

 where Merge is

 function(CERT, Maybe(CERT)) -> CERT;

¶

¶

¶

function Store::iter() -> Iterator over (NAME, TAG, CERT);¶

¶

¶

¶

¶

[RFC2119]

6. Guidance for Implementers

Despite the fact that this spec is designed with ease of

implementation in mind, and we explicitly invite reimplementations,

please consider using our reference implementation.

This is a list of implementation considerations that interoperating

implementations need to follow:

The exclusive lock MUST be released in a timely manner.

When exporting artifacts from the store, non-exportable

signatures and certificate components MUST be omitted.

7. Security Considerations

XXX

8. Document Considerations

8.1. Document History

This is a first draft that has not been published.

8.2. Future Work

OpenPGP requires efficient lookup by subkey fingerprint and keyids.

This is currently not provided by this spec, hence implementations

need to build their own index on top of this store. Future revisions

may specify a way to do this natively.

Collecting usage information for TOFU-like trust models creates a

write-heavy workload during normal usage, and requires more complex

data structures that are not easily expressed using file-system

operations and OpenPGP data structures. Future revisions of this

spec may define suitable mechanisms to keep a record of certificate

uses.

This spec contains platform-specific conventions (see Section 3.8),

like default store locations and locking mechanisms. Porting to new

platforms requires amending the spec.

9. Acknowledgements

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

¶

¶

* ¶

*

¶

¶

¶

¶

¶

¶

[RFC4880]

[RFC8174]

[Autocrypt]

[FedoraSharedX.509CertStore]

[I-D.draft-bre-openpgp-samples-00]

[I-D.draft-koch-openpgp-webkey-service-12]

[keys.openpgp.org]

[macOSSharedX.509CertStore]

[Maildir]

[Notmuch]

[reference-implementation-api]

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Callas, J., Donnerhacke, L., Finney, H., Shaw, D., and R.

Thayer, "OpenPGP Message Format", RFC 4880, DOI 10.17487/

RFC4880, November 2007, <https://www.rfc-editor.org/info/

rfc4880>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

"Convenient End-to-End Encryption for E-Mail", 14 June

2021, <https://autocrypt.org/>.

"Shared System Certificates", 14 June

2021, <https://fedoraproject.org/wiki/Features/

SharedSystemCertificates>.

Einarsson, B. R., "juga", and D.

K. Gillmor, "OpenPGP Example Keys and Certificates", Work

in Progress, Internet-Draft, draft-bre-openpgp-

samples-00, 15 October 2019, <https://www.ietf.org/

archive/id/draft-bre-openpgp-samples-00.txt>.

Koch, W., "OpenPGP Web Key Directory", Work in Progress,

Internet-Draft, draft-koch-openpgp-webkey-service-12, 17

May 2021, <https://www.ietf.org/archive/id/draft-koch-

openpgp-webkey-service-12.txt>.

"A GDPR-conforming, validating keyserver", 14

June 2021, <https://keys.openpgp.org/>.

"Lists of available trusted root

certificates in macOS", 8 December 2018, <https://

support.apple.com/en-us/HT202858>.

"Using maildir format", 14 June 2021, <https://cr.yp.to/

proto/maildir.html>.

"Notmuch -- Just an email system", 14 June 2021,

<https://notmuchmail.org/>.

"API documentation for the reference

implementation", 15 June 2021, <https://sequoia-

pgp.gitlab.io/pgp-cert-d/pgp_cert_d/index.html>.

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc4880
https://www.rfc-editor.org/info/rfc8174
https://autocrypt.org/
https://fedoraproject.org/wiki/Features/SharedSystemCertificates
https://fedoraproject.org/wiki/Features/SharedSystemCertificates
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-00.txt
https://www.ietf.org/archive/id/draft-bre-openpgp-samples-00.txt
https://www.ietf.org/archive/id/draft-koch-openpgp-webkey-service-12.txt
https://www.ietf.org/archive/id/draft-koch-openpgp-webkey-service-12.txt
https://keys.openpgp.org/
https://support.apple.com/en-us/HT202858
https://support.apple.com/en-us/HT202858
https://cr.yp.to/proto/maildir.html
https://cr.yp.to/proto/maildir.html
https://notmuchmail.org/
https://sequoia-pgp.gitlab.io/pgp-cert-d/pgp_cert_d/index.html
https://sequoia-pgp.gitlab.io/pgp-cert-d/pgp_cert_d/index.html

[TLS]

[WindowsSharedX.509CertStore]

[X509-PKI]

[Zookos-Triangle]

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

"Managing Certificates with

Certificate Stores", 14 June 2021, <https://

docs.microsoft.com/en-us/windows/win32/seccrypto/

managing-certificates-with-certificate-stores>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

"Names: Distributed, Secure, Human-Readable:

Choose Two", 17 June 2021, <https://web.archive.org/web/

20011020191610/http://zooko.com/distnames.html>.

Authors' Addresses

Nora Widdecke

Sequoia PGP

Email: nora@sequoia-pgp.org

Justus Winter

Sequoia PGP

Email: justus@sequoia-pgp.org

https://www.rfc-editor.org/info/rfc8446
https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores
https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores
https://docs.microsoft.com/en-us/windows/win32/seccrypto/managing-certificates-with-certificate-stores
https://www.rfc-editor.org/info/rfc5280
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
https://web.archive.org/web/20011020191610/http://zooko.com/distnames.html
mailto:nora@sequoia-pgp.org
mailto:justus@sequoia-pgp.org

	Shared OpenPGP Certificate Directory
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements Language
	1.2. Terminology
	1.3. Related work
	1.3.1. OpenPGP keyrings
	1.3.2. X.509 certificate stores
	1.3.3. Maildir

	2. Requirements
	2.1. Addressing of certs
	2.2. Trust root
	2.3. Petname mapping
	2.4. Trusted introducers

	3. Implementation
	3.1. Default store's location
	3.2. Mapping names to paths
	3.2.1. Fingerprints
	3.2.2. Special names

	3.3. Locking the store for writes
	3.4. How to insert or update certs
	3.5. Rooting trust
	3.5.1. Trust root
	3.5.2. Petname mapping
	3.5.3. Trusted introducers

	3.6. Proprietary and experimental extensions
	3.7. Reserved filenames
	3.8. Platform-specific conventions

	4. Examples
	5. Reference implementation
	5.1. Opening the store
	5.2. Certificate lookup
	5.3. Certificate update
	5.4. Store enumeration
	5.5. Input/Output Types
	5.5.1. NAME
	5.5.2. TAG
	5.5.3. CERT
	5.5.4. KEY

	5.6. Failure Modes

	6. Guidance for Implementers
	7. Security Considerations
	8. Document Considerations
	8.1. Document History
	8.2. Future Work

	9. Acknowledgements
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

