
Network Working Group E. Nygren
Internet-Draft S. Erb
Intended status: Standards Track Akamai Technologies
Expires: December 30, 2016 A. Biryukov
 D. Khovratovich
 University of Luxembourg
 June 28, 2016

TLS Client Puzzles Extension
draft-nygren-tls-client-puzzles-01

Abstract

 Client puzzles allow a TLS server to defend itself against asymmetric
 DDoS attacks. In particular, it allows a server to request clients
 perform a selected amount of computation prior to the server
 performing expensive cryptographic operations. This allows servers
 to employ a layered defense that represents an improvement over pure
 rate-limiting strategies.

 Client puzzles are implemented as an extension to TLS 1.3
 [I-D.ietf-tls-tls13] wherein a server can issue a HelloRetryRequest
 containing the puzzle as an extension. The client must then resend
 its ClientHello with the puzzle results in the extension.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on December 30, 2016.

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Nygren, et al. Expires December 30, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft Client Puzzles June 2016

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Overview and rationale 2
2. Notational Conventions 3
3. Handshake Changes . 4
3.1. The ClientPuzzleExtension Message 5

4. Usage by Servers . 6
5. Proposed Client Puzzles 6
5.1. Cookie Client Puzzle Type 7
5.2. SHA-256 CPU Puzzle Type 7
5.3. SHA-512 CPU Puzzle Type 8

 5.4. Equihash: Memory-hard Generalized Birthday Problem Puzzle
 Type . 8

6. IANA Considerations . 10
7. Security Considerations 10
8. Privacy Considerations 11
9. Acknowledgments . 11
10. References . 11
10.1. Normative References 11
10.2. Informative References 12

 Authors' Addresses . 12

1. Overview and rationale

 Adversaries can exploit the design of the TLS protocol to craft
 powerful asymmetric DDOS attacks. Once an attacker has opened a TCP
 connection, the attacker can transmit effectively static content that
 causes the server to perform expensive cryptographic operations.
 Rate limiting offers one possible defense against this type of
 attack; however, pure rate limiting systems represent an incomplete
 solution:

 1. Rate limiting systems work best when a small number of bots are
 attacking a single server. Rate limiting is much more difficult
 when a large number of bots are directing small amounts of
 traffic to each member of a large distributed pool of servers.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Nygren, et al. Expires December 30, 2016 [Page 2]

Internet-Draft Client Puzzles June 2016

 2. Rate limiting systems encounter problems where a mixture of
 "good" and "bad" clients are hidden behind a single NAT or Proxy
 IP address and thus are all stuck being treated on equal footing.

 3. Rate limiting schemes often penalize well-behaved good clients
 (which try to complete handshakes and may limit their number of
 retries) much more heavily than they penalize attacking bad
 clients (which may try to disguise themselves as good clients,
 but which otherwise are not constrained to behave in any
 particular way).

 Client puzzles are complementary to rate-limiting and give servers
 another option than just rejecting some fraction of requests. A
 server can provide a puzzle (of varying and server-selected
 complexity) to a client as part of a HelloRetryRequest extension.
 The client must choose to either abandon the connection or solve the
 puzzle and resend its ClientHello with a solution to the puzzle.
 Puzzles are designed to have asymmetric complexity such that it is
 much cheaper for the server to generate and validate puzzles than it
 is for clients to solve them.

 Client puzzle systems may be inherently "unfair" to clients that run
 with limited resources (such as mobile devices with batteries and
 slow CPUs). However, client puzzle schemes will typically only be
 evoked when a server is under attack and would otherwise be rejecting
 some fraction of requests. The overwhelming majority of transactions
 will never involve a client puzzle. Indeed, if client puzzles are
 successful in forcing adversaries to use a new attack vector, the
 presence of client puzzles will be completely transparent to end
 users.

 It is likely that not all clients will choose to support this
 extension. During attack scenarios, servers will still have the
 option to apply traditional rate limiting schemes (perhaps with
 different parameters) to clients not supporting this extension or
 using a version of TLS prior to 1.3.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

 Messages are formatted with the notation as described within
 [I-D.ietf-tls-tls13].

https://datatracker.ietf.org/doc/html/rfc2119

Nygren, et al. Expires December 30, 2016 [Page 3]

Internet-Draft Client Puzzles June 2016

3. Handshake Changes

 Client puzzles are implemented as a new ClientPuzzleExtension to TLS
 1.3 [I-D.ietf-tls-tls13]. A client supporting the
 ClientPuzzleExtension MUST indicate support by sending a
 ClientPuzzleExtension along with their ClientHello containing a list
 of puzzle types supported, but with no puzzle response. When a
 server wishes to force the client to solve a puzzle, it MAY send a
 HelloRetryRequest with a ClientPuzzleExtension containing a puzzle of
 a supported puzzle type and with associated parameters. To continue
 with the handshake, a client MUST resend their ClientHello with a
 ClientPuzzleExtension containing a response to the puzzle. The
 ClientHello must otherwise be identical to the initial ClientHello,
 other than for attributes that are defined by specification to not be
 identical.

 Puzzles issued by the server contain a token that the client must
 include in their response. This allows a server to issue puzzles
 without retaining state, which is particularly useful when used in
 conjunction with DTLS.

 If a puzzle would consume too many resources, a client MAY choose to
 abort the handshake with the new fatal alert "puzzle_too_hard" and
 terminate the connection.

 A typical handshake when a puzzle is issued will look like:

Nygren, et al. Expires December 30, 2016 [Page 4]

Internet-Draft Client Puzzles June 2016

 Client Server

 ClientHello
 + ClientPuzzleExtension
 + ClientKeyShare -------->
 <-------- HelloRetryRequest
 + ClientPuzzleExtension
 ClientHello
 + ClientPuzzleExtension
 + ClientKeyShare -------->
 ServerHello
 ServerKeyShare
 {EncryptedExtensions*}
 {ServerConfiguration*}
 {Certificate*}
 {CertificateRequest*}
 {CertificateVerify*}
 <-------- {Finished}
 {Certificate*}
 {CertificateVerify*}
 {Finished} -------->
 [Application Data] <-------> [Application Data]

 Figure 1. Message flow for a handshake with a client puzzle

 * Indicates optional or situation-dependent messages that are not
 always sent.

 {} Indicates messages protected using keys derived from the ephemeral
 secret.

 [] Indicates messages protected using keys derived from the master
 secret.

 Note in particular that the major cryptographic operations (starting
 to use the ephemeral secret and generating the CertificateVerify) are
 performed _after_ the server has received and validated the
 ClientPuzzleExtension response from the client.

3.1. The ClientPuzzleExtension Message

 The ClientPuzzleExtension message contains an indication of supported
 puzzle types during the initial ClientHello, a selected puzzle type
 and puzzle challenge during HelloRetryRequest, and the puzzle type
 and puzzle response in the retried ClientHello:

Nygren, et al. Expires December 30, 2016 [Page 5]

Internet-Draft Client Puzzles June 2016

 struct {
 ClientPuzzleType type<1..255>;
 opaque client_puzzle_challenge_response<0..2^16-1>;
 } ClientPuzzleExtension;

 enum {
 cookie (0),
 sha256_cpu (1),
 sha512_cpu (2),
 birthday_puzzle (3),
 (0xFFFF)
 } ClientPuzzleType;

 type During initial ClientHello, a vector of supported client puzzle
 types. During the HelloRetryRequest, a vector of exactly one
 element containing the proposed puzzle. During the retried
 ClientHello, a vector containing exactly one element with the type
 of the puzzle being responded to.

 client_puzzle_challenge_response Data specific to the puzzle type,
 as defined in Section (#puzzles). In the initial ClientHello,
 this MUST be empty (zero-length). During HelloRetryRequest, this
 contains the challenge. During the retried ClientHello, this
 contains a response to the challenge. Puzzles containing a token
 may have it within this field.

4. Usage by Servers

 Servers MAY send puzzles to clients when under duress, and the
 percentage of clients receiving puzzles and the complexity of the
 puzzles both MAY be selected as a function of the degree of duress.

 Servers MAY also occasionally send puzzles to clients under normal
 operating circumstances to ensure that the extension works properly.

 Servers MAY use additional factors, such as client IP reputation
 information, to determine when to send a puzzle as well as the
 complexity.

5. Proposed Client Puzzles

 Having multiple client puzzle types allows good clients a choice to
 implement puzzles that match with their hardware capabilities
 (although this also applies to bad clients). It also allows "broken"
 puzzles to be phased out and retired, such as when cryptographic
 weaknesses are identified.

Nygren, et al. Expires December 30, 2016 [Page 6]

Internet-Draft Client Puzzles June 2016

5.1. Cookie Client Puzzle Type

 The "cookie" ClientPuzzleType is intended to be trivial. The
 client_puzzle_challenge_response data field is defined to be a token
 that the client must echo back.

 During an initial ClientHello, this MUST be empty (zero-length).
 During HelloRetryRequest, the server MAY send a cookie challenge of
 zero or more bytes as client_puzzle_challenge_response . During the
 retried ClientHello, the client MUST respond by resending the
 identical cookie sent in the HelloRetryRequest.

5.2. SHA-256 CPU Puzzle Type

 This puzzle forces the client to calculate a SHA-256 [RFC5754]
 multiple times. In particular, the server selects a difficulty and a
 random salt. The client solves the puzzle by finding any nonce where
 a SHA-256 hash across the nonce, the salt and a label contains
 difficulty leading zero bits.

 struct {
 opaque token<0..2^16-1>;
 uint16 difficulty;
 uint8 salt<0..2^16-1>;
 } SHA256CPUPuzzleChallenge;

 struct {
 opaque token<0..2^16-1>;
 uint64 challenge_solution;
 } SHA256CPUPuzzleResponse;

 token The token allows the server to encapsulate and drop state, and
 also acts as a cookie for DTLS. During an initial ClientHello,
 this MUST be empty (zero-length). During HelloRetryRequest, the
 server MAY send a token challenge of zero or more bytes. During
 the retried ClientHello, the client MUST respond by resending the
 identical token sent in the HelloRetryRequest. Servers MAY
 included an authenticated version of difficulty and salt in this
 token if they wish to be stateless.

 difficulty filter affecting the time to find solution.

 salt A server selected variable-length bytestring.

 challenge_solution The solution response to the puzzle, as solved by
 the client.

https://datatracker.ietf.org/doc/html/rfc5754

Nygren, et al. Expires December 30, 2016 [Page 7]

Internet-Draft Client Puzzles June 2016

 To find the response, the client must find a numeric value of
 challenge_solution where:

 SHA-256(challenge_solution || salt || label) contains difficulty
 leading zeros.

 where "||" denotes concatenation and where label is the NUL-
 terminated value "TLS SHA256CPUPuzzle" (including the NUL
 terminator).

 Clients offering to support this puzzle type SHOULD support a
 difficulty value of at least 18. [[TODO: is this a good value?

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison has a
 comparison of SHA256 on various hardware.]]

5.3. SHA-512 CPU Puzzle Type

 The SHA-512 CPU Puzzle Type is identical to the "SHA256 CPU Puzzle
 Type" except that the SHA-512 [RFC5754] hash function is used instead
 of SHA-256. The label used is the value "TLS SHA512CPUPuzzle".

 Clients offering to support this puzzle type SHOULD support
 difficulty values of at least 17. [[TODO: is this a good value?]]

5.4. Equihash: Memory-hard Generalized Birthday Problem Puzzle Type

 Using Equihash, the asymmetric memory-hard generalized birthday
 problem PoW [NDSS2016], this puzzle will force a client to use a
 significant amount of memory to solve. The solution to this puzzle
 can be trivially verified.

 struct {
 opaque token<0..2^16-1>;
 uint16 n;
 uint16 k;
 uint16 difficulty;
 uint8 salt<0..2^16-1>;
 } BirthdayPuzzleChallenge;

 struct {
 opaque token<0..2^16-1>;
 uint8 V<20>;
 uint8 solution<0..2^16-1>;
 } BirthdayPuzzleResponse;

 token The token allows the server to encapsulate and drop state, and
 also acts as a cookie for DTLS. During an initial ClientHello,
 this MUST be empty (zero-length). During HelloRetryRequest, the

https://en.bitcoin.it/wiki/Non-specialized_hardware_comparison
https://datatracker.ietf.org/doc/html/rfc5754

Nygren, et al. Expires December 30, 2016 [Page 8]

Internet-Draft Client Puzzles June 2016

 server MAY send a token challenge of zero or more bytes. During
 the retried ClientHello, the client MUST respond by resending the
 identical token sent in the HelloRetryRequest. Servers MAY
 included an authenticated version of n, k, difficulty and salt in
 this token if they wish to be stateless.

 salt A server selected variable-length bytestring.

 n, k parameters affecting the complexity of Wagner's algorithm.

 difficulty secondary filter affecting the time to find solution.

 V 20 byte nonce used in solution.

 solution list of 2^k (n/(k+1)+1)-bit nonces used in solution,
 referred to as xi below.

 In the further text, the output of blake2b is treated as a 512-bit
 register with most significant bits coming from the last bytes of
 blake2b output (i.e. little-endian conversion).

 To compute the response, the client must find a V and 2^k solutions
 such that:

 blake2b(salt||V||x1) XOR blake2b(salt||V||x2) XOR ... XOR
 blake2b(I||V||x(2^k)) = 0
 blake2b(label||salt||V||x1||x2||...||x(2^k)) has difficulty leading
 zero bits.

 where "||" denotes concatenation and where label is the NUL-
 terminated value "TLS BirthdayPuzzle" (including the NUL terminator).
 Incomplete bytes in nonces xi are padded with zero bits, which occupy
 the most significant bits.

 The client MUST provide the solution list in an order that allows a
 server to verify the solution was created using Wagner's algorithm:

 blake2b(salt||V||x(w_2^l+1)) XOR blake2b(salt||V||x(w_2^l+2)) XOR ...
 XOR blake2b(I||V||x(w*2^l+2^l)) has nl/(k+1) leading zero bits for
 all w,l.

 and two 2^(l-1)(n/(k+1)+1)-bit numbers Z1 and Z2 must satisfy Z1<Z2
 where

 Z1 = x(w_2^l+1)||x(w_2^l+2)||...||x(w_2^l+2^(l-1)) Z2 =
 x(w_2^l+2^(l-1)+1)||x(w_2^l+2)||...||x(w_2^l+2^l) as in([NDSS2016]

section 4A, 5C). The server MUST verify these intermediate
 equations.

Nygren, et al. Expires December 30, 2016 [Page 9]

Internet-Draft Client Puzzles June 2016

 A solution can be found using Wagner's algorithm as described in
 [NDSS2016]. The amount of memory required to find a solution is 2 ^
 (n/(k+1)+k) bytes. A solution requires (k+1)2^(n/(k+1)+d) calls to
 the blake2b hash function.

 Clients offering to support this puzzle type SHOULD support n, k
 values such that 2^(n/(k+1)+k) is at least 20MB.

 Servers SHOULD look to minimize the value of k as 2^k blake2b hash
 operations will be required to verify a solution.

6. IANA Considerations

 The IANA will need to assign an extension codepoint value for
 ClientPuzzleExtension.

 The IANA will need to assign an AlertDescription codepoint value for
 puzzle_too_hard.

 The IANA will also need to maintain a registry of client puzzle
 types.

7. Security Considerations

 A hostile server could cause a client to consume unbounded resources.
 Clients MUST bound the amount of resources (cpu/time and memory) they
 will spend on a puzzle.

 A puzzle type with economic utility could be abused by servers,
 resulting in unnecessary resource usage by clients. In the worst
 case, this could open up a new class of attacks where clients might
 be directed to malicious servers to get delegated work. As such, any
 new puzzle types SHOULD NOT be ones with utility for other purposes
 (such as mining cryptocurrency or cracking password hashes).
 Including fixed labels in new puzzle definitions may help mitigate
 this risk.

 Depeding on the structure of the puzzles, it is possible that an
 attacker could send innocent clients to a hostile server and then use
 those clients to solve puzzles presented by another target server
 that the attacker wishes to attack. There may be ways to defend
 against this by including IP information in the puzzles (not
 currently proposed in this draft), although that introduces
 additional issues.

 All extensions add complexity, which could expose additional attack
 surfaces on the client or the server. Using cryptographic primitives

Nygren, et al. Expires December 30, 2016 [Page 10]

Internet-Draft Client Puzzles June 2016

 and patterns already in-use in TLS can help reduce (but certainly not
 eliminate) this complexity.

 An attacker that can force a server into client puzzle mode could
 result in a denial of service to clients not supporting puzzles or
 not having the resources to complete the puzzles. This is not
 necessarily worse than if the server was overloaded and forced to
 deny service to all clients or to a random selection of clients. By
 using client puzzles, clients willing to rate-limit themselves to the
 rate at which they can solve puzzles should still be able to obtain
 service while the server is able to stay available for these clients.

 It is inevitable that attackers will build hardware optimized to
 solve particular puzzles. Using common cryptographic primitives
 (such as SHA-256) also means that commonly deployed clients may have
 hardware assistance, although this also benefits legitimate clients.

8. Privacy Considerations

 Measuring the response time of clients to puzzles gives an indication
 of the relative capabilities of clients. This could be used as an
 input for client fingerprinting.

 Client's support for this extension, as well as which puzzles they
 support, could also be used as an input for client fingerprinting.

9. Acknowledgments

 Some of this was inspired by work done by Kyle Rose in 2001, as well
 as a 2001 paper by Drew Dean (Xerox PARC) and Adam Stubblefield
 (Rice) [SEC2001.DEAN]. Discussions with Eric Rescorla, Yoav Nir,
 Richard Willey, Rich Salz, Kyle Rose, Brian Sniffen, and others on
 the TLS working group have heavily influenced this proposal and
 contributed to its content. An alternate approach was proposed in
 [I-D.nir-tls-puzzles]. Some similar mechanisms for protecting IKE
 are discused in [I-D.ietf-ipsecme-ddos-protection].

10. References

10.1. Normative References

 [I-D.ietf-tls-tls13]
 Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", draft-ietf-tls-tls13-13 (work in progress),
 May 2016.

https://datatracker.ietf.org/doc/html/draft-ietf-tls-tls13-13

Nygren, et al. Expires December 30, 2016 [Page 11]

Internet-Draft Client Puzzles June 2016

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

 [RFC5754] Turner, S., "Using SHA2 Algorithms with Cryptographic
 Message Syntax", RFC 5754, DOI 10.17487/RFC5754, January
 2010, <http://www.rfc-editor.org/info/rfc5754>.

10.2. Informative References

 [I-D.ietf-ipsecme-ddos-protection]
 Nir, Y. and V. Smyslov, "Protecting Internet Key Exchange
 Protocol version 2 (IKEv2) Implementations from
 Distributed Denial of Service Attacks", draft-ietf-

ipsecme-ddos-protection-06 (work in progress), April 2016.

 [I-D.josefsson-scrypt-kdf]
 Percival, C. and S. Josefsson, "The scrypt Password-Based
 Key Derivation Function", draft-josefsson-scrypt-kdf-05
 (work in progress), May 2016.

 [I-D.nir-tls-puzzles]
 Nir, Y., "Using Client Puzzles to Protect TLS Servers From
 Denial of Service Attacks", draft-nir-tls-puzzles-00 (work
 in progress), April 2014.

 [NDSS2016]
 Biryukov, A. and D. Khovratovich, "Equihash: Asymmetric
 proof-of-work based on the Generalized Birthday problem",
 February 2016,
 <https://www.internetsociety.org/sites/default/files/

blogs-media/equihash-asymmetric-proof-of-work-based-
generalized-birthday-problem.pdf>.

 [SEC2001.DEAN]
 Dean, D. and A. Stubblefield, "Using Client Puzzles to
 Protect TLS", Proceedings of the 10th USENIX Security
 Symposium , August 2001,
 <https://www.usenix.org/legacy/events/sec2001/full_papers/

dean/dean.pdf>.

Authors' Addresses

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc5754
http://www.rfc-editor.org/info/rfc5754
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ddos-protection-06
https://datatracker.ietf.org/doc/html/draft-ietf-ipsecme-ddos-protection-06
https://datatracker.ietf.org/doc/html/draft-josefsson-scrypt-kdf-05
https://datatracker.ietf.org/doc/html/draft-nir-tls-puzzles-00
https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://www.usenix.org/legacy/events/sec2001/full_papers/dean/dean.pdf
https://www.usenix.org/legacy/events/sec2001/full_papers/dean/dean.pdf

Nygren, et al. Expires December 30, 2016 [Page 12]

Internet-Draft Client Puzzles June 2016

 Erik Nygren
 Akamai Technologies

 EMail: erik+ietf@nygren.org
 URI: http://erik.nygren.org/

 Samuel Erb
 Akamai Technologies

 EMail: serb@akamai.com

 Alex Biryukov
 University of Luxembourg

 EMail: alex.biryukov@uni.lu

 Dmitry Khovratovich
 University of Luxembourg

 EMail: khovratovich@gmail.com

http://erik.nygren.org/

Nygren, et al. Expires December 30, 2016 [Page 13]

