
INTERNET-DRAFT Magnus Nystrom
July, 2004 RSA Security
Expires: January, 2005 Alexey Melnikov
Intended category: Standards track Isode Ltd.

 SASL in HTTP/1.1

draft-nystrom-http-sasl-12.txt

Status of this Memo

 By submitting this Internet-Draft, we certify that any applicable
 patent or other IPR claims of which we are aware have been disclosed,
 or will be disclosed, and any of which we become aware will be
 disclosed, in accordance with RFC 3668.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that other
 groups may also distribute working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Copyright (C) The Internet Society (2004). All Rights Reserved.

Abstract

 This memo suggest the use of SASL [RFC2222] as a framework to enable
 the use of strong authentication mechanisms in HTTP/1.1 [RFC2616],
 and describes one approach to accomplish this.

 Please send comments on this document directly to authors or to the
 relevant mailing lists, e.g. ietf-sasl@imc.org.

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 1]

https://datatracker.ietf.org/doc/html/draft-nystrom-http-sasl-12.txt
https://datatracker.ietf.org/doc/html/rfc3668
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2616

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Table of contents

1 Conventions used in this memo 3
2 Introduction .. 4

 2.1 The HTTP/1.1 challenge-response framework X
 3 Relationship with the HTTP/1.1 specification X

4 SASL framework .. 4
 4.1 Introduction and examples X
 4.1.1 Introduction ... X
 4.1.2 Example sequence diagrams X
 4.2 SASL authentication scheme X
 4.2.1 Recognition of the scheme X
 4.2.2 SASL authentication response header sent by server X
 4.2.3 SASL authorization request header sent by client X
 4.3 Usage model .. X
 4.3.1 SASL handshake initiation X
 4.3.2 Client response .. X
 4.3.3 Server behavior upon receiving a "SASL" <auth-scheme>
 token ... XX
 4.3.4 Client behavior upon receiving a "SASL" <auth-scheme>
 token ... XX
 4.3.5 Subsequent requests XX
 4.3.6 Client aborting a handshake XX
 4.3.7 Pipelining considerations XX
 4.3.8 Caching considerations................................. XX
 4.3.9 "Web farm" considerations XX
 4.3.10 HTTP header and state management XX
 4.4 Request/response encoding XX
 4.4.1 SASL challenge/response encoding XX
 4.4.2 Security layer... XX
 4.4.3 Interaction with TLS................................... XX
 4.4.4 Mandatory to implement SASL mechanism.................. XX
 4.5 Status codes and error handling XX
 4.5.1 HTTP/1.1 status codes.................................. XX
 4.5.2 Client error handling.................................. XX
 4.6 Authorization identity XX
 4.7 Examples .. XX
 4.7.1 Example 1 - Server requires authentication XX
 4.7.2 Example 2 - Initial response XX
 4.7.3 Example 3 - One mechanism only XX
 4.7.4 Example 4 - Server sends additional data XX
 4.7.5 Example 5 - Abort XX
 4.7.6 Example 6 - Client requires authentication XX
 4.7.7 Example 7 - Client requires authentication, server
 supports multiple realm XX
 4.7.8 Example 8 - Client uses POST request XX
 4.7.9 Example 9 - Client authentication fails XX
 4.8 Interoperability with existing HTTP/1.1 clients and

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 2]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 servers ... XX
 4.9 Preferences ... XX
 4.10 SASL mechanism recommendations XX
 5 IANA considerations XX
 5.1 GSSAPI/SASL service name XX
 5.2 HTTP/1.1 Status codes XX
 6 Security considerations XX
 6.1 Introduction .. XX
 6.2 Active attacks .. XX
 6.2.1 Man-in-the-middle XX
 6.2.2 Denial of service XX
 6.2.3 Replay .. XX
 6.3 Passive attacks ... XX
 6.4 Protecting the body of POST/PUT requests XX
 6.5 Other considerations XX
 7 Implementation considerations (informative)............... XX
 7.1 The SASL authentication exchange context XX
 7.2 SASL security layer handling XX
 7.3 SASL Profile Checklist XX
 8 Acknowledgements ... XX
 9 References ... XX
 9.1 Normative references XX
 9.2 Informative references XX
 10 Authors' addresses XX
 11 IPR Disclosure Acknowledgement XX
 12 Intellectual Property Statement XX
 13 Full Copyright Statement XX

Appendix A. Changes since previous revisions XX

1 Conventions used in this memo

 The keywords "MUST", "MUST NOT", "SHOULD", "SHOULD NOT", and "MAY" in
 this document are to be interpreted as defined in "Key words for use
 in RFCs to Indicate Requirement Levels" [RFC2119].

 General understanding of SASL [RFC2222] is required before reading of
 this document. [RFC2222] defines several terms used through out this
 document, in particular "authorization identity" and "security
 layer".

 In the examples, "C:" and "S:" indicate lines sent by a client and a
 server respectively; "CP:" and "SP:" indicate lines sent by a client
 and a server respectively with a SASL security layer active.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2222

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 3]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

2 Introduction

 The Hypertext Transfer Protocol, HTTP/1.1 [RFC2616], supports only
 two authentication schemes, namely the "Basic Access Authentication
 Scheme" and the "Digest Access Authentication Scheme" [RFC2617].
 Neither of these can be considered to be strong authentication
 schemes. The former is extremely insecure unless used in conjunction
 with a lower-level protocol offering security services, since it
 sends cleartext passwords. The latter is an improvement, but is still
 vulnerable to man-in-the-middle attacks.

 The Simple Authentication and Security Layer (SASL [RFC2222])
 provides a method for adding authentication and security services to
 connection-oriented protocols in a flexible manner, enabling a
 variety of authentication and security mechanisms (e.g. mechanisms
 based on one-time-passwords, public key technology or password-based
 public-key cryptography), and also a flexible means to negotiate
 these mechanisms subject to local policies and security requirements.
 This memo therefore suggests a method to use SASL in HTTP/1.1 and
 solicit comments on the suggested approach.

 This document is using the HTTP/1.1 challenge-response framework to
 implement SASL in HTTP/1.1. The challenge-response framework is
 outlines in Section 2.1.

 2.1 The HTTP/1.1 challenge-response framework

 HTTP/1.1 provides a simple challenge-response mechanism that can be
 used by a server or proxy to challenge a client request and by a
 client to provide authentication information. The reader is referred
 to [RFC2616] and [RFC2617] for a more detailed description of this
 mechanism. The relevant ABNF productions are:

 challenge = auth-scheme 1*SP 1#auth-param

 auth-scheme = token

 auth-param = token "=" (token | quoted-string)

 The challenge will be found in a WWW-Authenticate or a Proxy-
 Authenticate header field.

 The client response, containing the client's credentials is defined
 as follows:

 credentials = auth-scheme 1*SP 1#auth-param

 The response will be found in an Authorization or a Proxy-

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 4]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Authorization header field.

3 Relationship with the HTTP/1.1 specification

 This memo relies on the HTTP/1.1 [RFC2616] specification. As with RFC
2616, it uses the ABNF [RFC2234] grammar of that document and relies

 on both non-terminals and other aspects of it.

 Further, this memo REQUIRES persistent connections whenever a SASL
 security layer (see Section 4.4.2) is negotiated. Note, that a SASL
 security layer is an optional (to negotiate) feature of SASL,
 however, once negotiated it can't be turned off (or not used), until
 a subsequent reauthentication completes successfully on the same TCP
 connection. It is also RECOMMENDED to use a persistent connection
 while performing a SASL authentication exchange. See also Section

4.3.10 for additional discussions of this issue.

4 SASL framework

 4.1 Introduction and examples

 4.1.1 Introduction

 The SASL protocol itself is relatively straightforward. It consists
 of a number of exchanges between the client and the server.
 Typically, the initial exchange negotiates the authentication
 mechanism and then remaining exchanges actually authenticate the
 client to the server.

 The following figure shows, in schematic fashion a typical SASL
 authentication handshake which authenticates the client using the
 CRAM-MD5 mechanism. See Section 4.7.1 for the detailed example on how
 this will look in HTTP.

 Client Server
 ------ ------
 <- Please authenticate, I speak
 CRAM-MD5, GSSAPI, and
 DIGEST-MD5

 I choose CRAM-MD5 ->

 <- Go ahead, your challenge
 is "abcdef"

 I am user "user8", and ->
 my response is

https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2234

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 5]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 "0123456789ABCDEF"

 <- Ok user "user8", your are
 authenticated.

 Note that other mechanisms may require a larger number of round
 trips.

 This document describes how to use SASL as an authentication
 mechanism for HTTP. Standard HTTP authentication headers are used,
 but they contain SASL data. SASL messages sent by the client are
 carried in the Authorization header. SASL messages sent by the server
 are carried in the WWW-Authenticate header.

 4.1.2 Example sequence diagrams

 Server initiated authentication:

 Client Server

 ----------------- Initial Request ----------------------->

 <------ 401 WWW-Authenticate SASL (mechanisms,realm,id) --

 --- Authorization (mechanism,id[,realm]) ---------------->

 <------ 401 WWW-Authenticate SASL (id,challenge) ---------

 --- Authorization (id,credential)------------------------>

 [
 <------ 401 WWW-Authenticate SASL (id,challenge) ---------

 --- Authorization (id,credential)------------------------>

](0 or more times depending on the SASL mechanism)

 <------ 235 WWW-Authenticate SASL (id) -------------------

 ----------------- Initial Request (retry) --------------->

 <------ 200 Server performs the requested operation ------

 Client initiated authentication:

 Client Server

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 6]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 --- OPTIONS request with Authorization ([realm]) -------->

 <------ 401 WWW-Authenticate SASL (mechanisms,realm,id) --

 --- Authorization (mechanism,id) ------------------------>

 <------ 401 WWW-Authenticate SASL (id,challenge) ---------

 --- Authorization (id,credential)------------------------>

 [
 <------ 401 WWW-Authenticate SASL (id,challenge) ---------

 --- Authorization (id,credential)------------------------>

](0 or more times depending on the SASL mechanism)

 <------ 235 WWW-Authenticate SASL (id) -------------------

 ----------------- Initial Request ----------------------->

 <------ 200 Server performs the requested operation ------

 <<All subsequent requests are carried out as usual.>>

 4.2 SASL authentication scheme

 4.2.1 Recognition of the scheme

 A server MUST use the auth-scheme token "SASL" if it supports SASL
 and is willing to perform authentication using a SASL-based
 mechanism.

 4.2.2 SASL authentication response header sent by server

 For the "SASL" <auth-scheme>, the authentication response header is
 as follows:

 challenge = SASL 1*SP sasl-response-parameters

 sasl-response-parameters
 = [sasl-mechanisms WSAC] [realm WSAC] sasl-sid
 [WSAC sasl-challenge] [WSAC sasl-status]
 [WSAC http-authzid]

 sasl-mechanisms = "mechanisms" "=" <"> 1#sasl-mech-name <">

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 7]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 realm = "realm" "=" quoted-string
 ; See RFC 2617

 sasl-sid = "id" "=" quoted-string

 sasl-challenge = "challenge" "=" <"> base64-string <">

 sasl-status = "status" "=" quoted-string

 http-authzid = "http-authzid" "=" sasl-authzid

 sasl-authzid = <"> URI <">
 ; Usually a URI using the "http" scheme.
 ; URI is defined in [RFC2396]

 sasl-mech-name = 1*20 SASLCHAR
 ; Name must be from IANA set of registered SASL mechanisms,
 ; e.g. "SECURID"

 base64-string = *base64-group [base64-fingroup]
 ; Encoding must be in accordance with Section 3 of [RFC3548],
 ; except not limited to 76 chars/line.
 ; Spaces are not allowed.

 base64-group = 4*BASE64

 base64-fingroup = 4*BASE64 | (3*BASE64 "=") | (2*BASE64 "==")

 SASLCHAR = UPALPHA | DIGIT | "-" | "_"
 ; Characters allowed in SASL mechanism name

 BASE64 = DIGIT | ALPHA | "+" | "/"

 WSAC = *LWS "," *LWS

 Note: All directives ("mechanisms", "id", "realm", "challenge", etc.)
 are case-insensitive. All directive values are case-sensitive.

 The meanings of the values of the directives used above are as
 follows:

 sasl-mechanisms
 A list of registered SASL mechanisms acceptable to the
 server. MUST be sent by the server unless a mechanism already has
 been agreed upon (see example 2 in Section 4.7.2). A server should
 list supported SASL mechanisms in its preferred order - from the
 most preferred to the least preferred. However a client MUST NOT
 blindly trust the order of the mechanisms in the received

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc3548#section-3

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 8]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 sasl-mechanisms directive. The client must enforce own mechanism
 selection policy first, e.g. "only use mechanisms that provide
 mutual authentication", and only use the order specified by the
 server if everything else is equal.

 realm
 As defined in [RFC2617]. The directive MUST be present in initial
 challenges and when the realm otherwise would not be known by the
 client.

 sasl-sid
 A session identifier identifying a particular SASL authentication
 exchange (handshake) context (see also Section 7.1). MUST always be
 present. Sasl-sids are chosen by the server and at any given point
 in time MUST be unique for each established connection.

 sasl-challenge
 A Base64-encoded challenge (or server credentials, at the end
 of an authentication exchange) in accordance with a selected SASL
 mechanism. MUST NOT be sent unless there is exactly one SASL
 mechanism in the <sasl-mechanisms> directive.

 sasl-status
 A string indicating the resulting status of a SASL authentication
 exchange. For this version of this profile, this parameter is only
 used when client authentication has failed, in which case the
 parameter's value shall be "failed" (see further Section 4.3.3).

 http-authzid
 Upon successful authentication the server MAY (and if the client
 specified options="http-authzid" the server MUST) return the
 resulting protocol-specific authorization identifier for the
 authenticated client. The returned identifier informs the client of
 the established HTTP/1.1 authorization identity.

 4.2.3 SASL authorization request header sent by client

 For the SASL scheme, the authorization request header is as follows:

 credentials = SASL [1*SP sasl-request-parameters]

 sasl-request-parameters
 = [sasl-mechanism WSAC] [sasl-sid WSAC]
 [realm WSAC] [sasl-options WSAC] [sasl-
 credentials]

 sasl-mechanism = "mechanism" "=" <"> sasl-mech-name <">

https://datatracker.ietf.org/doc/html/rfc2617

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 9]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 sasl-credentials = "credentials" "="
 <"> (base64-string <"> | cancel-token) <">

 sasl-options = "options" "=" <"> 1#token <">

 cancel-token = "*"

 The meanings of the values of the directives used above are as
 follows:

 sasl-mechanism
 A SASL mechanism acceptable to the client, chosen from the list
 provided by the server or set by some configuration. MUST be sent
 by the client unless a mechanism already has been agreed upon.

 sasl-sid
 A session identifier identifying a particular SASL authentication
 exchange context, previously set by a server. MUST always be sent
 by
 the client except for the case of "initial responses," see Section

4.3.1 below.

 realm
 As defined in [RFC2617]. MUST always be sent by the client unless
 the realm is possible to determine by other means.

 sasl-credentials
 Base64-encoded credentials in accordance with a selected SASL
 mechanism, or a <cancel-token> ("*"). MUST be sent if a
 <sasl-challenge> directive has been received by the client.

 sasl-options
 Allows the client to request SASL specific options. Currently
 only a single option "http-authzid" is defined. Sending of the
 "http-authzid" option instructs the server to return a
 <http-authzid> directive upon successful authentication (see also

Section 4.2.2). The "http-authzid" option MUST only be sent in the
 request in which the client selects the authentication mechanism to
 be used. Other options may have other restrictions.

 4.3 Usage model

 4.3.1 SASL handshake initiation

 4.3.1.1 Server initiated authentication

 When a client makes a request for a resource on a server that
 requires SASL-based authentication, the server MUST respond with a

https://datatracker.ietf.org/doc/html/rfc2617

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 10]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 401 - Unauthorized (407 - Proxy Authentication Required) response
 including a WWW-Authenticate (or Proxy-Authenticate) header field
 that contains a "SASL" <auth-scheme>.

 The server MUST list all supported and acceptable SASL mechanisms in
 the <sasl-mechanisms> directive. If the server only supports one SASL
 mechanism, it MAY include a <sasl-challenge> directive in order to
 reduce the number of roundtrips (see the example in Section 4.7.3).
 The server MUST include a <sasl-sid> directive to identify the
 particular authenticaton exchange context. This value MUST be the
 same for all messages associated with that authentication exchange.

 Further, the server MUST include a <realm> directive in accordance
 with [RFC2617], however if a particular SASL mechanism defines its
 own "realm" as a part of its authentication exchange, the mechanism
 specific version of "realm" MUST be used by the mechanism.

 If the server supports multiple realms for the requested resource, it
 MUST return multiple SASL challenges formatted as described above,
 each including different <realm>s (and potentially different <sasl-
 sid>s for different realms).

 The server MAY also return additional challenges if Basic and/or
 Digest [RFC2617] access authentication is supported for the requested
 resource.

 4.3.1.2 Client initiated authentication

 A client, which is about to issue a request to a server, and knows
 that the server requires a certain SASL mechanism, MAY include a a
 "SASL" <auth-scheme> token in an Authorization (or Proxy-
 Authorization) header field in its request. If the client chooses to
 do so, it MUST include a <sasl-mechanism> directive identifying the
 used SASL mechanism, but MUST NOT include a <sasl-sid> directive, as
 session identifiers are chosen by the server. The client MAY also
 specify a <realm> directive (if it is known) and a <sasl-options>
 directive in the request. If the chosen SASL mechanism requires that
 the client sends data first, the client MUST also include a <sasl-
 credentials> directive, c.f. the "initial response" in [RFC2222] (see
 also the example in Section 4.7.2). This minimizes the number of
 roundtrips, since otherwise the server would be required to send an
 empty challenge.

 If the client requires authentication, but doesn't know which
 mechanisms are supported by the server, the client SHOULD issue an
 OPTIONS request that includes a Request-URI header for the desired
 resource and an Authorization (or Proxy-Authorization) header field
 containing a "SASL" <auth-scheme> token that MAY contain <realm>, but

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2222

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 11]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 MUST NOT contain any of the <sasl-mechanism>, <sasl-sid> or <sasl-
 credentials> directives. This provides a way for the client to query
 the server about supported SASL mechanisms for the requested
 resource.

 This document REQUIRES that a compliant SASL-aware server handles an
 OPTIONS request with the "SASL" <auth-scheme> token described in the
 previous paragraph by listing all supported and acceptable SASL
 mechanisms in the <sasl-mechanisms> directive in the WWW-Authenticate
 (or Proxy-Authenticate) header field as described in Section 4.3.1.1.
 When replying to OPTIONS request the server SHALL use the 401 -
 Unauthorized (407 - Proxy Authentication Required) response, if the
 requested resource requires client authentication. <<Note that

Section 10.4.2 of HTTP/1.1 requires that a 401 response includes a
 WWW-Authenticate header>> The server SHALL use the 200 - OK response,
 if unauthenticated users are allowed to see the resource. In both
 cases, the presense of the WWW-Authenticate (or Proxy-Authenticate)
 header field containing "SASL" <auth-scheme> signifies that SASL
 authentication is supported for the requested resource; the absence
 of any WWW-Authenticate (or Proxy-Authenticate) header field with
 "SASL" <auth-scheme> signifies that SASL authentication is not
 supported for the requested resource. For example, the server SHALL
 use the 200 - OK response including a WWW-Authenticate (or Proxy-
 Authenticate) header field with "SASL" <auth-scheme>, if
 unauthenticated users are allowed to see the resource and SASL
 authentication is supported for the resource. See also an example in

Section 4.7.6.

 <<Do we need a summary table here?>>

 If the client has specified a wrong <realm> value (i.e. a <realm>
 value that is not recognized by the server or a <realm> value that
 doesn't control access to the requested resource) or has not provided
 any <realm> value and the server supports multiple realms for the
 requested resource, than the server MUST ignore data sent in the
 client's request and respond with a 401 - Unauthorized (407 - Proxy
 Authentication Required) response containing multiple SASL challenges
 formatted as described in section 4.3.1.1, each SASL challenge
 including different <realm>s. The client can than select a proper
 <realm> value and retry the authentication request. See also example
 in Section 4.7.7.

 4.3.2 Client response

 A client, which receives a "SASL" <auth-scheme> authentication
 response token containing the <sasl-mechanisms> directive in a WWW-
 Authenticate (Proxy-Authenticate) header in a 401 - Unauthorized (407
 - Proxy Authentication Required) response, examines the list of the

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 12]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 available SASL mechanism found in the <sasl-mechanisms> directive. If
 the client can't find a supported and otherwise appropriate (for
 accessing the resource) SASL mechanism (see also note below), it MUST
 NOT continue the authentication exchange using a SASL mechanism not
 on the provided list. If no acceptable SASL mechanism is found, the
 client MAY try Digest and/or Basic authentication [RFC2617]. <<Should
 we mention other obvious possibilities like dropping connection?>> If
 the client has found an acceptable SASL mechanism, it constructs a
 new request as described below. This request MAY contain the headers
 from the original request, MUST contain an Authorization (Proxy-
 Authorization) header containing a "SASL" <auth-scheme> token, but
 SHOULD NOT contain the body of the original request (if any). We will
 reference any such request as a "SASL request". The purpose of SASL
 requests is to avoid sending the body of a request with each
 authentication step.

 Note: In cases where the 401 - Unauthorized (407 - Proxy
 Authentication Required) response also contains a WWW-Authenticate
 (Proxy-Authenticate) header with a "Basic" and/or a "Digest" <auth-
 scheme> token, the selected authentication scheme will be subject to
 local client policy. Clients are RECOMMENDED never to select Basic
 authentication over any other server-suggested method.

 The "SASL" <auth-scheme> token in the SASL request MUST include the
 <sasl-sid> value provided by the server and a <sasl-mechanism>
 directive with the chosen SASL mechanism name. If the chosen
 mechanism allows for "initial response" type messages, the client
 MUST also include the initial response in a <sasl-credentials>
 directive. If the client is transmitting an initial response of zero
 length, it MUST transmit the response as the empty token (i.e.
 credentials=""). This indicates that the response is present, but
 contains no data. The client MAY also include a <sasl-options>
 directive.

 If the client is able and willing to negotiate a SASL security layer,
 it MUST establish an end-to-end tunnel using the CONNECT method as
 described in Section 5.3 of [RFC2817] before starting an
 authentication exchange. The Authorization header MUST NOT be used in
 a CONNECT request. However, in order to save round trips, a Proxy-
 Authorization header MAY be used in a CONNECT request.

 Note: A direct connection (any intermediate proxies operating in
 tunnel mode) is required whenever a security layer is in effect,
 since at that point complete HTTP/1.1 messages may be encrypted.

 When two or more authentication exchanges are performed in parallel
 on the same connection ("mixed"), the client MUST NOT negotiate a
 security layer on more than one of them. Multiple <sasl-sid>

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2817#section-5.3

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 13]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 directives SHOULD NOT be "mixed" on the same connection, except for
 the case when a client starts an authentication exchange with the
 target server and an intervening proxy server asks the client to
 authenticate to it first. In this case, the client must perform an
 authentication exchange to the proxy first and then resume
 authentication to the end server.

 The following diagram demonstrates a "mixed" authentication exchange:

 Client Server

 ----------- Start Authentication Exchange 1 ------------->

 <--------- Reply to Authentication Exchange 1 ------------

 ----------- Start Authentication Exchange 2 ------------->

 <--------- Reply to Authentication Exchange 2 ------------

 ----------- Continue Authentication Exchange 1 ---------->

 If the client receives a "SASL" <auth-scheme> authentication response
 token containing a <sasl-challenge> directive in a WWW-Authenticate
 (Proxy-Authenticate) header for a 401 - Unauthorized (407 - Proxy
 Authentication Required) response, the client should behave as
 described in Section 4.3.4.

 4.3.3 Server behavior upon receiving a "SASL" <auth-scheme> token

 If the <auth-scheme> token contains a <sasl-sid> directive, then the
 server MUST check if the SASL authentication exchange context
 identified by <sasl-sid> is valid. If it is not, the server SHALL
 reply with a 401 - Unauthorized (407 - Proxy Authentication Required)
 response, that contains a new <sasl-sid> value and the session
 continues as described in Section 4.3.1.1, i.e. the server MUST list
 all supported and acceptable SASL mechanisms in the <sasl-mechanisms>
 directive.

 If the <auth-scheme> token contains a <sasl-mechanism> directive, the
 server MUST check if it mechanism is acceptable. If it is not, the
 server MUST reply with a 450 - "Authentication mechanism not
 accepted" response and, if the request included a <sasl-sid>
 directive, delete the SASL authentication context identified by the
 <sasl-sid>.

 If the <auth-scheme> token contains a <sasl-credentials> directive,
 the server MUST check if the supplied credentials authenticates the
 client. If the <sasl-credentials> directive contains a <cancel-

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 14]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 token> then the server MUST reject the exchange with a 401 -
 Unauthorized reply.

 Otherwise, the server uses the value of <sasl-credentials> directive
 to check if the client is authenticated. If the client is not (yet)
 authenticated, the server uses the supplied credential value to
 calculate a new <sasl-challenge> as per the currently selected SASL
 mechanism. If the new <sasl-challenge> is successfully calculated, it
 is returned in the WWW-Authenticate (or Proxy-Authenticate) header of
 a new 401 - Unauthorized (407 - Proxy Authentication Required)
 response.

 If the client authentication failed, the server SHALL reply with a
 401 - Unauthorized (407 - Proxy Authentication Required) response
 containing a WWW-Authenticate (or Proxy-Authenticate) header
 containing a "SASL" <auth-scheme> authentication token with exactly
 two <auth-params> directives: <sasl-sid> and <sasl-status>. The value
 for the <sasl-status> directive shall be "failed". When receiving a
 message with a WWW-Authenticate (Proxy-Authenticate) header of this
 type, the client shall interpret the response in accordance with

Section 10.4.2 of [RFC2616]. For an example of this, see Section
4.7.9.

 Note: This method of conveying information about a failed
 authentication differs slightly from that defined in [RFC2616]. The
 reason for this discrepancy is twofold: There may be SASL methods for
 which two consecutive challenges are identical, and the method
 defined in 10.6.2 of [RFC2616] was not designed for multiple-step
 authentication exchanges.

 Whenever an authentication exchange fails, both the client and the
 server MUST return to their previous authentication state, i.e. as if
 the authentication attempt never took place.

 The server MAY also choose to reply with a 432 - Transition Needed
 response, which indicates that the user name is valid, but the entry
 in the authentication database needs to be updated in order to permit
 authentication with the specified SASL mechanism. A client, which
 receives a 432 - Transition Needed response, MAY retry authentication
 using the SASL PLAIN mechanism. This SHOULD NOT be done unless an
 appropriate TLS protection is in place. An interactive client MUST
 NOT perform PLAIN authentication automatically and MUST warn the user
 before proceeding.

 If the client is authenticated, the server MUST at least include the
 <sasl-sid> directive with its "SASL" <auth-scheme> authentication
 response token. If the chosen SASL mechanism requires that further
 challenge/response data (i.e. "server returns success with additional

https://datatracker.ietf.org/doc/html/rfc2616#section-10.4.2
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2616

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 15]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 data" in [RFC2222]) be sent by the server, the server MUST respond
 with a 401 - Unauthorized (407 - Proxy Authentication Required)
 response containing a <sasl-challenge> directive with its "SASL"
 <auth-scheme> authentication response token in a WWW-Authenticate (or
 Proxy-Authenticate) header. Unless the server fails authentication,
 the client MUST reply to this with a new SASL request containing an
 Authorization header with a <sasl-sid> directive and an empty <sasl-
 credentials> directive. The server will reply to this with a 235 -
 Authentication Completed (236 - Proxy Authentication Completed)
 response and at this point authentication is complete, and a SASL
 security layer may take effect (see Section 4.4.2).

 If the client is authenticated and the server does not need to send
 any further challenge information, the server replies with a 235 -
 Authentication Completed (236 - Proxy Authentication Completed)
 response.

 In both cases, when the server replies with a 235 - Authentication
 Completed (236 - Proxy Authentication Completed) response, it MAY
 include an <http-authzid> directive in the "SASL" <auth-scheme>
 authentication response token. The <http-authzid> SHALL contain the
 authorization identity of the authenticated client in the form of a
 URI. Note that the content of a 235 - Authentication Completed (236 -
 Proxy Authentication Completed) response (and thus the <http-authzid>
 directive) is not protected by a SASL security layer. In some
 deployments, the value of the <http-authzid> directive may also
 contain confidential information which might require privacy
 protection.

 Upon receipt of a 235/236 response the client shall consider
 authentication successful and may retry the original request (with
 the body of the request, if any), possibly protected by a negotiated
 security session (see Section 4.4.2).

 4.3.4 Client behavior upon receiving a "SASL" <auth-scheme> token

 The client, upon receipt of a "SASL" <auth-scheme> authentication
 response token containing a <sasl-challenge> directive in a WWW-
 Authenticate (Proxy-Authenticate) header for a 401 - Unauthorized
 (407 - Proxy Authentication Required) response, calculates its
 credentials and responds with a new SASL request containing a
 (possibly empty, see previous section) <sasl-credentials> directive
 and a "SASL" <auth-scheme> token in an Authorization (Proxy-
 Authorization) header. The client repeats this until the
 authentication exchange is successful or the server responds with a
 401 (407) message without the SASL <auth-scheme> token (see previous
 section).

https://datatracker.ietf.org/doc/html/rfc2222

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 16]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 4.3.5 Subsequent requests

 The same HTTP server (host identifier) may serve data governed by
 multiple realms that may have separate associated authentication
 databases. If the client leaves the authentication realm it is
 currently authenticated in, e.g. by issuing a request for a resource
 in a different realm, the server MAY force the client to re-
 authenticate in the new realm. In this case a new authentication
 exchange is started as described in 4.3.1. However there is a change
 in how the security layer is established (see Section 4.4.2). If a
 security layer is currently active and the new authentication
 exchange negotiates a new security layer, it MUST replace the
 existing one. This includes the case when the new security layer is
 the NULL layer, i.e. the connection reverts to a state where no SASL
 security layer is present). See Section 4.4.2 for a description of
 when the security layer is being replaced/dropped.

 4.3.6 Client aborting a handshake

 A client may abort a handshake by letting the value of the <sasl-
 credentials> field consist of the <cancel-token>, "*". For an example
 of this, see Section 4.7.5.

 4.3.7 Pipelining considerations

 When pipelining multiple authentication requests (or authentication
 requests together with other requests), the client MUST observe the
 rules established in Section 4.4.2. This means that an authentication
 request that completes a SASL authentication exchange and activates a
 SASL security layer, MUST be the last request in a group of requests.
 If this rule is not followed, the client will start sending cleartext
 data that may be interpreted by the server as encrypted. This can
 lead to a packet decode error on the server side and dropped
 connections.

 When a SASL security layer has been negotiated clients MAY put
 multiple HTTP requests (and server may put multiple HTTP responses)
 inside a single SASL buffer of protected data. See also Section

4.4.2.

 4.3.8 Caching considerations

 As described in [RFC2616] Section 14.8, a shared cache MUST NOT
 return a response to a request containing an Authorization header to
 any other requests unless special circumstances apply. To ensure that
 these circumstances do not apply here, the server MUST send a "Cache-
 Control: no-store" header together with the "WWW-Authenticate" header
 in all handshake responses.

https://datatracker.ietf.org/doc/html/rfc2616#section-14.8

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 17]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 4.3.9 "Web farm" considerations

 Implementation and configuration of the SASL negotiation mechanism
 described in this memo requires special considerations in the case of
 "web farm" environments where several servers may serve client
 requests since authentication state information otherwise may be
 lost. In particular, means for sharing of authentication negotiation
 state must be available.

 4.3.10 HTTP header and state management

 There MUST NOT be more than one WWW-Authenticate or Proxy-
 Authenticate header field containing a SASL authentication response
 in any HTTP response. The WWW-Authenticate or Proxy-Authenticate
 header MUST NOT contain more than one SASL authentication response.

 The only exception to these rules is when the server lists available
 SASL mechanisms and the access to the requested resource is
 controlled by more than one realm (see section 4.3.1).

 There MUST NOT be more than one Authorization or Proxy-Authorization
 header field containing a SASL authorization request in any HTTP
 request.

 Since support for persistent connections is optional in HTTP/1.1, all
 servers MUST implement some method for state management of SASL
 authentication exchanges. This may include (but is not limited to)
 session caching, session expiration, dealing with duplicated
 authentication requests.

 This document does not specify methods for servers to manage session
 state once the client has been authenticated. For an example of such
 methods, see [RFC2965].

 4.4 Request/response encoding

 4.4.1 SASL challenge/response Encoding

 The <sasl-challenge> directive and the <sasl-credentials> directive
 contain SASL challenges and responses respectively. The challenges
 and responses MUST be base64 ([RFC3548], section 3) encoded before
 being placed in these fields. The base64 string may in general be
 arbitrarily long. Clients and servers MUST be able to support
 challenges and responses that are as long as are generated by the
 authentication mechanisms they support, independent of any line
 length limitations the client or server may have in other parts of
 its protocol implementation.

https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc3548#section-3

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 18]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Note that, as described in Section 4.3.6, instead of containing a
 base64-encoded string, a <sasl-credentials> value may consist of the
 single "*" character, indicating to the server that the client aborts
 the handshake.

 4.4.2 Security layer

 If a protection mechanism is negotiated as part of the SASL security
 session, then it MUST be applied to all subsequent requests and
 responses sent between the server and the client for the given realm.
 Any negotiated security layer takes effect immediately following the
 <message-body> that concludes the authentication exchange for the
 client, and the <message-body> of 235 (236) response for the server.
 I.e., for later requests (and responses) all data - including the
 status line and headers - will be protected by the new security
 layer.

 The same rules apply in a case of reauthentication. Whenever a new
 security layer (including the empty one) is negotiated due to
 reauthentication, the current layer gets replaced (dropped)
 immediately after transmission (receipt) of the 235 (236) response.

 A client that requires a security layer MUST check, after successful
 authentication, that such a layer indeed was negotiated.

 Note that a security layer requires HTTP/1.1 persistent connection.

 4.4.3 Interaction with TLS

 A client may not perform an HTTP/1.1 "Upgrade" to TLS [RFC2817] while
 conducting a SASL negotiation, but is free to do so after, or before,
 the SASL negotiation takes place.

 This document allows for both a TLS and a SASL security layer to be
 active at the same time. No matter in which order they were
 negotiated, any data will be transformed by the SASL security layer
 first and then by TLS, i.e. the relevant protocol stack will be as
 follows:

 +---------+
 | HTTP |
 +---------+
 | SASL |
 +---------+
 | TLS |
 +---------+
 | TCP |
 +---------+

https://datatracker.ietf.org/doc/html/rfc2817

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 19]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 4.4.4 Mandatory to implement SASL mechanism

 In order to guarantee interoperability, all client and server
 implementations conformant to this document MUST support the DIGEST-
 MD5 [RFC2831] SASL mechanism. Since support for persistent
 connections is optional in HTTP/1.1, this implies that all clients
 and servers MUST support DIGEST-MD5 in non-persistent mode.

 4.5 Status codes and error handling

 4.5.1 HTTP/1.1 status codes

 HTTP/1.1 status codes which apply to SASL-based mechanisms are:

 -235 - Authentication Completed
 This status code indicates that SASL authentication with the server
 is complete and the client may retry sending the original request.
 -236 - Proxy Authentication Completed
 This status code indicates that SASL authentication with the proxy
 is complete and the client may retry sending the original request.
 -401 - Unauthorized
 An HTTP/1.1 server will use this status code when credentials
 supplied by a client could not be validated, in addition to the use
 described in Section 4.3 above.
 -407 - Proxy Authentication Required
 An HTTP/1.1 proxy will use this status code when credentials
 supplied by a client could not be validated, in addition to the use
 described in Section 4.3 above.
 -432 - Transition Needed
 This status codes indicates that the user name is valid, but the
 entry in the authentication database needs to be updated in
 order to permit authentication with the specified SASL mechanism.
 This typically is done by authenticating once using the PLAIN
 authentication mechanism. See Section 4.3.4.

 This status code can be sent, for example, if a user has an entry in
 a system authentication database such as Unix /etc/passwd, but does
 not have credentials suitable for use by the specified mechanism.
 -450 - Authentication mechanism not accepted
 An HTTP/1.1 server will use this status code when a client suggests
 an authentication mechanism which is not supported or accepted by
 the server.

 4.5.2 Client error handling

 When a client does not support any of the security mechanisms
 suggested by a server, or is otherwise unable to complete a SASL
 mechanism handshake with a server, it shall close the connection.

https://datatracker.ietf.org/doc/html/rfc2831

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 20]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 (instead of closing the connection the client MAY also cancel the
 SASL exchange by specifying a "*" in a <sasl-credentials> directive
 as described in Section 4.3.6). User-oriented clients SHOULD provide
 the user with information about the failed handshake, and MUST fail
 in a controlled, predictable manner.

 4.6 Authorization identity

 This document defines an authorization identity in the HTTP profile
 of SASL to be a sequence of Unicode characters (excluding NUL),
 encoded in UTF-8. This sequence is further prepared using the
 "SASLPrep" profile [SASLPrep] of the "stringprep" algorithm
 [RFC3454]. The latter restriction is required in order to have a
 predictable result when comparing two authorization identities
 entered by two different individuals, potentially using different
 input mechanisms. This is also required as many SASL mechanisms use
 authorization identities to produce hash values.

 Clients MUST use the algorithm described above on authorization
 identities entered by a user (for interactive clients) or read from a
 configuration file. Servers MUST verify that a received authorization
 identity is in the correct form. If the preparation of the
 authorization identity fails or results in an empty string, the
 server MUST fail the authentication exchange. The only exception to
 this rule is when the received authorization identity is already the
 empty string.

 4.7 Examples

 Note: In the examples, some lines are wrapped for readability
 reasons.

 4.7.1 Example 1 - Server requires authentication

 This example illustrates a client requesting a URL and a server
 responding with a list of supported SASL mechanisms. The client
 selects one of these and responds with a new request containing an
 initial-response type <sasl-credentials> directive. The server then
 issues a <sasl-challenge> directive back to the client which once
 again responds with a <sasl-credentials> directive in the
 Authorization header field.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL

https://datatracker.ietf.org/doc/html/rfc3454

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 21]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 mechanisms="DIGEST-MD5,GSSAPI,CRAM-MD5",
 realm="testrealm@example.com",
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="CRAM-MD5",
 id="jfkasdgru42705"

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705",
 challenge="PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9u
 Lm1jaS5uZXQ+"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="jfkasdgru42705",
 credentials="dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZlNzMzNG
 QzODkw"

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"

 Client now retries the original request:

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 200 OK
 Cache-Control: no-store
 ...Requested Document follows...

 4.7.2 Example 2 - Initial response

 In this example a client knows in advance that a certain SASL
 mechanism is required. The mechanism allows for an initial-response
 type message and the client therefore includes a <sasl-credentials>
 directive in its Authorization header. The server accepts the

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 22]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 credentials and responds with the requested information.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="SECURID",
 credentials="AG1hZ251cwAxMjM0NTY3OAA="

 (the client doesn't know if authentication is complete at this point,
 as certain SASL mechanisms have a variable number of steps.)

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 200 OK
 Cache-Control: no-store
 ...Requested Document follows...

 4.7.3 Example 3 - One mechanism only

 In this example a server supports only one SASL mechanism, which
 allows for sending of an initial challenge to a client.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="CRAM-MD5",
 realm="testrealm@example.com",
 id="jfkasdgru42705",
 challenge="PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9u
 Lm1jaS5uZXQ+"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="jfkasdgru42705",

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 23]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 credentials="dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZlNzMzNG
 QzODkw"

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 200 OK
 Cache-Control: no-store
 ...Requested Document follows...

 4.7.4 Example 4 - Server sends additional data

 This example demonstrates the use of an integrity/privacy layer.
 Note that the client is using the CONNECT method, as it is willing to
 negotiate integrity/privacy protection provided by the DIGEST-MD5
 SASL mechanism.

 In its third message, the client specifies options="http-authzid",
 which instructs the server to return an <http-authzid> directive upon
 successful authentication.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,GSSAPI,CRAM-MD5",
 realm="testrealm@example.com",
 id="0001"

 C: CONNECT classified.example.com:80 HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 200 OK

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="DIGEST-MD5",
 id="0001", options="http-authzid"

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 24]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="0001",
 challenge="cmVhbG09ImVsd29vZC5pbm5vc29mdC5jb20iLG5vbmNl
 PSJPQTZNRzl0RVFHbTJoaCIscW9wPSJhdXRoIixhbGdv
 cml0aG09bWQ1LXNlc3MsY2hhcnNldD11dGYtOA=="

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="0001",
 credentials="Y2hhcnNldD11dGYtOCx1c2VybmFtZT0iY2hyaXMiLH
 JlYWxtPSJlbHdvb2QuaW5ub3NvZnQuY29tIixub25jZT
 0iT0E2TUc5dEVRR20yaGgiLG5jPTAwMDAwMDAxLGNub
 25jZT0iT0E2TUhYaDZWcVRyUmsiLGRpZ2VzdC11cmk9
 ImltYXAvZWx3b29kLmlubm9zb2Z0LmNvbSIscmVzcG9
 uc2U9ZDM4OGRhZDkwZDRiYmQ3NjBhMTUyMzIxZjIxND
 NhZjcscW9wPWF1dGg="

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="0001",
 challenge="cnNwYXV0aD00YjJiYjM3ZjA0OTEwNTA1Nzc3YzJmNjM
 4YzkyMjcyNQ=="

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="0001"

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="0001",
 http-authzid="http://example.com/testrealm/users/lisa"

 CP: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 SP: HTTP/1.1 200 OK
 ...Requested Document follows...

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 25]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 CP: ...Any subsequent request for a data on the same server,
 unless the server requests reauthentication...

 4.7.5 Example 5 - Abort

 The following example shows how a client can abort an authentication
 exchange.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,GSSAPI,CRAM-MD5",
 realm="testrealm@example.com",
 id="0001"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="DIGEST-MD5",
 id="0001"

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="0001",
 challenge="cmVhbG09ImVsd29vZC5pbm5vc29mdC5jb20iLG5vbmNl
 PSJPQTZNRzl0RVFHbTJoaCIscW9wPSJhdXRoIixhbGdv
 cml0aG09bWQ1LXNlc3MsY2hhcnNldD11dGYtOA=="

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="0001",
 credentials="*"

 S: HTTP/1.1 401 Authentication Canceled
 ...

 4.7.6 Example 6 - Client requires authentication

 The following example is almost identical to Example 1, but here the

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 26]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 client requires authentication to the server.

 C: OPTIONS http://classified.example.com/classified.html HTTP/1.1
 Authorization: SASL
 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanism="DIGEST-MD5,GSSAPI,CRAM-MD5",
 realm="testrealm@example.com",
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="CRAM-MD5",
 id="jfkasdgru42705"

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705",
 challenge="PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9u
 Lm1jaS5uZXQ+"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="jfkasdgru42705",
 credentials="dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZlNzMzNG
 QzODkw"

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"

 Upon receipt of a 235 response the client submits the request it
 originally intended to submit:

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 27]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 S: HTTP/1.1 200 OK
 Cache-Control: no-store
 ...Requested Document follows...

 4.7.7 Example 7 - Client requires authentication, server supports
 multiple realm

 The following example is almost identical to Example 2, but here the
 server supports multiple realms.

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="SECURID",
 credentials="AG1hZ251cwAxMjM0NTY3OAA="

 As the server supports multiple realms for the requested resource,
 it forces the client to select the proper realm

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,SECURID",
 realm="testrealm@sales.example.com",
 id="jfkasdgru42705"
 WWW-Authenticate: SASL
 mechanisms="SECURID",
 realm="testrealm@example.com",
 id="jfkasdgru42705"

 (Note that the server may choose to return multiple SASL challenges
 in a single WWW-Authenticate response, in this case the last server
 response may also look like:

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,SECURID",
 realm="testrealm@sales.example.com",
 id="jfkasdgru42705", SASL
 mechanisms="SECURID",
 realm="testrealm@example.com",
 id="jfkasdgru42705"

 Also note, that different SASL challenges may use the same or
 different "id".)

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 28]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="SECURID", id="jfkasdgru42705",
 realm="testrealm@sales.example.com",
 credentials="AG1hZ251cwAxMjM0NTY3OAA="

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Host: classified.example.com

 S: HTTP/1.1 200 OK
 Cache-Control: no-store
 ...Requested Document follows...

 4.7.8 Example 8 - Client uses POST request

 In this example the client is willing to perform a POST request but
 the server requires authentication and the establishment of a
 security layer.

 Note that since the client sends its information unprotected in the
 initial POST message, in effect only the server's response (and any
 later messages) will benefit from this security layer.

 C: POST http://classified.example.com/update_classified.php
 HTTP/1.1
 Host: classified.example.com
 Content-Type: ...
 Content-Length: ...

 ...request body...

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,GSSAPI,OTP",
 realm="testrealm@example.com",
 id="0001"

 C: CONNECT classified.example.com:80 HTTP/1.1
 Host: classified.example.com

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 29]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 S: HTTP/1.1 200 OK

 C: POST http://classified.example.com/update_classified.php
 HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="OTP",id="0001",credentials="AHRpbQ=="

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="0001",challenge="b3RwLW1kNSAxMjMga2UxMjM0IGV4dA=="

 C: POST http://classified.example.com/update_classified.php
 HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="0001",credentials="aGV4OjExZDRjMTQ3ZTIyN2MxZjE="

 S: HTTP/1.1 235 OK
 Cache-Control: no-store
 WWW-Authenticate: SASL id="0001"

 CP: POST http://classified.example.com/update_classified.php
 HTTP/1.1
 Host: classified.example.com
 Content-Type: ...
 Content-Length: ...

 ...request body...

 SP: HTTP/1.1 200 OK
 ...Response to POST, if any...

 CP: ...Any subsequent request for a data on the same server,
 unless the server requests reauthentication...

 4.7.9 Example 9 - Client authentication fails.

 In this example the client authentication fails and the server
 indicates this in its final message using the <sasl-status>
 directive.

 C: GET http://classified.example.com/classified.html HTTP/1.1

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 30]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Host: classified.example.com

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 mechanisms="DIGEST-MD5,GSSAPI,CRAM-MD5",
 realm="testrealm@example.com",
 id="jfkasdgru42705"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 mechanism="CRAM-MD5",
 id="jfkasdgru42705"

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705",
 challenge="PDE4OTYuNjk3MTcwOTUyQHBvc3RvZmZpY2UucmVzdG9u
 Lm1jaS5uZXQ+"

 C: GET http://classified.example.com/classified.html HTTP/1.1
 Cache-Control: no-store
 Pragma: no-cache
 Host: classified.example.com
 Authorization: SASL
 id="jfkasdgru42705",
 credentials="dGltIGI5MTNhNjAyYzdlZGE3YTQ5NWI0ZTZlNzMzNG
 QzODkw"

 S: HTTP/1.1 401 Unauthorized
 Cache-Control: no-store
 WWW-Authenticate: SASL
 id="jfkasdgru42705"
 status="failed"

 At this point, both the server and the client shall return to their
 initial state wrt. the SASL authentication.

 4.8 Interoperability with existing HTTP/1.1 clients and servers

 A client supporting a certain SASL-based authentication mechanism
 allowing for initial responses MUST NOT include a <sasl-credentials>
 directive in a "SASL" <auth-scheme> authorization request in an
 Authorization or Proxy-Authorization header unless it knows that the

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 31]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 server supports the SASL mechanism in question. The client SHOULD use
 an OPTIONS request to discover the server's SASL capabilities (see

Section 4.3.1.2 for more details).

 A server supporting SASL-based authentication SHOULD include a
 "Basic" and a "Digest Access" <auth-scheme> token in a WWW-
 Authenticate or Proxy-Authenticate header field, if these
 authentication methods are acceptable to the server. This ensures
 proper interworking with clients only capable of performing a "Basic"
 or "Digest Access" authentication. Since these authentication
 mechanisms does not offer strong security, the risk of downgrading
 attacks should be carefully considered (see also the "Security
 Considerations" section in this memo and Section 4.1 and 4.2 in
 [RFC2617]).

 4.9 Preferences

 Servers MUST list authentication mechanisms in the WWW-Authenticate
 (Proxy-Authenticate) header field in preferred order.

 4.10 SASL mechanism recommendations

 It is RECOMMENDED that an SASL mechanism that supports the
 negotiation of a security layer with integrity protection be used,
 and that this protection be enabled to avoid the connection being
 hijacked after authentication has taken place. [RFC2222] discusses
 some of the security issues related to SASL mechanisms.

5 IANA considerations

 5.1 GSSAPI/SASL service name

 For use with SASL [RC2222], a protocol must specify a service name to
 be used with various SASL mechanisms, such as GSSAPI. For HTTP, the
 service name shall be "http".

 5.2 HTTP/1.1 Status codes

 This memo defines the following HTTP/1.1 status codes:

 -235 "Authentication Completed"
 -236 "Proxy Authentication Completed"
 -432 "Transition Needed"
 -450 "Authentication mechanism not accepted"

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2222

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 32]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

6 Security considerations

 6.1 Introduction

 This memo describes a method to integrate the SASL framework in
 HTTP/1.1. SASL as such allows a wide variety of mechanism, each with
 their own security characteristics. The following sections represent
 an attempt to discuss threats that can be regarded to be generic in
 the sense that they apply to the integration itself rather than
 specific SASL mechanisms. Security services offered by, and security
 considerations applying to, particular SASL mechanisms can be found
 through the IANA SASL mechanism registry.

 6.2 Active attacks

 6.2.1 Man-in-the-middle

 Users of SASL in HTTP/1.1 SHOULD recognize that certain man-in-the-
 middle attacks are possible since the negotiation of the particular
 SASL security mechanism to be used is not necessarily protected. For
 example, if the server suggests SASL mechanisms A, B and C in a
 "SASL" <auth-scheme> token where A is a "strong" mechanism (for some
 definition of "strong") but B and C are "weak" or provide fewer
 security attributes than A, then an attacker could simply remove A
 from the list. This forces the client to choose a "weaker" mechanism
 and neither side will necessarily detect the changes made by the
 attacker.

 To mitigate these attacks, servers SHOULD only suggest SASL
 mechanisms that will provide adequate security for the task at hand.

 Similarly, the SASL <auth-scheme> token may be removed from the WWW-
 Authenticate (Proxy-Authenticate) header, thus forcing use of either
 the Basic or Digest Access method. For this reason, and unless other
 precautions (such as only accepting certain SASL mechanisms) are
 taken, it is RECOMMENDED that this authentication mechanism be used
 only in conjunction with a transport, e.g. TLS, providing protection
 against these attacks (server authentication and integrity protection
 of messages). Note however that when using client authentication
 mechanisms within a server-authenticated TLS tunnel, care must be
 taken to avoid the attack described in [MITM].

 6.2.2 Denial of service

 Since HTTP/1.1 requests and responses are not protected against
 modification per se, an attacker may, by removing SASL elements from
 HTTP/1.1 headers hinder a client from accessing a certain service.
 This is however a generic threat and not specific to the mechanism

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 33]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 described herein.

 6.2.3 Replay

 Use of the "Cache-Control: no-store" and "Pragma: no-cache" headers
 when indicated in requests and responses ensures that proxies do not
 inadvertently store and/or deliver SASL handshake messages that
 otherwise could be used in replay attacks.

 6.3 Passive attacks

 Unless a transport security providing confidentiality is employed,
 the method described in this memo is susceptible to passive attacks
 where an attacker wants to find out about the mechanisms that are
 supported by a particular client.

 6.4 Protecting the body of POST/PUT requests

 When the client performs a POST/PUT request in the clear and gets
 Unauthorized response back from the server it is already too late to
 protect the body of the POST/PUT request, as it was already sent in
 the clear. Arguably, if the client sent some data in the clear with
 the user's permission, the user doesn't find the information being
 sent worth protecting. However, existing web clients are able to
 warn users about sending data in the clear, but don't have an option
 to establish a secure connection first.

 The described problem is not specific to this document. HTTP over TLS
 uses a different URL schema to notify the client that it has to
 establish a secure connection first with TLS.

 So, one way to mitigate the problem would be to define a new URL
 schema (or an extension to the existing URL schema) for SASL in HTTP.
 This is however outside of the scope for this document.

 A client wishing to protect body of a POST/PUT request from
 modification and/or disclosure should first establish a channel
 protection using TLS and/or SASL. In general, an interactive client
 SHOULD ask a user (or be configurable) to establish channel
 protection before performing any POST/PUT.

 6.5 Other considerations

Section 8.2 of [RFC2817] contains relevant security considerations
 for the CONNECT method.

 Note that SASL mechanisms offering confidentiality and integrity
 protection of messages are only usable in conjunction with the

https://datatracker.ietf.org/doc/html/rfc2817#section-8.2

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 34]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 CONNECT method as described, since a proxy otherwise would be unable
 to handle the messages properly.

Section 6.3 ("Multiple authentications") of [RFC2222bis] contains
 security considerations regarding replacing a SASL security layer
 with no layer on reauthentication.

7 Implementation considerations

 This section is informative.

 7.1 The SASL authentication exchange context

 This memo assumes the existence of a SASL authentication exchange
 context during the lifetime of a SASL handshake. The SASL
 authentication exchange context is a SASL structure that represents
 all SASL state associated with the authentication exchange identified
 by sasl-sid. It may include (but is not limited to): the current step
 in a multiple-step authentication exchange, an authentication id, any
 material derived from password, private key, etc.

 The context should be kept for some period of time after the
 connection goes away. This period is implementation defined. The SASL
 context should be deleted once the session expires, and must be
 deleted once the authentication exchange completes with success or
 failure, or the session otherwise becomes invalid (e.g. when a
 duplicated authentication exchange was received for the same
 session).

 Although, a particular implementation may choose to store any SASL
 security layer state (e.g. encryption/decryption keys) as a part of
 the SASL context, this document considers a SASL security layer state
 to be a separate entity from the corresponding SASL context. The SASL
 security layer state is deleted when the connection it is protecting
 is closed or the corresponding authentication exchange fails. In the
 latter case we are talking about partially created SASL security
 layer states. However, as opposed to the SASL context, the SASL
 security layer state is not deleted when the authentication exchange
 completes successfully.

 7.2 SASL security layer handling

 This section attempts to summarize client and server behaviour with
 regards to SASL security layer negotiation.

 A client willing to negotiate a SASL security layer must perform all
 of the following steps:

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 35]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 a) Use persistent connection to perform a SASL authentication
 exchange (Section 4.4.2). A SASL security layer (if supported
 by the server and negotiated) can only be used on the TCP
 connection that was used for the final "round" (i.e. C->S:
 client response, S->C: server confirms that authentication
 was successful) of the authentication exchange. Note that some
 SASL mechanisms use IP addresses in authentication exchange,
 which effectively requires the use of a persistent connection
 during the whole authentication exchange.

 b) Use CONNECT to establish an end to end tunnel through proxies,
 unless the client has a prior knowledge that it talks directly
 to the target server (Section 4.3.2).

 c) Notify the SASL layer/library being used that it supports
 channel integrity and/or confidentiality.

 As the SASL security layer is an optional feature of SASL, the rules
 a)-c) do not guarantee that a security layer will be negotiated. A
 client that requires a security layer must check, after successful
 authentication, that such a layer indeed was negotiated.

 Regarding c) above, if a client is not able and/or not willing to
 negotiate a SASL security layer it must notify the SASL layer/library
 being used that it doesn't support channel integrity or
 confidentiality. Failure to do so may result in a situation when both
 parties negotiate a SASL security layer, but the client is unable to
 use it. The client doesn't have to do step b) and may not do step
 a).

 Similarly, a server willing to negotiate a SASL security layer must
 perform all of the following steps:

 a) Use a persistent connection to perform a SASL authentication
 exchange (Section 4.4.2). A SASL security layer (if supported
 by the client and negotiated) can only be used on the TCP
 connection that was used for the final "round" of the
 authentication exchahge.

 b) Support the CONNECT method (Section 4.3.2).

 c) Notify the SASL layer/library being used that it supports
 channel integrity and/or confidentiality.

 As for clients above, rules a)-c) do not guarantee that a security
 layer will be negotiated. A server, which requires a security layer,
 must check, after successful authentication, that such a layer indeed
 was negotiated.

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 36]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 If a server is not able and/or not willing to negotiate a SASL
 security layer it must notify the SASL layer/library being used that
 it doesn't support channel integrity or confidentiality. Failure to
 do so may result in a situation when both ends negotiate a SASL
 security layer, but the server is unable to use it.

 7.3 SASL Profile Checklist

 The profiling requirements of [SASL] require that the following
 information be supplied by a protocol definition:

 service name: "http" (section 5.1)

 authentication protocol exchange initiation: section 4.3.1

 listing supported SASL mechanisms:
 a) if server requires authentication: section 4.3.1.1
 b) client request the list: section 4.3.1.2

 Initial client response: sections 4.3.1.2, 4.3.2

 Initial server challenge: section 4.3.1.1

 exchange sequence: client -> server: section 4.3.3
 server -> client : section 4.3.2, 4.3.4
 server sends failure: sections 4.3.3, 4.4.1
 server sends success: section 4.3.3

 client aborts exchange: section 4.3.6, also sections 4.4.1, 4.2.3

 optional data with success: not supported, see section 4.3.3

 security layer negotiation: section 4.4.2

 order of SASL security layer and TLS,
 if both are negotiated: section 4.4.3

 use of the authorization identity: section 4.6

 multiple authentications: yes, see section 4.3.5, also section 4.4.2

 Interaction of SASL exchange with line lenght limits: section 4.4.1

 Specific Issues:
 multiple realms: sections 4.3.1.1 and 4.3.1.2
 persistent connection: sections 3 and 4.3.10
 mixing multiple authentications on the same connection: section 4.3.2
 OPTIONS method: 4.3.1.2

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 37]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

8 Acknowledgements

 Text for Section 4.6 was borrowed from [RFC2829]. Thanks to Keith
 Burdis, Raif S. Naffah, Mark Nottingham, Joe Orton, John P. Speno,
 Lisa Dusseault and Eric Rescorla for providing useful feedback and
 suggestions.

 Robert Zuccherato, Entrust Inc., made significant contributions to
 earlier drafts of this work.

 A large part of this document was written while Alexey was working
 for MessagingDirect.

9 References

 9.1 Normative references

 [RFC2026] Bradner, S., "The Internet Standards Process -- Revision
 3," IETF RFC 2026, October 1996.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels," IETF RFC 2119, March 1997.

 [RFC2222] Myers, J., "Simple Authentication and Security Layer," IETF
RFC 2222, October 1997.

 [RFC2234] Crocker, D., Overell, P., "Augmented BNF for Syntax
 Specifications: ABNF," IETF RFC 2234, November 1997.

 [RFC2396] Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform
 Resource Identifiers (URI): Generic Syntax," IETF RFC 2396, August
 1998.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter,
 L., Leach, P., Berners-Lee, T., "Hypertext Transfer Protocol --
 HTTP/1.1," IETF RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., Stewart, L., "HTTP Authentication: Basic and
 Digest Access Authentication," IETF RFC 2617, June 1999.

 [RFC2817] Khare, R., Lawrence, S., "Upgrading to TLS Within
 HTTP/1.1," IETF RFC 2817, May 2000.

 [RFC2831] Leach, P. C. Newman, "Using Digest Authentication as a SASL
 Mechanism," IETF RFC 2831, May 2000.

 [RFC3454] P. Hoffman, M. Blanchet, "Preparation of Internationalized

https://datatracker.ietf.org/doc/html/rfc2829
https://datatracker.ietf.org/doc/html/rfc2026
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2222
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2396
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2817
https://datatracker.ietf.org/doc/html/rfc2831

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 38]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Strings ("stringprep")," IETF RFC 3454, December 2002.

 [RFC3548] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings," IETF RFC 3548, July 2003

 [SASLPrep] Zeilenga, K., "SASLprep: Stringprep profile for user names
 and passwords," Work in progress, draft-ietf-sasl-saslprep-XX.txt.

 9.2 Informative references

 [MITM] Asokan, N., Niemi, V., and K. Nyberg, "Man-in-the-Middle in
 Tunnelled Authentication Protocols." Available from

http://eprint.iacr.org/2002/163/

 [RFC2222bis] Melnikov, A., "Simple Authentication and Security Layer
 (SASL)", Work in progress, draft-ietf-sasl-rfc2222bis-XX.txt.

 [RFC2246] Dierks, T., and C. Allen, "The TLS Protocol Version 1.0,"
 IETF RFC 2246, January 1999.

 [RFC2829] Wahl, M., Alvestrand, H., Hodges, J., and R. Morgan,
 "Authentication Methods for LDAP," IETF RFC 2829, May 2000.

 [RFC2965] Kristol, D., L. Montulli, "HTTP State Management
 Mechanism," IETF RFC 2965, October 2000.

10 Authors' addresses

 Magnus Nystrom Email: magnus@rsasecurity.com
 RSA Security
 Box 10704
 121 29 Stockholm
 Sweden

 Alexey Melnikov Email: Alexey.Melnikov@isode.com
 Isode Limited
 5 Castle Business Village,
 36 Station Road,
 Hampton, Middlesex,
 United Kingdom, TW12 2BX

11 IPR Disclosure Acknowledgement

 By submitting this Internet-Draft, I certify that any applicable
 patent or other IPR claims of which I am aware have been disclosed,
 and any of which I become aware will be disclosed, in accordance with

RFC 3668.

https://datatracker.ietf.org/doc/html/rfc3454
https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-saslprep-XX.txt
http://eprint.iacr.org/2002/163/
https://datatracker.ietf.org/doc/html/draft-ietf-sasl-rfc2222bis-XX.txt
https://datatracker.ietf.org/doc/html/rfc2246
https://datatracker.ietf.org/doc/html/rfc2829
https://datatracker.ietf.org/doc/html/rfc2965
https://datatracker.ietf.org/doc/html/rfc3668

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 39]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

12 Intellectual Property Statement

 The IETF takes no position regarding the validity or scope of any
 intellectual property or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; neither does it represent that it
 has made any effort to identify any such rights. Information on the
 IETF's procedures with respect to rights in standards-track and
 standards-related documentation can be found in BCP-11. Copies of
 claims of rights made available for publication and any assurances of
 licenses to be made available, or the result of an attempt made to
 obtain a general license or permission for the use of such
 proprietary rights by implementors or users of this specification can
 be obtained from the IETF Secretariat.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights which may cover technology that may be required to practice
 this standard. Please address the information to the IETF Executive
 Director.

13 Full Copyright Statement

 Copyright (C) The Internet Society (2004). This document is subject
 to the rights, licenses and restrictions contained in BCP 78 and
 except as set forth therein, the authors retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
 ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
 INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
 INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

 Funding for the RFC Editor function is currently provided by the
 Internet Society.

https://datatracker.ietf.org/doc/html/bcp11
https://datatracker.ietf.org/doc/html/bcp78

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 40]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

Appendix A. Changes since previous revisions

 Changes since -11

 Editorial changes: Made "Conventioned used in this document" the
 first section. Moved 4.1.1 into new section 1. Moved 4.3.7 at the
 beginning of Section 4 (now section 4.1.2).

 Added clarification note that a SASL security layer is an optional to
 negotiate feature of SASL.

 Added Introduction text as suggested by Eric Rescorla.

 Clarified significance and handling of the order of SASL mechanisms
 in the sasl-mechanisms directive as per comment by Eric.

 Clarified server behaviour when receiving and OPTIONS request as per
 comments by Lisa (Sections 4.3.1.2 and 4.8.1)

 Clarified the meaning of "a client ... MUST choose one of the
 available mechanisms" in Section 4.3.2. (List/Eric)

 Other minor editorial changes as suggested by Lisa/Eric.

 Updated Copyright/IPR as per new IETF policy.

 Changes since -10

 Added text on client prioritization when receiving both a "SASL"
 auth-scheme and a "Basic" or "Digest" auth-scheme in a 401 or 407
 response.

 Replaced "SASL block" with "SASL buffer of protected data". The
 latter is defined in RFC 2222.

 Other editorial changes based on feedback by Lisa Dusseault.

 Changed ABNF and updated examples in order to allow for an empty
 challenge/response.

 Added http-authzid directive as suggested by Lisa Dusseault. Added
 sasl-options directive.

 Changes since -09

 Added empty initial credentials

 New method for specifying failed authentication, including an

https://datatracker.ietf.org/doc/html/rfc2222

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 41]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 example.

 Rewording of 4.3.8.

 Added mandatory to support SASL mechanism.

 Added explanatory text for multiple SASL challenges and for client
 abort of handshakes.

 Added reference to [RFC2222bis] and [MITM].

 Added an example when server supports multiple realms.

 Added "SASL Profile Checklist" section.

 Editorial clarifications and corrections.

 Changes since -08

 Editorial clarifications and corrections.

 Changes since -07

 Added "Implementation consideration" section with big discussion on
 how to correctly implement a SASL security layer. (Comment by Keith
 Burdis)

 Moved the biggest part of "SASL Context" definition to the
 "Implementation consideration".

 Added text describing that SASLPrep should be used on authorization
 identities.

 Added section describing ways to protect/help protect body of a
 POST/PUT request. (Comment by Keith Burdis)

 Several minor fixes.

 Changes since -06

 Changed 102 status code back to 401.

 "credentials" directive is no longer returned by the server, only
 "challenge" is used.

 Added text about SASL context.

 Split "SASL handshake initiation" section into Client and Server

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 42]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 initiated.

 Added text about performing multiple authentications in parallel.

 Clarified the use of persistent connection with SASL. Added warnings
 about session caching and expiration. Updated text to tell when SASL
 context is destroyed.

 Added new status codes: 450 "Authentication mechanism not accepted".

 Expired session is denoted by a 401 (407) response with a new <sasl-
 sid> value.

 Clarified when security layer is replaced/dropped on
 reauthentication.

 Added warning that the server is required to keep track of
 authenticated clients. Removed the text that was saying that the
 server must return sasl-sid in 200 responses when authentication is
 complete.

 Updated examples as a result of the changes mentioned above.

 Other minor clarifications.

 Changes since -05

 Replaced "Cache-Control: no-cache" with "Cache-Control: no-store" as
 per Mark Nottingham comment.

 ABNF corrections from Joe Orton and John P Speno.

 More corrections from Joe Orton.

 Changed 401 to a new status code 102 used solely for authentication.

 Added Transition Needed status code (432). Should check if this code
 conflicts with anything.

 Added new "Expect: 102-continue" header.

 Reworked Section 4.3 to describe more error cases and more detailed
 implementation instructions.

 Disallow TLS Upgrade during SASL authentication (it is fine before or
 after). Clarified order of security layers.

 Clarified that Authorization header with SASL response MUST NOT be

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 43]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 used with CONNECT.

 Relaxed restriction for mixing SASL session ids on the same
 connection in certain cases.

 Added new 235/236 status codes for successfully completed
 authentication.

 Clarified that the body of the original request MUST NOT be sent
 until authentication is complete. Updated examples to reflect that.

 Added an example with a POST request.

 Changes since -04

 Reworked the Introduction section.

 Updated example 4.7.4 to include Authorization header in CONNECT
 request. This saves a round trip.

 Added text that the client must use OPTIONS to find out which SASL
 mechanisms are supported by the server. Added an example.

 Added text regarding the server requiring reauthentication when the
 client leaves the realm it authenticated in.

 Some clarification about the CONNECT method. Added text that a
 CONNECT request should start the authentication exchange.

 Incorporated comments from Raif S. Naffah and Keith Burdis.

 Changes since -03

 Fixed several errors in examples due to change from "sasl-mechanism"
 to "sasl-mechanisms".

 More comments from Keith Burdis.

 Changes since -02

 Added discussions about CONNECT and session protection.

 Added "Proxy servers considerations" Section. Updated examples to
 include headers that prevent caching.

 Added Web farm considerations section that talks about a next
 response going to a different backend web-server.

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 44]

INTERNET DRAFT SASL in HTTP/1.1 July 2004

 Incorporated many suggestions/corrections from Keith Burdis.

 Editorial changes. Cleanup some SHOULDs and MUSTs.

 Changes since -01

 Added examples

 Split ABNF into client and server side. ABNF cleanup.

 Many editorial changes.

Nystrom & Melnikov Expires: January 2005 FORMFEED[Page 45]

