
BiDirectional or Server-Initiated HTTP T. Oberstein
Internet-Draft A. Goedde
Intended status: Standards Track Tavendo GmbH
Expires: April 13, 2016 October 11, 2015

The Web Application Messaging Protocol
draft-oberstet-hybi-tavendo-wamp-02

Abstract

 This document defines the Web Application Messaging Protocol (WAMP).
 WAMP is a routed protocol that provides two messaging patterns:
 Publish & Subscribe and routed Remote Procedure Calls. It is
 intended to connect application components in distributed
 applications. WAMP uses WebSocket as its default transport, but can
 be transmitted via any other protocol that allows for ordered,
 reliable, bi-directional, and message-oriented communications.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 13, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of

Oberstein & Goedde Expires April 13, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft WAMP October 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 5
1.1. Background . 5
1.2. Protocol Overview . 6
1.3. Design Philosophy . 7
1.3.1. Basic and Advanced Profiles 7
1.3.2. Application Code 8
1.3.3. Language Agnostic 8
1.3.4. Router Implementation Specifics 8

1.4. Relationship to WebSocket 9
2. Conformance Requirements 9
2.1. Terminology and Other Conventions 9

3. Realms, Sessions and Transports 9
4. Peers and Roles . 10
4.1. Symmetric Messaging 10
4.2. Remote Procedure Call Roles 10
4.3. Publish & Subscribe Roles 11
4.4. Peers with multiple Roles 11

5. Building Blocks . 12
5.1. Identifiers . 12
5.1.1. URIs . 12
5.1.2. IDs . 14

5.2. Serializations . 16
5.2.1. JSON . 17
5.2.2. MsgPack . 17

5.3. Transports . 17
5.3.1. WebSocket Transport 18
5.3.2. Transport and Session Lifetime 19

6. Messages . 20
6.1. Extensibility . 21
6.2. No Polymorphism . 21
6.3. Structure . 22
6.4. Message Definitions 22
6.4.1. Session Lifecycle 22
6.4.2. Publish & Subscribe 23
6.4.3. Routed Remote Procedure Calls 24

6.5. Message Codes and Direction 26
6.6. Extension Messages 27
6.7. Empty Arguments and Keyword Arguments 27

7. Sessions . 28
7.1. Session Establishment 28
7.1.1. HELLO . 28
7.1.2. WELCOME . 30
7.1.3. ABORT . 31

Oberstein & Goedde Expires April 13, 2016 [Page 2]

Internet-Draft WAMP October 2015

7.2. Session Closing . 32
7.2.1. Difference between ABORT and GOODBYE 33

7.3. Agent Identification 34
8. Publish and Subscribe . 34
8.1. Subscribing and Unsubscribing 34
8.1.1. SUBSCRIBE . 36
8.1.2. SUBSCRIBED . 36
8.1.3. Subscribe ERROR 37
8.1.4. UNSUBSCRIBE . 37
8.1.5. UNSUBSCRIBED . 38
8.1.6. Unsubscribe ERROR 38

8.2. Publishing and Events 39
8.2.1. PUBLISH . 39
8.2.2. PUBLISHED . 40
8.2.3. Publish ERROR . 41
8.2.4. EVENT . 41

9. Remote Procedure Calls 42
9.1. Registering and Unregistering 43
9.1.1. REGISTER . 43
9.1.2. REGISTERED . 44
9.1.3. Register ERROR 44
9.1.4. UNREGISTER . 45
9.1.5. UNREGISTERED . 45
9.1.6. Unregister ERROR 45

9.2. Calling and Invocations 46
9.2.1. CALL . 47
9.2.2. INVOCATION . 48
9.2.3. YIELD . 49
9.2.4. RESULT . 50
9.2.5. Invocation ERROR 51
9.2.6. Call ERROR . 52

10. Predefined URIs . 53
10.1. Basic Profile . 53
10.1.1. Incorrect URIs 53
10.1.2. Interaction . 53
10.1.3. Session Close 54
10.1.4. Authorization 54

10.2. Advanced Profile . 55
11. Ordering Guarantees . 55
11.1. Publish & Subscribe Ordering 55
11.2. Remote Procedure Call Ordering 56

12. Security Model . 56
12.1. Transport Encryption and Integrity 57
12.2. Router Authentication 57
12.3. Client Authentication 58
12.3.1. Routers are trusted 58

13. Advanced Profile . 58
13.1. Messages . 59

Oberstein & Goedde Expires April 13, 2016 [Page 3]

Internet-Draft WAMP October 2015

13.1.1. Message Definitions 59
13.1.2. Message Codes and Direction 59

13.2. Features . 60
13.2.1. RPC Features . 60
13.2.2. PubSub Features 61
13.2.3. Other Advanced Features 61

13.3. Advanced RPC Features 62
13.3.1. Progressive Call Results 62
13.3.2. Progressive Calls 67
13.3.3. Call Timeouts 67
13.3.4. Call Canceling 68
13.3.5. Caller Identification 71
13.3.6. Call Trust Levels 72
13.3.7. Registration Meta API 72
13.3.8. Pattern-based Registrations 79
13.3.9. Shared Registration 82
13.3.10. Sharded Registration 84
13.3.11. Registration Revocation 85
13.3.12. Procedure Reflection 85

13.4. Advanced PubSub Features 86
13.4.1. Subscriber Black- and Whitelisting 86
13.4.2. Publisher Exclusion 91

13.5. Feature Definition 91
13.6. Feature Announcement 91
13.6.1. Publisher Identification 92
13.6.2. Publication Trust Levels 93
13.6.3. Subscription Meta API 93
13.6.4. Pattern-based Subscriptions 99
13.6.5. Sharded Subscriptions 102
13.6.6. Event History 102
13.6.7. Registration Revocation 104
13.6.8. Topic Reflection 104

13.7. Other Advanced Features 104
13.7.1. Session Meta API 104
13.7.2. Authentication 108
13.7.3. Alternative Transports 116

14. Binary conversion of JSON Strings 131
14.1. Python . 132
14.2. JavaScript . 133

15. Security Considerations 134
16. IANA Considerations . 135
17. Contributors . 135
18. Acknowledgements . 135
19. References . 135
19.1. Normative References 135
19.2. Informative References 135
19.3. URIs . 135

 Authors' Addresses . 136

Oberstein & Goedde Expires April 13, 2016 [Page 4]

Internet-Draft WAMP October 2015

1. Introduction

1.1. Background

 This section is non-normative.

 The WebSocket protocol brings bi-directional real-time connections to
 the browser. It defines an API at the message level, requiring users
 who want to use WebSocket connections in their applications to define
 their own semantics on top of it.

 The Web Application Messaging Protocol (WAMP) is intended to provide
 application developers with the semantics they need to handle
 messaging between components in distributed applications.

 WAMP was initially defined as a WebSocket sub-protocol, which
 provided Publish & Subscribe (PubSub) functionality as well as Remote
 Procedure Calls (RPC) for procedures implemented in a WAMP router.
 Feedback from implementers and users of this was included in a second
 version of the protocol which this document defines. Among the
 changes was that WAMP can now run over any transport which is
 message-oriented, ordered, reliable, and bi-directional.

 WAMP is a routed protocol, with all components connecting to a _WAMP
 Router_, where the WAMP Router performs message routing between the
 components.

 WAMP provides two messaging patterns: _Publish & Subscribe_ and
 routed Remote Procedure Calls.

 Publish & Subscribe (PubSub) is an established messaging pattern
 where a component, the _Subscriber_, informs the router that it wants
 to receive information on a topic (i.e., it subscribes to a topic).
 Another component, a _Publisher_, can then publish to this topic, and
 the router distributes events to all Subscribers.

 Routed Remote Procedure Calls (RPCs) rely on the same sort of
 decoupling that is used by the Publish & Subscribe pattern. A
 component, the _Callee_, announces to the router that it provides a
 certain procedure, identified by a procedure name. Other components,
 Callers, can then call the procedure, with the router invoking the
 procedure on the Callee, receiving the procedure's result, and then
 forwarding this result back to the Caller. Routed RPCs differ from
 traditional client-server RPCs in that the router serves as an
 intermediary between the Caller and the Callee.

 The decoupling in routed RPCs arises from the fact that the Caller is
 no longer required to have knowledge of the Callee; it merely needs

Oberstein & Goedde Expires April 13, 2016 [Page 5]

Internet-Draft WAMP October 2015

 to know the identifier of the procedure it wants to call. There is
 also no longer a need for a direct connection between the caller and
 the callee, since all traffic is routed. This enables the calling of
 procedures in components which are not reachable externally (e.g. on
 a NATted connection) but which can establish an outgoing connection
 to the WAMP router.

 Combining these two patterns into a single protocol allows it to be
 used for the entire messaging requirements of an application, thus
 reducing technology stack complexity, as well as networking
 overheads.

1.2. Protocol Overview

 This section is non-normative.

 The PubSub messaging pattern defines three roles: _Subscribers_ and
 Publishers, which communicate via a _Broker_.

 The routed RPC messaging pattern also defines three roles: _Callers_
 and _Callees_, which communicate via a _Dealer_.

 WAMP Connections are established by _Clients_ to a _Router_.
 Connections can use any transport that is message-based, ordered,
 reliable and bi-directional, with WebSocket as the default transport.

 A Router is a component which implements one or both of the Broker
 and Dealer roles. A Client is a component which implements any or
 all of the Subscriber, Publisher, Caller, or Callee roles.

 WAMP _Connections_ are established by Clients to a Router.
 Connections can use any transport which is message-oriented, ordered,
 reliable and bi-directional, with WebSocket as the default transport.

 WAMP _Sessions_ are established over a WAMP Connection. A WAMP
 Session is joined to a _Realm_ on a Router. Routing occurs only
 between WAMP Sessions that have joined the same Realm.

 The _WAMP Basic Profile_ defines the parts of the protocol that are
 required to establish a WAMP connection, as well as for basic
 interactions between the four client and two router roles. WAMP
 implementations are required to implement the Basic Profile, at
 minimum.

 The _WAMP Advanced Profile_ defines additions to the Basic Profile
 which greatly extend the utility of WAMP in real-world applications.
 WAMP implementations may support any subset of the Advanced Profile

Oberstein & Goedde Expires April 13, 2016 [Page 6]

Internet-Draft WAMP October 2015

 features. They are required to announce those supported features
 during session establishment.

1.3. Design Philosophy

 This section is non-normative.

 WAMP was designed to be performant, safe and easy to implement. Its
 entire design was driven by a implement, get feedback, adjust cycle.

 An initial version of the protocol was publicly released in March
 2012. The intent was to gain insight through implementation and use,
 and integrate these into a second version of the protocol, where
 there would be no regard for compatibility between the two versions.
 Several interoperable, independent implementations were released, and
 feedback from the implementers and users was collected.

 The second version of the protocol, which this RFC covers, integrates
 this feedback. Routed Remote Procedure Calls are one outcome of
 this, where the initial version of the protocol only allowed the
 calling of procedures provided by the router. Another, related
 outcome was the strict separation of routing and application logic.

 While WAMP was originally developed to use WebSocket as a transport,
 with JSON for serialization, experience in the field revealed that
 other transports and serialization formats were better suited to some
 use cases. For instance, with the use of WAMP in the Internet of
 Things sphere, resource constraints play a much larger role than in
 the browser, so any reduction of resource usage in WAMP
 implementations counts. This lead to the decoupling of WAMP from any
 particular transport or serialization, with the establishment of
 minimum requirements for both.

1.3.1. Basic and Advanced Profiles

 This document first describes a Basic Profile for WAMP in its
 entirety, before describing an Advanced Profile which extends the
 basic functionality of WAMP.

 The separation into Basic and Advanced Profiles is intended to extend
 the reach of the protocol. It allows implementations to start out
 with a minimal, yet operable and useful set of features, and to
 expand that set from there. It also allows implementations that are
 tailored for resource-constrained environments, where larger feature
 sets would not be possible. Here implementers can weigh between
 resource constraints and functionality requirements, then implement
 an optimal feature set for the circumstances.

Oberstein & Goedde Expires April 13, 2016 [Page 7]

Internet-Draft WAMP October 2015

 Advanced Profile features are announced during session establishment,
 so that different implementations can adjust their interactions to
 fit the commonly supported feature set.

1.3.2. Application Code

 WAMP is designed for application code to run within Clients, i.e.
 Peers having the roles Callee, Caller, Publisher, and Subscriber.

 Routers, i.e. Peers of the roles Brokers and Dealers are responsible
 for *generic call and event routing* and do not run application code.

 This allows the transparent exchange of Broker and Dealer
 implementations without affecting the application and to distribute
 and deploy application components flexibly.

 Note that a *program* that implements, for instance, the Dealer
 role might at the same time implement, say, a built-in Callee. It
 is the Dealer and Broker that are generic, not the program.

1.3.3. Language Agnostic

 WAMP is language agnostic, i.e. can be implemented in any programming
 language. At the level of arguments that may be part of a WAMP
 message, WAMP takes a 'superset of all' approach. WAMP
 implementations may support features of the implementing language for
 use in arguments, e.g. keyword arguments.

1.3.4. Router Implementation Specifics

 This specification only deals with the protcol level. Specific WAMP
 Broker and Dealer implementations may differ in aspects such as
 support for:

 o router networks (clustering and federation),

 o authentication and authorization schemes,

 o message persistence, and,

 o management and monitoring.

 The definition and documentation of such Router features is outside
 the scope of this document.

Oberstein & Goedde Expires April 13, 2016 [Page 8]

Internet-Draft WAMP October 2015

1.4. Relationship to WebSocket

 WAMP uses WebSocket as its default transport binding, and is a
 registered WebSocket subprotocol.

2. Conformance Requirements

 All diagrams, examples, and notes in this specification are non-
 normative, as are all sections explicitly marked non-normative.
 Everything else in this specification is normative.

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

 Requirements phrased in the imperative as part of algorithms (such as
 "strip any leading space characters" or "return false and abort these
 steps") are to be interpreted with the meaning of the key word
 ("MUST", "SHOULD", "MAY", etc.) used in introducing the algorithm.

 Conformance requirements phrased as algorithms or specific steps MAY
 be implemented in any manner, so long as the end result is
 equivalent.

2.1. Terminology and Other Conventions

 Key terms such as named algorithms or definitions are indicated like
 this when they first occur, and are capitalized throughout the
 text.

3. Realms, Sessions and Transports

 A Realm is a WAMP routing and administrative domain, optionally
 protected by authentication and authorization. WAMP messages are
 only routed within a Realm.

 A Session is a transient conversation between two Peers attached to a
 Realm and running over a Transport.

 A Transport connects two WAMP Peers and provides a channel over which
 WAMP messages for a WAMP Session can flow in both directions.

 WAMP can run over any Transport which is message-based,
 bidirectional, reliable and ordered.

 The default transport for WAMP is WebSocket [RFC6455], where WAMP is
 an officially registered [1] subprotocol.

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc6455

Oberstein & Goedde Expires April 13, 2016 [Page 9]

Internet-Draft WAMP October 2015

4. Peers and Roles

 A WAMP Session connects two Peers, a Client and a Router. Each WAMP
 Peer MUST implement one role, and MAY implement more roles.

 A Client MAY implement any combination of the Roles:

 o Callee

 o Caller

 o Publisher

 o Subscriber

 and a Router MAY implement either or both of the Roles:

 o Dealer

 o Broker

 This document describes WAMP as in client-to-router communication.
 Direct client-to-client communication is not supported by WAMP.
 Router-to-router communication MAY be defined by a specific router
 implementation.

4.1. Symmetric Messaging

 It is important to note that though the establishment of a Transport
 might have a inherent asymmetry (like a TCP client establishing a
 WebSocket connection to a server), and Clients establish WAMP
 sessions by attaching to Realms on Routers, WAMP itself is designed
 to be fully symmetric for application components.

 After the transport and a session have been established, any
 application component may act as Caller, Callee, Publisher and
 Subscriber at the same time. And Routers provide the fabric on top
 of which WAMP runs a symmetric application messaging service.

4.2. Remote Procedure Call Roles

 The Remote Procedure Call messaging pattern involves peers of three
 different roles:

 o Callee (Client)

 o Caller (Client)

Oberstein & Goedde Expires April 13, 2016 [Page 10]

Internet-Draft WAMP October 2015

 o Dealer (Router)

 A Caller issues calls to remote procedures by providing the procedure
 URI and any arguments for the call. The Callee will execute the
 procedure using the supplied arguments to the call and return the
 result of the call to the Caller.

 Callees register procedures they provide with Dealers. Callers
 initiate procedure calls first to Dealers. Dealers route calls
 incoming from Callers to Callees implementing the procedure called,
 and route call results back from Callees to Callers.

 The Caller and Callee will usually run application code, while the
 Dealer works as a generic router for remote procedure calls
 decoupling Callers and Callees.

4.3. Publish & Subscribe Roles

 The Publish & Subscribe messaging pattern involves peers of three
 different roles:

 o Subscriber (Client)

 o Publisher (Client)

 o Broker (Router)

 A Publishers publishes events to topics by providing the topic URI
 and any payload for the event. Subscribers of the topic will receive
 the event together with the event payload.

 Subscribers subscribe to topics they are interested in with Brokers.
 Publishers initiate publication first at Brokers. Brokers route
 events incoming from Publishers to Subscribers that are subscribed to
 respective topics.

 The Publisher and Subscriber will usually run application code, while
 the Broker works as a generic router for events decoupling Publishers
 from Subscribers.

4.4. Peers with multiple Roles

 Note that Peers might implement more than one role: e.g. a Peer might
 act as Caller, Publisher and Subscriber at the same time. Another
 Peer might act as both a Broker and a Dealer.

Oberstein & Goedde Expires April 13, 2016 [Page 11]

Internet-Draft WAMP October 2015

5. Building Blocks

 WAMP is defined with respect to the following building blocks

 1. Identifiers

 2. Serializations

 3. Transports

 For each building block, WAMP only assumes a defined set of
 requirements, which allows to run WAMP variants with different
 concrete bindings.

5.1. Identifiers

5.1.1. URIs

 WAMP needs to identify the following *persistent* resources:

 1. Topics

 2. Procedures

 3. Errors

 These are identified in WAMP using _Uniform Resource Identifiers_
 (URIs) [RFC3986] that MUST be Unicode strings.

 When using JSON as WAMP serialization format, URIs (as other
 strings) are transmitted in UTF-8 [RFC3629] encoding.

 Examples

 o "com.myapp.mytopic1"

 o "com.myapp.myprocedure1"

 o "com.myapp.myerror1"

 The URIs are understood to form a single, global, hierarchical
 namespace for WAMP.

 The namespace is unified for topics, procedures and errors - these
 different resource types do NOT have separate namespaces.

https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3629

Oberstein & Goedde Expires April 13, 2016 [Page 12]

Internet-Draft WAMP October 2015

 To avoid resource naming conflicts, the package naming convention
 from Java is used, where URIs SHOULD begin with (reversed) domain
 names owned by the organization defining the URI.

5.1.1.1. Relaxed/Loose URIs

 URI components (the parts between two "."s, the head part up to the
 first ".", the tail part after the last ".") MUST NOT contain a ".",
 "#" or whitespace characters and MUST NOT be empty (zero-length
 strings).

 The restriction not to allow "." in component strings is due to
 the fact that "." is used to separate components, and WAMP
 associates semantics with resource hierarchies, such as in
 pattern-based subscriptions that are part of the Advanced Profile.
 The restriction not to allow empty (zero-length) strings as
 components is due to the fact that this may be used to denote
 wildcard components with pattern-based subscriptions and
 registrations in the Advanced Profile. The character "#" is not
 allowed since this is reserved for internal use by Dealers and
 Brokers.

 As an example, the following regular expression could be used in
 Python to check URIs according to above rules:

 <CODE BEGINS>
 ## loose URI check disallowing empty URI components
 pattern = re.compile(r"^([^\s\.#]+\.)*([^\s\.#]+)$")
 <CODE ENDS>

 When empty URI components are allowed (which is the case for specific
 messages that are part of the Advanced Profile), this following
 regular expression can be used (shown used in Python):

 <CODE BEGINS>
 ## loose URI check allowing empty URI components
 pattern = re.compile(r"^(([^\s\.#]+\.)|\.)*([^\s\.#]+)?$")
 <CODE ENDS>

5.1.1.2. Strict URIs

 While the above rules MUST be followed, following a stricter URI rule
 is recommended: URI components SHOULD only contain letters, digits
 and "_".

 As an example, the following regular expression could be used in
 Python to check URIs according to the above rules:

Oberstein & Goedde Expires April 13, 2016 [Page 13]

Internet-Draft WAMP October 2015

 <CODE BEGINS>
 ## strict URI check disallowing empty URI components
 pattern = re.compile(r"^([0-9a-z_]+\.)*([0-9a-z_]+)$")
 <CODE ENDS>

 When empty URI components are allowed (which is the case for specific
 messages that are part of the Advanced Profile), the following
 regular expression can be used (shown in Python):

 <CODE BEGINS>
 ## strict URI check allowing empty URI components
 pattern = re.compile(r"^(([0-9a-z_]+\.)|\.)*([0-9a-z_]+)?$")
 <CODE ENDS>

 Following the suggested regular expression will make URI
 components valid identifiers in most languages (modulo URIs
 starting with a digit and language keywords) and the use of lower-
 case only will make those identifiers unique in languages that
 have case-insensitive identifiers. Following this suggestion can
 allow implementations to map topics, procedures and errors to the
 language environment in a completely transparent way.

5.1.1.3. Reserved URIs

 Further, application URIs MUST NOT use "wamp" as a first URI
 component, since this is reserved for URIs predefined with the WAMP
 protocol itself.

 Examples

 o "wamp.error.not_authorized"

 o "wamp.error.procedure_already_exists"

5.1.2. IDs

 WAMP needs to identify the following ephemeral entities each in the
 scope noted:

 1. Sessions (_global scope_)

 2. Publications (_global scope_)

 3. Subscriptions (_router scope_)

 4. Registrations (_router scope_)

 5. Requests (_session scope_)

Oberstein & Goedde Expires April 13, 2016 [Page 14]

Internet-Draft WAMP October 2015

 These are identified in WAMP using IDs that are integers between
 (inclusive) *0* and *2^53* (9007199254740992):

 o IDs in the _global scope_ MUST be drawn _randomly_ from a _uniform
 distribution_ over the complete range [0, 2^53]

 o IDs in the _router scope_ can be chosen freely by the specific
 router implementation

 o IDs in the _session scope_ SHOULD be incremented by 1 beginning
 with 1 (for each direction - _Client-to-Router_ and _Router-to-
 Client_)

 The reason to choose the specific upper bound is that 2^53 is the
 largest integer such that this integer and _all_ (positive)
 smaller integers can be represented exactly in IEEE-754 doubles.
 Some languages (e.g. JavaScript) use doubles as their sole number
 type. Most languages do have signed and unsigned 64-bit integer
 types that both can hold any value from the specified range.

 The following is a complete list of usage of IDs in the three
 categories for all WAMP messages. For a full definition of these see

Section 6.

5.1.2.1. Global Scope IDs

 o "WELCOME.Session"

 o "PUBLISHED.Publication"

 o "EVENT.Publication"

5.1.2.2. Router Scope IDs

 o "EVENT.Subscription"

 o "SUBSCRIBED.Subscription"

 o "REGISTERED.Registration"

 o "UNSUBSCRIBE.Subscription"

 o "UNREGISTER.Registration"

 o "INVOCATION.Registration"

Oberstein & Goedde Expires April 13, 2016 [Page 15]

Internet-Draft WAMP October 2015

5.1.2.3. Session Scope IDs

 o "ERROR.Request"

 o "PUBLISH.Request"

 o "PUBLISHED.Request"

 o "SUBSCRIBE.Request"

 o "SUBSCRIBED.Request"

 o "UNSUBSCRIBE.Request"

 o "UNSUBSCRIBED.Request"

 o "CALL.Request"

 o "CANCEL.Request"

 o "RESULT.Request"

 o "REGISTER.Request"

 o "REGISTERED.Request"

 o "UNREGISTER.Request"

 o "UNREGISTERED.Request"

 o "INVOCATION.Request"

 o "INTERRUPT.Request"

 o "YIELD.Request"

5.2. Serializations

 WAMP is a message based protocol that requires serialization of
 messages to octet sequences to be sent out on the wire.

 A message _serialization_ format is assumed that (at least) provides
 the following types:

 o "integer" (non-negative)

 o "string" (UTF-8 encoded Unicode)

Oberstein & Goedde Expires April 13, 2016 [Page 16]

Internet-Draft WAMP October 2015

 o "bool"

 o "list"

 o "dict" (with string keys)

 WAMP _itself_ only uses the above types, e.g. it does not use the
 JSON data types "number" (non-integer) and "null". The
 application payloads transmitted by WAMP (e.g. in call arguments
 or event payloads) may use other types a concrete serialization
 format supports.

 There is no required serialization or set of serializations for WAMP
 implementations (but each implementation MUST, of course, implement
 at least one serialization format). Routers SHOULD implement more
 than one serialization format, enabling components using different
 kinds of serializations to connect to each other.

 WAMP defines two bindings for message _serialization_:

 1. JSON

 2. MsgPack

 Other bindings for _serialization_ may be defined in future WAMP
 versions.

5.2.1. JSON

 With JSON serialization, each WAMP message is serialized according to
 the JSON specification as described in RFC4627.

 Further, binary data follows a convention for conversion to JSON
 strings. For details see the Appendix.

5.2.2. MsgPack

 With MsgPack serialization, each WAMP message is serialized according
 to the MsgPack specification.

 Version 5 or later of MsgPack MUST BE used, since this version is
 able to differentiate between strings and binary values.

5.3. Transports

 WAMP assumes a _transport_ with the following characteristics:

 1. message-based

https://datatracker.ietf.org/doc/html/rfc4627

Oberstein & Goedde Expires April 13, 2016 [Page 17]

Internet-Draft WAMP October 2015

 2. reliable

 3. ordered

 4. bidirectional (full-duplex)

 There is no required transport or set of transports for WAMP
 implementations (but each implementation MUST, of course, implement
 at least one transport). Routers SHOULD implement more than one
 transport, enabling components using different kinds of transports to
 connect in an application.

5.3.1. WebSocket Transport

 The default transport binding for WAMP is WebSocket.

 In the Basic Profile, WAMP messages are transmitted as WebSocket
 messages: each WAMP message is transmitted as a separate WebSocket
 message (not WebSocket frame). The Advanced Profile may define other
 modes, e.g. a *batched mode* where multiple WAMP messages are
 transmitted via single WebSocket message.

 The WAMP protocol MUST BE negotiated during the WebSocket opening
 handshake between Peers using the WebSocket subprotocol negotiation
 mechanism.

 WAMP uses the following WebSocket subprotocol identifiers for
 unbatched modes:

 o "wamp.2.json"

 o "wamp.2.msgpack"

 With "wamp.2.json", _all_ WebSocket messages MUST BE of type *text*
 (UTF8 encoded payload) and use the JSON message serialization.

 With "wamp.2.msgpack", _all_ WebSocket messages MUST BE of type
 binary and use the MsgPack message serialization.

 To avoid incompatibilities merely due to naming conflicts with
 WebSocket subprotocol identifiers, implementers SHOULD register
 identifiers for additional serialization formats with the official
 WebSocket subprotocol registry.

Oberstein & Goedde Expires April 13, 2016 [Page 18]

Internet-Draft WAMP October 2015

5.3.2. Transport and Session Lifetime

 WAMP implementations MAY choose to tie the lifetime of the underlying
 transport connection for a WAMP connection to that of a WAMP session,
 i.e. establish a new transport-layer connection as part of each new
 session establishment. They MAY equally choose to allow re-use of a
 transport connection, allowing subsequent WAMP sessions to be
 established using the same transport connection.

 The diagram below illustrates the full transport connection and
 session lifecycle for an implementation which uses WebSocket over TCP
 as the transport and allows the re-use of a transport connection.

Oberstein & Goedde Expires April 13, 2016 [Page 19]

Internet-Draft WAMP October 2015

 ,------. ,------.
 | Peer | | Peer |
 `--+---' `--+---'

 TCP established
 |<--->|
 | |
 | TLS established |
 |+<--------------------------------------->+|
 |+ +|
 |+ WebSocket established +|
 |+|<------------------------------------->|+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| |+|
 |+| WAMP established |+|
 |+|+<----------------------------------->+|+|
 |+|+ +|+|
 |+|+ +|+|
 |+|+ WAMP closed +|+|
 |+|+<----------------------------------->+|+|
 |+| |+|
 |+| WebSocket closed |+|
 |+|<------------------------------------->|+|
 |+ +|
 |+ TLS closed +|
 |+<--------------------------------------->+|
 | |
 | TCP closed |
 |<--->|

 ,--+---. ,--+---.
 | Peer | | Peer |
 `------' `------'

6. Messages

 All WAMP messages are a "list" with a first element "MessageType"
 followed by one or more message type specific elements:

 [MessageType|integer, ... one or more message type specific
 elements ...]

Oberstein & Goedde Expires April 13, 2016 [Page 20]

Internet-Draft WAMP October 2015

 The notation "Element|type" denotes a message element named "Element"
 of type "type", where "type" is one of

 o "uri": a string URI as defined in Section 5.1.1

 o "id": an integer ID as defined in Section 5.1.2

 o "integer": a non-negative integer

 o "string": a Unicode string, including the empty string

 o "bool": a boolean value ("true" or "false") - integers MUST NOT be
 used instead of boolean value

 o "dict": a dictionary (map) where keys MUST be strings, keys MUST
 be unique and serialization order is undefined (left to the
 serializer being used)

 o "list": a list (array) where items can be again any of this
 enumeration

 Example

 A "SUBSCRIBE" message has the following format

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

 Here is an example message conforming to the above format

 [32, 713845233, {}, "com.myapp.mytopic1"]

6.1. Extensibility

 Some WAMP messages contain "Options|dict" or "Details|dict" elements.
 This allows for future extensibility and implementations that only
 provide subsets of functionality by ignoring unimplemented
 attributes. Keys in "Options" and "Details" MUST be of type "string"
 and MUST match the regular expression "[a-z][a-z0-9_]{2,}" for WAMP
 predefined keys. Implementations MAY use implementation-specific
 keys that MUST match the regular expression "_[a-z0-9_]{3,}".
 Attributes unknown to an implementation MUST be ignored.

6.2. No Polymorphism

 For a given "MessageType" _and_ number of message elements the
 expected types are uniquely defined. Hence there are no polymorphic
 messages in WAMP. This leads to a message parsing and validation

Oberstein & Goedde Expires April 13, 2016 [Page 21]

Internet-Draft WAMP October 2015

 control flow that is efficient, simple to implement and simple to
 code for rigorous message format checking.

6.3. Structure

 The _application_ payload (that is call arguments, call results,
 event payload etc) is always at the end of the message element list.
 The rationale is: Brokers and Dealers have no need to inspect (parse)
 the application payload. Their business is call/event routing.
 Having the application payload at the end of the list allows Brokers
 and Dealers to skip parsing it altogether. This can improve
 efficiency and performance.

6.4. Message Definitions

 WAMP defines the following messages that are explained in detail in
 the following sections.

 The messages concerning the WAMP session itself are mandatory for all
 Peers, i.e. a Client MUST implement "HELLO", "ABORT" and "GOODBYE",
 while a Router MUST implement "WELCOME", "ABORT" and "GOODBYE".

 All other messages are mandatory _per role_, i.e. in an
 implementation that only provides a Client with the role of Publisher
 MUST additionally implement sending "PUBLISH" and receiving
 "PUBLISHED" and "ERROR" messages.

6.4.1. Session Lifecycle

6.4.1.1. HELLO

 Sent by a Client to initiate opening of a WAMP session to a Router
 attaching to a Realm.

 [HELLO, Realm|uri, Details|dict]

6.4.1.2. WELCOME

 Sent by a Router to accept a Client. The WAMP session is now open.

 [WELCOME, Session|id, Details|dict]

6.4.1.3. ABORT

 Sent by a Peer*to abort the opening of a WAMP session. No response
 is expected.

 [ABORT, Details|dict, Reason|uri]

Oberstein & Goedde Expires April 13, 2016 [Page 22]

Internet-Draft WAMP October 2015

6.4.1.4. GOODBYE

 Sent by a Peer to close a previously opened WAMP session. Must be
 echo'ed by the receiving Peer.

 [GOODBYE, Details|dict, Reason|uri]

6.4.1.5. ERROR

 Error reply sent by a Peer as an error response to different kinds of
 requests.

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict,
 Error|uri]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict,
 Error|uri, Arguments|list]

 [ERROR, REQUEST.Type|int, REQUEST.Request|id, Details|dict,
 Error|uri, Arguments|list, ArgumentsKw|dict]

6.4.2. Publish & Subscribe

6.4.2.1. PUBLISH

 Sent by a Publisher to a Broker to publish an event.

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 [PUBLISH, Request|id, Options|dict, Topic|uri,
 Arguments|list]

 [PUBLISH, Request|id, Options|dict, Topic|uri,
 Arguments|list, ArgumentsKw|dict]

6.4.2.2. PUBLISHED

 Acknowledge sent by a Broker to a Publisher for acknowledged
 publications.

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

6.4.2.3. SUBSCRIBE

 Subscribe request sent by a Subscriber to a Broker to subscribe to a
 topic.

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

Oberstein & Goedde Expires April 13, 2016 [Page 23]

Internet-Draft WAMP October 2015

6.4.2.4. SUBSCRIBED

 Acknowledge sent by a Broker to a Subscriber to acknowledge a
 subscription.

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

6.4.2.5. UNSUBSCRIBE

 Unsubscribe request sent by a Subscriber to a Broker to unsubscribe a
 subscription.

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

6.4.2.6. UNSUBSCRIBED

 Acknowledge sent by a Broker to a Subscriber to acknowledge
 unsubscription.

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

6.4.2.7. EVENT

 Event dispatched by Broker to Subscribers for subscriptions the event
 was matching.

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict, PUBLISH.Arguments|list]

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict, PUBLISH.Arguments|list,
 PUBLISH.ArgumentsKw|dict]

 An event is dispatched to a Subscriber for a given
 "Subscription|id" _only once_. On the other hand, a Subscriber
 that holds subscriptions with different "Subscription|id"s that
 all match a given event will receive the event on each matching
 subscription.

6.4.3. Routed Remote Procedure Calls

Oberstein & Goedde Expires April 13, 2016 [Page 24]

Internet-Draft WAMP October 2015

6.4.3.1. CALL

 Call as originally issued by the _Caller_ to the _Dealer_.

 [CALL, Request|id, Options|dict, Procedure|uri]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

6.4.3.2. RESULT

 Result of a call as returned by _Dealer_ to _Caller_.

 [RESULT, CALL.Request|id, Details|dict]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

6.4.3.3. REGISTER

 A _Callees_ request to register an endpoint at a _Dealer_.

 [REGISTER, Request|id, Options|dict, Procedure|uri]

6.4.3.4. REGISTERED

 Acknowledge sent by a _Dealer_ to a _Callee_ for successful
 registration.

 [REGISTERED, REGISTER.Request|id, Registration|id]

6.4.3.5. UNREGISTER

 A _Callees_ request to unregister a previously established
 registration.

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

6.4.3.6. UNREGISTERED

 Acknowledge sent by a _Dealer_ to a _Callee_ for successful
 unregistration.

 [UNREGISTERED, UNREGISTER.Request|id]

Oberstein & Goedde Expires April 13, 2016 [Page 25]

Internet-Draft WAMP October 2015

6.4.3.7. INVOCATION

 Actual invocation of an endpoint sent by _Dealer_ to a _Callee_.

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict]

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict, C* Arguments|list]

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict, CALL.Arguments|list, CALL.ArgumentsKw|dict]

6.4.3.8. YIELD

 Actual yield from an endpoint sent by a _Callee_ to _Dealer_.

 [YIELD, INVOCATION.Request|id, Options|dict]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list,
 ArgumentsKw|dict]

6.5. Message Codes and Direction

 The following table lists the message type code for *all 25 messages
 defined in the WAMP basic profile* and their direction between peer
 roles.

 Reserved codes may be used to identify additional message types in
 future standards documents.

 "Tx" indicates the message is sent by the respective role, and
 "Rx" indicates the message is received by the respective role.

Oberstein & Goedde Expires April 13, 2016 [Page 26]

Internet-Draft WAMP October 2015

 +-----+----------------+------+------+------+------+-------+--------+
 | Cod | Message | Pub | Brk | Subs | Calr | Dealr | Callee |
 +-----+----------------+------+------+------+------+-------+--------+
1	"HELLO"	Tx	Rx	Tx	Tx	Rx	Tx
2	"WELCOME"	Rx	Tx	Rx	Rx	Tx	Rx
3	"ABORT"	Rx	TxRx	Rx	Rx	TxRx	Rx
6	"GOODBYE"	TxRx	TxRx	TxRx	TxRx	TxRx	TxRx
8	"ERROR"	Rx	Tx	Rx	Rx	TxRx	TxRx
16	"PUBLISH"	Tx	Rx				
17	"PUBLISHED"	Rx	Tx				
32	"SUBSCRIBE"		Rx	Tx			
33	"SUBSCRIBED"		Tx	Rx			
34	"UNSUBSCRIBE"		Rx	Tx			
35	"UNSUBSCRIBED"		Tx	Rx			
36	"EVENT"		Tx	Rx			
48	"CALL"				Tx	Rx	
50	"RESULT"				Rx	Tx	
64	"REGISTER"					Rx	Tx
65	"REGISTERED"					Tx	Rx
66	"UNREGISTER"					Rx	Tx
67	"UNREGISTERED"					Tx	Rx
68	"INVOCATION"					Tx	Rx
70	"YIELD"					Rx	Tx
 +-----+----------------+------+------+------+------+-------+--------+

6.6. Extension Messages

 WAMP uses type codes from the core range [0, 255]. Implementations
 MAY define and use implementation specific messages with message type
 codes from the extension message range [256, 1023]. For example, a
 router MAY implement router-to-router communication by using
 extension messages.

6.7. Empty Arguments and Keyword Arguments

 Implementations SHOULD avoid sending empty "Arguments" lists.

 E.g. a "CALL" message

 [CALL, Request|id, Options|dict, Procedure|uri,
 Arguments|list]

 where "Arguments == []" SHOULD be avoided, and instead

Oberstein & Goedde Expires April 13, 2016 [Page 27]

Internet-Draft WAMP October 2015

 [CALL, Request|id, Options|dict, Procedure|uri]

 SHOULD be sent.

 Implementations SHOULD avoid sending empty "ArgumentsKw"
 dictionaries.

 E.g. a "CALL" message

 [CALL, Request|id, Options|dict, Procedure|uri,
 Arguments|list, ArgumentsKw|dict]

 where "ArgumentsKw == {}" SHOULD be avoided, and instead

 [CALL, Request|id, Options|dict, Procedure|uri,
 Arguments|list]

 SHOULD be sent when "Arguments" is non-empty.

7. Sessions

 The message flow between _Clients_ and _Routers_ for opening and
 closing WAMP sessions involves the following messages:

 1. "HELLO"

 2. "WELCOME"

 3. "ABORT"

 4. "GOODBYE"

7.1. Session Establishment

7.1.1. HELLO

 After the underlying transport has been established, the opening of a
 WAMP session is initiated by the _Client_ sending a "HELLO" message
 to the _Router_

 [HELLO, Realm|uri, Details|dict]

 where

 o "Realm" is a string identifying the realm this session should
 attach to

Oberstein & Goedde Expires April 13, 2016 [Page 28]

Internet-Draft WAMP October 2015

 o "Details" is a dictionary that allows to provide additional
 opening information (see below).

 The "HELLO" message MUST be the very first message sent by the
 Client after the transport has been established.

 In the WAMP Basic Profile without session authentication the _Router_
 will reply with a "WELCOME" or "ABORT" message.

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | WELCOME |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 A WAMP session starts its lifetime when the _Router_ has sent a
 "WELCOME" message to the _Client_, and ends when the underlying
 transport closes or when the session is closed explicitly by either
 peer sending the "GOODBYE" message (see below).

 It is a protocol error to receive a second "HELLO" message during the
 lifetime of the session and the _Peer_ must fail the session if that
 happens.

7.1.1.1. Client: Role and Feature Announcement

 WAMP uses _Role & Feature announcement_ instead of _protocol
 versioning_ to allow

 o implementations only supporting subsets of functionality

 o future extensibility

 A _Client_ must announce the *roles* it supports via
 "Hello.Details.roles|dict", with a key mapping to a
 "Hello.Details.roles.<role>|dict" where "<role>" can be:

 o "publisher"

 o "subscriber"

 o "caller"

Oberstein & Goedde Expires April 13, 2016 [Page 29]

Internet-Draft WAMP October 2015

 o "callee"

 A _Client_ can support any combination of the above roles but must
 support at least one role.

 The "<role>|dict" is a dictionary describing *features* supported by
 the peer for that role.

 This MUST be empty for WAMP Basic Profile implementations, and MUST
 be used by implementations implementing parts of the Advanced Profile
 to list the specific set of features they support.

 _Example: A Client that implements the Publisher and Subscriber roles
 of the WAMP Basic Profile._

 [1, "somerealm", {
 "roles": {
 "publisher": {},
 "subscriber": {}
 }
 }]

7.1.2. WELCOME

 A _Router_ completes the opening of a WAMP session by sending a
 "WELCOME" reply message to the _Client_.

 [WELCOME, Session|id, Details|dict]

 where

 o "Session" MUST be a randomly generated ID specific to the WAMP
 session. This applies for the lifetime of the session.

 o "Details" is a dictionary that allows to provide additional
 information regarding the open session (see below).

 In the WAMP Basic Profile without session authentication, a "WELCOME"
 message MUST be the first message sent by the _Router_, directly in
 response to a "HELLO" message received from the _Client_. Extensions
 in the Advanced Profile MAY include intermediate steps and messages
 for authentication.

 Note. The behavior if a requested "Realm" does not presently
 exist is router-specific. A router may e.g. automatically create
 the realm, or deny the establishment of the session with a "ABORT"
 reply message.

Oberstein & Goedde Expires April 13, 2016 [Page 30]

Internet-Draft WAMP October 2015

7.1.2.1. Router: Role and Feature Announcement

 Similar to a _Client_ announcing _Roles_ and _Features_ supported in
 the `"HELLO" message, a _Router_ announces its supported _Roles_ and
 Features in the "WELCOME" message.

 A _Router_ MUST announce the *roles* it supports via
 "Welcome.Details.roles|dict", with a key mapping to a
 "Welcome.Details.roles.<role>|dict" where "<role>" can be:

 o "broker"

 o "dealer"

 A _Router_ must support at least one role, and MAY support both
 roles.

 The "<role>|dict" is a dictionary describing *features* supported by
 the peer for that role. With WAMP Basic Profile implementations,
 this MUST be empty, but MUST be used by implementations implementing
 parts of the Advanced Profile to list the specific set of features
 they support

 _Example: A Router implementing the Broker role of the WAMP Basic
 Profile._

 [2, 9129137332, {
 "roles": {
 "broker": {}
 }
 }]

7.1.3. ABORT

 Both the _Router_ and the _Client_ may abort the opening of a WAMP
 session by sending an "ABORT" message.

 [ABORT, Details|dict, Reason|uri]

 where

 o "Reason" MUST be an URI.

 o "Details" MUST be a dictionary that allows to provide additional,
 optional closing information (see below).

 No response to an "ABORT" message is expected.

Oberstein & Goedde Expires April 13, 2016 [Page 31]

Internet-Draft WAMP October 2015

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | ABORT |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 Example

 [3, {"message": "The realm does not exist."},
 "wamp.error.no_such_realm"]

7.2. Session Closing

 A WAMP session starts its lifetime with the _Router_ sending a
 "WELCOME" message to the _Client_ and ends when the underlying
 transport disappears or when the WAMP session is closed explicitly by
 a "GOODBYE" message sent by one _Peer_ and a "GOODBYE" message sent
 from the other _Peer_ in response.

 [GOODBYE, Details|dict, Reason|uri]

 where

 o "Reason" MUST be an URI.

 o "Details" MUST be a dictionary that allows to provide additional,
 optional closing information (see below).

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | ---------------->
 | |
 | GOODBYE |
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

Oberstein & Goedde Expires April 13, 2016 [Page 32]

Internet-Draft WAMP October 2015

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | GOODBYE |
 | <----------------
 | |
 | GOODBYE |
 | ---------------->
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 Example. One _Peer_ initiates closing

 [6, {"message": "The host is shutting down now."},
 "wamp.error.system_shutdown"]

 and the other peer replies

 [6, {}, "wamp.error.goodbye_and_out"]

 Example. One _Peer_ initiates closing

 [6, {}, "wamp.error.close_realm"]

 and the other peer replies

 [6, {}, "wamp.error.goodbye_and_out"]

7.2.1. Difference between ABORT and GOODBYE

 The differences between "ABORT" and "GOODBYE" messages are:

 1. "ABORT" gets sent only _before_ a _Session_ is established, while
 "GOODBYE" is sent only _after_ a _Session_ is already
 established.

 2. "ABORT" is never replied to by a _Peer_, whereas "GOODBYE" must
 be replied to by the receiving _Peer_

 Though "ABORT" and "GOODBYE" are structurally identical, using
 different message types serves to reduce overloaded meaning of
 messages and simplify message handling code.

Oberstein & Goedde Expires April 13, 2016 [Page 33]

Internet-Draft WAMP October 2015

7.3. Agent Identification

 When a software agent operates in a network protocol, it often
 identifies itself, its application type, operating system, software
 vendor, or software revision, by submitting a characteristic
 identification string to its operating peer.

 Similar to what browsers do with the "User-Agent" HTTP header, both
 the "HELLO" and the "WELCOME" message MAY disclose the WAMP
 implementation in use to its peer:

 HELLO.Details.agent|string

 and

 WELCOME.Details.agent|string

 Example: A Client "HELLO" message.

 [1, "somerealm", {
 "agent": "AutobahnJS-0.9.14",
 "roles": {
 "subscriber": {},
 "publisher": {}
 }
 }]

 Example: A Router "WELCOME" message.

 [2, 9129137332, {
 "agent": "Crossbar.io-0.10.11",
 "roles": {
 "broker": {}
 }
 }]

8. Publish and Subscribe

 All of the following features for Publish & Subscribe are mandatory
 for WAMP Basic Profile implementations supporting the respective
 roles, i.e. _Publisher_, _Subscriber_ and _Dealer_.

8.1. Subscribing and Unsubscribing

 The message flow between _Clients_ implementing the role of
 Subscriber and _Routers_ implementing the role of _Broker_ for
 subscribing and unsubscribing involves the following messages:

Oberstein & Goedde Expires April 13, 2016 [Page 34]

Internet-Draft WAMP October 2015

 1. "SUBSCRIBE"

 2. "SUBSCRIBED"

 3. "UNSUBSCRIBE"

 4. "UNSUBSCRIBED"

 5. "ERROR"

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | | |
 | | |
 | | SUBSCRIBE |
 | | <---------------------
 | | |
 | | SUBSCRIBED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | UNSUBSCRIBE |
 | | <---------------------
 | | |
 | | UNSUBSCRIBED or ERROR|
 | | --------------------->
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

 A _Subscriber_ may subscribe to zero, one or more topics, and a
 Publisher publishes to topics without knowledge of subscribers.

 Upon subscribing to a topic via the "SUBSCRIBE" message, a
 Subscriber will receive any future events published to the
 respective topic by _Publishers_, and will receive those events
 asynchronously.

 A subscription lasts for the duration of a session, unless a
 Subscriber opts out from a previously established subscription via
 the "UNSUBSCRIBE" message.

 A _Subscriber_ may have more than one event handler attached to
 the same subscription. This can be implemented in different ways:
 a) a _Subscriber_ can recognize itself that it is already

Oberstein & Goedde Expires April 13, 2016 [Page 35]

Internet-Draft WAMP October 2015

 subscribed and just attach another handler to the subscription for
 incoming events, b) or it can send a new "SUBSCRIBE" message to
 broker (as it would be first) and upon receiving a
 "SUBSCRIBED.Subscription|id" it already knows about, attach the
 handler to the existing subscription

8.1.1. SUBSCRIBE

 A _Subscriber_ communicates its interest in a topic to a _Broker_ by
 sending a "SUBSCRIBE" message:

 [SUBSCRIBE, Request|id, Options|dict, Topic|uri]

 where

 o "Request" MUST be a random, ephemeral ID chosen by the
 Subscriber and used to correlate the _Broker's_ response with
 the request.

 o "Options" MUST be a dictionary that allows to provide additional
 subscription request details in a extensible way. This is
 described further below.

 o "Topic" is the topic the _Subscriber_ wants to subscribe to and
 MUST be an URI.

 Example

 [32, 713845233, {}, "com.myapp.mytopic1"]

 A _Broker_, receiving a "SUBSCRIBE" message, can fullfill or reject
 the subscription, so it answers with "SUBSCRIBED" or "ERROR"
 messages.

8.1.2. SUBSCRIBED

 If the _Broker_ is able to fulfill and allow the subscription, it
 answers by sending a "SUBSCRIBED" message to the _Subscriber_

 [SUBSCRIBED, SUBSCRIBE.Request|id, Subscription|id]

 where

 o "SUBSCRIBE.Request" MUST be the ID from the original request.

 o "Subscription" MUST be an ID chosen by the _Broker_ for the
 subscription.

Oberstein & Goedde Expires April 13, 2016 [Page 36]

Internet-Draft WAMP October 2015

 Example

 [33, 713845233, 5512315355]

 Note. The "Subscription" ID chosen by the broker need not be
 unique to the subscription of a single _Subscriber_, but may be
 assigned to the "Topic", or the combination of the "Topic" and
 some or all "Options", such as the topic pattern matching method
 to be used. Then this ID may be sent to all _Subscribers_ for the
 "Topic" or "Topic" / "Options" combination. This allows the
 Broker to serialize an event to be delivered only once for all
 actual receivers of the event.

 In case of receiving a "SUBSCRIBE" message from the same
 Subscriber and to already subscribed topic, _Broker_ should
 answer with "SUBSCRIBED" message, containing the existing
 "Subscription|id".

8.1.3. Subscribe ERROR

 When the request for subscription cannot be fulfilled by the
 Broker, the _Broker_ sends back an "ERROR" message to the
 Subscriber

 [ERROR, SUBSCRIBE, SUBSCRIBE.Request|id, Details|dict,
 Error|uri]

 where

 o "SUBSCRIBE.Request" MUST be the ID from the original request.

 o "Error" MUST be an URI that gives the error of why the request
 could not be fulfilled.

 Example

 [8, 32, 713845233, {}, "wamp.error.not_authorized"]

8.1.4. UNSUBSCRIBE

 When a _Subscriber_ is no longer interested in receiving events for a
 subscription it sends an "UNSUBSCRIBE" message

 [UNSUBSCRIBE, Request|id, SUBSCRIBED.Subscription|id]

 where

Oberstein & Goedde Expires April 13, 2016 [Page 37]

Internet-Draft WAMP October 2015

 o "Request" MUST be a random, ephemeral ID chosen by the
 Subscriber and used to correlate the _Broker's_ response with
 the request.

 o "SUBSCRIBED.Subscription" MUST be the ID for the subscription to
 unsubscribe from, originally handed out by the _Broker_ to the
 Subscriber.

 Example

 [34, 85346237, 5512315355]

8.1.5. UNSUBSCRIBED

 Upon successful unsubscription, the _Broker_ sends an "UNSUBSCRIBED"
 message to the _Subscriber_

 [UNSUBSCRIBED, UNSUBSCRIBE.Request|id]

 where

 o "UNSUBSCRIBE.Request" MUST be the ID from the original request.

 Example

 [35, 85346237]

8.1.6. Unsubscribe ERROR

 When the request fails, the _Broker_ sends an "ERROR"

 [ERROR, UNSUBSCRIBE, UNSUBSCRIBE.Request|id, Details|dict,
 Error|uri]

 where

 o "UNSUBSCRIBE.Request" MUST be the ID from the original request.

 o "Error" MUST be an URI that gives the error of why the request
 could not be fulfilled.

 Example

 [8, 34, 85346237, {}, "wamp.error.no_such_subscription"]

Oberstein & Goedde Expires April 13, 2016 [Page 38]

Internet-Draft WAMP October 2015

8.2. Publishing and Events

 The message flow between _Publishers_, a _Broker_ and _Subscribers_
 for publishing to topics and dispatching events involves the
 following messages:

 1. "PUBLISH"

 2. "PUBLISHED"

 3. "EVENT"

 4. "ERROR"

 ,---------. ,------. ,----------.
 |Publisher| |Broker| |Subscriber|
 `----+----' `--+---' `----+-----'
 | PUBLISH | |
 |------------------> |
 | | |
 |PUBLISHED or ERROR| |
 |<------------------ |
 | | |
 | | EVENT |
 | | ------------------>
 ,----+----. ,--+---. ,----+-----.
 |Publisher| |Broker| |Subscriber|
 `---------' `------' `----------'

8.2.1. PUBLISH

 When a _Publisher_ requests to publish an event to some topic, it
 sends a "PUBLISH" message to a _Broker_:

 [PUBLISH, Request|id, Options|dict, Topic|uri]

 or

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list]

 or

 [PUBLISH, Request|id, Options|dict, Topic|uri, Arguments|list,
 ArgumentsKw|dict]

 where

Oberstein & Goedde Expires April 13, 2016 [Page 39]

Internet-Draft WAMP October 2015

 o "Request" is a random, ephemeral ID chosen by the _Publisher_ and
 used to correlate the _Broker's_ response with the request.

 o "Options" is a dictionary that allows to provide additional
 publication request details in an extensible way. This is
 described further below.

 o "Topic" is the topic published to.

 o "Arguments" is a list of application-level event payload elements.
 The list may be of zero length.

 o "ArgumentsKw" is an optional dictionary containing application-
 level event payload, provided as keyword arguments. The
 dictionary may be empty.

 If the _Broker_ is able to fulfill and allowing the publication, the
 Broker will send the event to all current _Subscribers_ of the
 topic of the published event.

 By default, publications are unacknowledged, and the _Broker_ will
 not respond, whether the publication was successful indeed or not.
 This behavior can be changed with the option
 "PUBLISH.Options.acknowledge|bool" (see below).

 Example

 [16, 239714735, {}, "com.myapp.mytopic1"]

 Example

 [16, 239714735, {}, "com.myapp.mytopic1", ["Hello, world!"]]

 Example

 [16, 239714735, {}, "com.myapp.mytopic1", [], {"color": "orange",
 "sizes": [23, 42, 7]}]

8.2.2. PUBLISHED

 If the _Broker_ is able to fulfill and allowing the publication, and
 "PUBLISH.Options.acknowledge == true", the _Broker_ replies by
 sending a "PUBLISHED" message to the _Publisher_:

 [PUBLISHED, PUBLISH.Request|id, Publication|id]

 where

Oberstein & Goedde Expires April 13, 2016 [Page 40]

Internet-Draft WAMP October 2015

 o "PUBLISH.Request" is the ID from the original publication request.

 o "Publication" is a ID chosen by the Broker for the publication.

 Example

 [17, 239714735, 4429313566]

8.2.3. Publish ERROR

 When the request for publication cannot be fulfilled by the _Broker_,
 and "PUBLISH.Options.acknowledge == true", the _Broker_ sends back an
 "ERROR" message to the _Publisher_

 [ERROR, PUBLISH, PUBLISH.Request|id, Details|dict, Error|uri]

 where

 o "PUBLISH.Request" is the ID from the original publication request.

 o "Error" is an URI that gives the error of why the request could
 not be fulfilled.

 Example

 [8, 16, 239714735, {}, "wamp.error.not_authorized"]

8.2.4. EVENT

 When a publication is successful and a _Broker_ dispatches the event,
 it determines a list of receivers for the event based on
 Subscribers for the topic published to and, possibly, other
 information in the event.

 Note that the _Publisher_ of an event will never receive the
 published event even if the _Publisher_ is also a _Subscriber_ of the
 topic published to.

 The Advanced Profile provides options for more detailed control
 over publication.

 When a _Subscriber_ is deemed to be a receiver, the _Broker_ sends
 the _Subscriber_ an "EVENT" message:

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict]

 or

Oberstein & Goedde Expires April 13, 2016 [Page 41]

Internet-Draft WAMP October 2015

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict, PUBLISH.Arguments|list]

 or

 [EVENT, SUBSCRIBED.Subscription|id, PUBLISHED.Publication|id,
 Details|dict, PUBLISH.Arguments|list, PUBLISH.ArgumentKw|dict]

 where

 o "SUBSCRIBED.Subscription" is the ID for the subscription under
 which the _Subscriber_ receives the event - the ID for the
 subscription originally handed out by the _Broker_ to the
 Subscriber.

 o "PUBLISHED.Publication" is the ID of the publication of the
 published event.

 o "Details" is a dictionary that allows the _Broker_ to provide
 additional event details in a extensible way. This is described
 further below.

 o "PUBLISH.Arguments" is the application-level event payload that
 was provided with the original publication request.

 o "PUBLISH.ArgumentKw" is the application-level event payload that
 was provided with the original publication request.

 Example

 [36, 5512315355, 4429313566, {}]

 Example

 [36, 5512315355, 4429313566, {}, ["Hello, world!"]]

 Example

 [36, 5512315355, 4429313566, {}, [], {"color": "orange",
 "sizes": [23, 42, 7]}]

9. Remote Procedure Calls

 All of the following features for Remote Procedure Calls are
 mandatory for WAMP Basic Profile implementations supporting the
 respective roles.

Oberstein & Goedde Expires April 13, 2016 [Page 42]

Internet-Draft WAMP October 2015

9.1. Registering and Unregistering

 The message flow between _Callees_ and a _Dealer_ for registering and
 unregistering endpoints to be called over RPC involves the following
 messages:

 1. "REGISTER"

 2. "REGISTERED"

 3. "UNREGISTER"

 4. "UNREGISTERED"

 5. "ERROR"

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | | |
 | | |
 | | REGISTER |
 | | <---------------------
 | | |
 | | REGISTERED or ERROR |
 | | --------------------->
 | | |
 | | |
 | | |
 | | |
 | | |
 | | UNREGISTER |
 | | <---------------------
 | | |
 | | UNREGISTERED or ERROR|
 | | --------------------->
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

9.1.1. REGISTER

 A _Callee_ announces the availability of an endpoint implementing a
 procedure with a _Dealer_ by sending a "REGISTER" message:

 [REGISTER, Request|id, Options|dict, Procedure|uri]

 where

Oberstein & Goedde Expires April 13, 2016 [Page 43]

Internet-Draft WAMP October 2015

 o "Request" is a random, ephemeral ID chosen by the _Callee_ and
 used to correlate the _Dealer's_ response with the request.

 o "Options" is a dictionary that allows to provide additional
 registration request details in a extensible way. This is
 described further below.

 o "Procedure"is the procedure the _Callee_ wants to register

 Example

 [64, 25349185, {}, "com.myapp.myprocedure1"]

9.1.2. REGISTERED

 If the _Dealer_ is able to fulfill and allowing the registration, it
 answers by sending a "REGISTERED" message to the "Callee":

 [REGISTERED, REGISTER.Request|id, Registration|id]

 where

 o "REGISTER.Request" is the ID from the original request.

 o "Registration" is an ID chosen by the _Dealer_ for the
 registration.

 Example

 [65, 25349185, 2103333224]

9.1.3. Register ERROR

 When the request for registration cannot be fulfilled by the
 Dealer, the _Dealer_ sends back an "ERROR" message to the _Callee_:

 [ERROR, REGISTER, REGISTER.Request|id, Details|dict, Error|uri]

 where

 o "REGISTER.Request" is the ID from the original request.

 o "Error" is an URI that gives the error of why the request could
 not be fulfilled.

 Example

 [8, 64, 25349185, {}, "wamp.error.procedure_already_exists"]

Oberstein & Goedde Expires April 13, 2016 [Page 44]

Internet-Draft WAMP October 2015

9.1.4. UNREGISTER

 When a _Callee_ is no longer willing to provide an implementation of
 the registered procedure, it sends an "UNREGISTER" message to the
 Dealer:

 [UNREGISTER, Request|id, REGISTERED.Registration|id]

 where

 o "Request" is a random, ephemeral ID chosen by the _Callee_ and
 used to correlate the _Dealer's_ response with the request.

 o "REGISTERED.Registration" is the ID for the registration to
 revoke, originally handed out by the _Dealer_ to the _Callee_.

 Example

 [66, 788923562, 2103333224]

9.1.5. UNREGISTERED

 Upon successful unregistration, the _Dealer_ sends an "UNREGISTERED"
 message to the _Callee_:

 [UNREGISTERED, UNREGISTER.Request|id]

 where

 o "UNREGISTER.Request" is the ID from the original request.

 Example

 [67, 788923562]

9.1.6. Unregister ERROR

 When the unregistration request fails, the _Dealer_ sends an "ERROR"
 message:

 [ERROR, UNREGISTER, UNREGISTER.Request|id, Details|dict,
 Error|uri]

 where

 o "UNREGISTER.Request" is the ID from the original request.

Oberstein & Goedde Expires April 13, 2016 [Page 45]

Internet-Draft WAMP October 2015

 o "Error" is an URI that gives the error of why the request could
 not be fulfilled.

 Example

 [8, 66, 788923562, {}, "wamp.error.no_such_registration"]

9.2. Calling and Invocations

 The message flow between _Callers_, a _Dealer_ and _Callees_ for
 calling procedures and invoking endpoints involves the following
 messages:

 1. "CALL"

 2. "RESULT"

 3. "INVOCATION"

 4. "YIELD"

 5. "ERROR"

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD or ERROR |
 | | <----------------
 | | |
 | RESULT or ERROR | |
 | <---------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 The execution of remote procedure calls is asynchronous, and there
 may be more than one call outstanding. A call is called outstanding
 (from the point of view of the _Caller_), when a (final) result or
 error has not yet been received by the _Caller_.

Oberstein & Goedde Expires April 13, 2016 [Page 46]

Internet-Draft WAMP October 2015

9.2.1. CALL

 When a _Caller_ wishes to call a remote procedure, it sends a "CALL"
 message to a _Dealer_:

 [CALL, Request|id, Options|dict, Procedure|uri]

 or

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list]

 or

 [CALL, Request|id, Options|dict, Procedure|uri, Arguments|list,
 ArgumentsKw|dict]

 where

 o "Request" is a random, ephemeral ID chosen by the _Caller_ and
 used to correlate the _Dealer's_ response with the request.

 o "Options" is a dictionary that allows to provide additional call
 request details in an extensible way. This is described further
 below.

 o "Procedure" is the URI of the procedure to be called.

 o "Arguments" is a list of positional call arguments (each of
 arbitrary type). The list may be of zero length.

 o "ArgumentsKw" is a dictionary of keyword call arguments (each of
 arbitrary type). The dictionary may be empty.

 Example

 [48, 7814135, {}, "com.myapp.ping"]

 Example

 [48, 7814135, {}, "com.myapp.echo", ["Hello, world!"]]

 Example

 [48, 7814135, {}, "com.myapp.add2", [23, 7]]

 Example

Oberstein & Goedde Expires April 13, 2016 [Page 47]

Internet-Draft WAMP October 2015

 [48, 7814135, {}, "com.myapp.user.new", ["johnny"],
 {"firstname": "John", "surname": "Doe"}]

9.2.2. INVOCATION

 If the _Dealer_ is able to fulfill (mediate) the call and it allows
 the call, it sends a "INVOCATION" message to the respective _Callee_
 implementing the procedure:

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict]

 or

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict, CALL.Arguments|list]

 or

 [INVOCATION, Request|id, REGISTERED.Registration|id,
 Details|dict, CALL.Arguments|list, CALL.ArgumentsKw|dict]

 where

 o "Request" is a random, ephemeral ID chosen by the _Dealer_ and
 used to correlate the _Callee's_ response with the request.

 o "REGISTERED.Registration" is the registration ID under which the
 procedure was registered at the _Dealer_.

 o "Details" is a dictionary that allows to provide additional
 invocation request details in an extensible way. This is
 described further below.

 o "CALL.Arguments" is the original list of positional call arguments
 as provided by the _Caller_.

 o "CALL.ArgumentsKw" is the original dictionary of keyword call
 arguments as provided by the _Caller_.

 Example

 [68, 6131533, 9823526, {}]

 Example

 [68, 6131533, 9823527, {}, ["Hello, world!"]]

Oberstein & Goedde Expires April 13, 2016 [Page 48]

Internet-Draft WAMP October 2015

 Example

 [68, 6131533, 9823528, {}, [23, 7]]

 Example

 [68, 6131533, 9823529, {}, ["johnny"], {"firstname": "John",
 "surname": "Doe"}]

9.2.3. YIELD

 If the _Callee_ is able to successfully process and finish the
 execution of the call, it answers by sending a "YIELD" message to the
 Dealer:

 [YIELD, INVOCATION.Request|id, Options|dict]

 or

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list]

 or

 [YIELD, INVOCATION.Request|id, Options|dict, Arguments|list,
 ArgumentsKw|dict]

 where

 o "INVOCATION.Request" is the ID from the original invocation
 request.

 o "Options"is a dictionary that allows to provide additional
 options.

 o "Arguments" is a list of positional result elements (each of
 arbitrary type). The list may be of zero length.

 o "ArgumentsKw" is a dictionary of keyword result elements (each of
 arbitrary type). The dictionary may be empty.

 Example

 [70, 6131533, {}]

 Example

 [70, 6131533, {}, ["Hello, world!"]]

Oberstein & Goedde Expires April 13, 2016 [Page 49]

Internet-Draft WAMP October 2015

 Example

 [70, 6131533, {}, [30]]

 Example

 [70, 6131533, {}, [], {"userid": 123, "karma": 10}]

9.2.4. RESULT

 The _Dealer_ will then send a "RESULT" message to the original
 Caller:

 [RESULT, CALL.Request|id, Details|dict]

 or

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list]

 or

 [RESULT, CALL.Request|id, Details|dict, YIELD.Arguments|list,
 YIELD.ArgumentsKw|dict]

 where

 o "CALL.Request" is the ID from the original call request.

 o "Details" is a dictionary of additional details.

 o "YIELD.Arguments" is the original list of positional result
 elements as returned by the _Callee_.

 o "YIELD.ArgumentsKw" is the original dictionary of keyword result
 elements as returned by the _Callee_.

 Example

 [50, 7814135, {}]

 Example

 [50, 7814135, {}, ["Hello, world!"]]

 Example

 [50, 7814135, {}, [30]]

Oberstein & Goedde Expires April 13, 2016 [Page 50]

Internet-Draft WAMP October 2015

 Example

 [50, 7814135, {}, [], {"userid": 123, "karma": 10}]

9.2.5. Invocation ERROR

 If the _Callee_ is unable to process or finish the execution of the
 call, or the application code implementing the procedure raises an
 exception or otherwise runs into an error, the _Callee_ sends an
 "ERROR" message to the _Dealer_:

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict,
 Error|uri]

 or

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict,
 Error|uri, Arguments|list]

 or

 [ERROR, INVOCATION, INVOCATION.Request|id, Details|dict,
 Error|uri, Arguments|list, ArgumentsKw|dict]

 where

 o "INVOCATION.Request" is the ID from the original "INVOCATION"
 request previously sent by the _Dealer_ to the _Callee_.

 o "Details" is a dictionary with additional error details.

 o "Error" is an URI that identifies the error of why the request
 could not be fulfilled.

 o "Arguments" is a list containing arbitrary, application defined,
 positional error information. This will be forwarded by the
 Dealer to the _Caller_ that initiated the call.

 o "ArgumentsKw" is a dictionary containing arbitrary, application
 defined, keyword-based error information. This will be forwarded
 by the _Dealer_ to the _Caller_ that initiated the call.

 Example

 [8, 68, 6131533, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

Oberstein & Goedde Expires April 13, 2016 [Page 51]

Internet-Draft WAMP October 2015

9.2.6. Call ERROR

 The _Dealer_ will then send a "ERROR" message to the original
 Caller:

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

 or

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri,
 Arguments|list]

 or

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri,
 Arguments|list, ArgumentsKw|dict]

 where

 o "CALL.Request" is the ID from the original "CALL" request sent by
 the _Caller_ to the _Dealer_.

 o "Details" is a dictionary with additional error details.

 o "Error" is an URI identifying the type of error as returned by the
 Callee to the _Dealer_.

 o "Arguments" is a list containing the original error payload list
 as returned by the _Callee_ to the _Dealer_.

 o "ArgumentsKw" is a dictionary containing the original error
 payload dictionary as returned by the _Callee_ to the _Dealer_

 Example

 [8, 48, 7814135, {}, "com.myapp.error.object_write_protected",
 ["Object is write protected."], {"severity": 3}]

 If the original call already failed at the _Dealer_ *before* the call
 would have been forwarded to any _Callee_, the _Dealer_ will send an
 "ERROR" message to the _Caller_:

 [ERROR, CALL, CALL.Request|id, Details|dict, Error|uri]

 Example

 [8, 48, 7814135, {}, "wamp.error.no_such_procedure"]

Oberstein & Goedde Expires April 13, 2016 [Page 52]

Internet-Draft WAMP October 2015

10. Predefined URIs

 WAMP pre-defines the following error URIs for the basic and for the
 advanced profile. WAMP peers MUST use only the defined error
 messages.

10.1. Basic Profile

10.1.1. Incorrect URIs

 When a _Peer_ provides an incorrect URI for any URI-based attribute
 of a WAMP message (e.g. realm, topic), then the other _Peer_ MUST
 respond with an "ERROR" message and give the following _Error URI_:

 wamp.error.invalid_uri

10.1.2. Interaction

 Peer provided an incorrect URI for any URI-based attribute of WAMP
 message, such as realm, topic or procedure

 wamp.error.invalid_uri

 A _Dealer_ could not perform a call, since no procedure is currently
 registered under the given URI.

 wamp.error.no_such_procedure

 A procedure could not be registered, since a procedure with the given
 URI is already registered.

 wamp.error.procedure_already_exists

 A _Dealer_ could not perform an unregister, since the given
 registration is not active.

 wamp.error.no_such_registration

 A _Broker_ could not perform an unsubscribe, since the given
 subscription is not active.

 wamp.error.no_such_subscription

 A call failed since the given argument types or values are not
 acceptable to the called procedure. In this case the _Callee_ may
 throw this error. Alternatively a _Router_ may throw this error if
 it performed _payload validation_ of a call, call result, call error
 or publish, and the payload did not conform to the requirements.

Oberstein & Goedde Expires April 13, 2016 [Page 53]

Internet-Draft WAMP October 2015

 wamp.error.invalid_argument

10.1.3. Session Close

 The _Peer_ is shutting down completely - used as a "GOODBYE" (or
 "ABORT") reason.

 wamp.error.system_shutdown

 The _Peer_ want to leave the realm - used as a "GOODBYE" reason.

 wamp.error.close_realm

 A _Peer_ acknowledges ending of a session - used as a "GOODBYE" reply
 reason.

 wamp.error.goodbye_and_out

10.1.4. Authorization

 A join, call, register, publish or subscribe failed, since the _Peer_
 is not authorized to perform the operation.

 wamp.error.not_authorized

 A _Dealer_ or _Broker_ could not determine if the _Peer_ is
 authorized to perform a join, call, register, publish or subscribe,
 since the authorization operation _itself_ failed. E.g. a custom
 authorizer did run into an error.

 wamp.error.authorization_failed

 Peer wanted to join a non-existing realm (and the _Router_ did not
 allow to auto-create the realm).

 wamp.error.no_such_realm

 A _Peer_ was to be authenticated under a Role that does not (or no
 longer) exists on the Router. For example, the _Peer_ was
 successfully authenticated, but the Role configured does not exists -
 hence there is some misconfiguration in the Router.

 wamp.error.no_such_role

Oberstein & Goedde Expires April 13, 2016 [Page 54]

Internet-Draft WAMP October 2015

10.2. Advanced Profile

 uri_Dealer_ or _Callee_ canceled a call previously issued

 wamp.error.canceled

 A _Peer_ requested an interaction with an option that was disallowed
 by the _Router_

 wamp.error.option_not_allowed

 A _Dealer_ could not perform a call, since a procedure with the given
 URI is registered, but _Callee Black- and Whitelisting_ and/or
 Caller Exclusion lead to the exclusion of (any) _Callee_ providing
 the procedure.

 wamp.error.no_eligible_callee

 A _Router_ rejected client request to disclose its identity

 wamp.error.option_disallowed.disclose_me

 A _Router_ encountered a network failure

 wamp.error.network_failure

11. Ordering Guarantees

 All WAMP implementations, in particular _Routers_ MUST support the
 following ordering guarantees.

 A WAMP Advanced Profile may provide applications options to relax
 ordering guarantees, in particular with distributed calls.

11.1. Publish & Subscribe Ordering

 Regarding *Publish & Subscribe*, the ordering guarantees are as
 follows:

 If _Subscriber A_ is subscribed to both *Topic 1* and *Topic 2*, and
 Publisher B first publishes an *Event 1* to *Topic 1* and then an
 Event 2 to *Topic 2*, then _Subscriber A_ will first receive *Event
 1* and then *Event 2*. This also holds if *Topic 1* and *Topic 2* are
 identical.

 In other words, WAMP guarantees ordering of events between any given
 pair of _Publisher_ and _Subscriber_.

Oberstein & Goedde Expires April 13, 2016 [Page 55]

Internet-Draft WAMP October 2015

 Further, if _Subscriber A_ subscribes to *Topic 1*, the "SUBSCRIBED"
 message will be sent by the _Broker_ to _Subscriber A_ before any
 "EVENT" message for *Topic 1*.

 There is no guarantee regarding the order of return for multiple
 subsequent subscribe requests. A subscribe request might require the
 Broker to do a time-consuming lookup in some database, whereas
 another subscribe request second might be permissible immediately.

11.2. Remote Procedure Call Ordering

 Regarding *Remote Procedure Calls*, the ordering guarantees are as
 follows:

 If _Callee A_ has registered endpoints for both *Procedure 1* and
 Procedure 2, and _Caller B_ first issues a *Call 1* to *Procedure
 1* and then a *Call 2* to *Procedure 2*, and both calls are routed to
 Callee A, then _Callee A_ will first receive an invocation
 corresponding to *Call 1* and then *Call 2*. This also holds if
 Procedure 1 and *Procedure 2* are identical.

 In other words, WAMP guarantees ordering of invocations between any
 given _pair_ of _Caller_ and _Callee_.

 There are no guarantees on the order of call results and errors in
 relation to _different_ calls, since the execution of calls upon
 different invocations of endpoints in _Callees_ are running
 independently. A first call might require an expensive, long-running
 computation, whereas a second, subsequent call might finish
 immediately.

 Further, if _Callee A_ registers for *Procedure 1*, the "REGISTERED"
 message will be sent by _Dealer_ to _Callee A_ before any
 "INVOCATION" message for *Procedure 1*.

 There is no guarantee regarding the order of return for multiple
 subsequent register requests. A register request might require the
 Broker to do a time-consuming lookup in some database, whereas
 another register request second might be permissible immediately.

12. Security Model

 The following discusses the security model for the Basic Profile.
 Any changes or extensions to this for the Advanced Profile are
 discussed further on as part of the Advanced Profile definition.

Oberstein & Goedde Expires April 13, 2016 [Page 56]

Internet-Draft WAMP October 2015

12.1. Transport Encryption and Integrity

 WAMP transports may provide (optional) transport-level encryption and
 integrity verification. If so, encryption and integrity is point-to-
 point: between a _Client_ and the _Router_ it is connected to.

 Transport-level encryption and integrity is solely at the transport-
 level and transparent to WAMP. WAMP itself deliberately does not
 specify any kind of transport-level encryption.

 Implementations that offer TCP based transport such as WAMP-over-
 WebSocket or WAMP-over-RawSocket SHOULD implement Transport Layer
 Security (TLS).

 WAMP deployments are encouraged to stick to a TLS-only policy with
 the TLS code and setup being hardened.

 Further, when a _Client_ connects to a _Router_ over a local-only
 transport such as Unix domain sockets, the integrity of the data
 transmitted is implicit (the OS kernel is trusted), and the privacy
 of the data transmitted can be assured using file system permissions
 (no one can tap a Unix domain socket without appropriate permissions
 or being root).

12.2. Router Authentication

 To authenticate _Routers_ to _Clients_, deployments MUST run TLS and
 Clients MUST verify the _Router_ server certificate presented.
 WAMP itself does not provide mechanisms to authenticate a _Router_
 (only a _Client_).

 The verification of the _Router_ server certificate can happen

 1. against a certificate trust database that comes with the
 Clients operating system

 2. against an issuing certificate/key hard-wired into the _Client_

 3. by using new mechanisms like DNS-based Authentication of Named
 Enitities (DNSSEC)/TLSA

 Further, when a _Client_ connects to a _Router_ over a local-only
 transport such as Unix domain sockets, the file system permissions
 can be used to create implicit trust. E.g. if only the OS user under
 which the _Router_ runs has the permission to create a Unix domain
 socket under a specific path, _Clients_ connecting to that path can
 trust in the router authenticity.

Oberstein & Goedde Expires April 13, 2016 [Page 57]

Internet-Draft WAMP October 2015

12.3. Client Authentication

 Authentication of a _Client_ to a _Router_ at the WAMP level is not
 part of the basic profile.

 When running over TLS, a _Router_ MAY authenticate a _Client_ at the
 transport level by doing a _client certificate based authentication_.

12.3.1. Routers are trusted

 Routers are _trusted_ by _Clients_.

 In particular, _Routers_ can read (and modify) any application
 payload transmitted in events, calls, call results and call errors
 (the "Arguments" or "ArgumentsKw" message fields).

 Hence, _Routers_ do not provide confidentiality with respect to
 application payload, and also do not provide authenticity or
 integrity of application payloads that could be verified by a
 receiving _Client_.

 Routers need to read the application payloads in cases of automatic
 conversion between different serialization formats.

 Further, _Routers_ are trusted to *actually perform* routing as
 specified. E.g. a _Client_ that publishes an event has to trust a
 Router that the event is actually dispatched to all (eligible)
 Subscribers by the _Router_.

 A rogue _Router_ might deny normal routing operation without a
 Client taking notice.

13. Advanced Profile

 While implementations MUST implement the subset of the Basic Profile
 necessary for the particular set of WAMP roles they provide, they MAY
 implement any subset of features from the Advanced Profile.
 Implementers SHOULD implement the maximum of features possible
 considering the aims of an implementation.

 Note: Features listed here may be experimental or underspecced and
 yet unimplemented in any implementation. This is part of the
 specification is very much a work in progress. An approximate
 status of each feature is given at the beginning of the feature
 section.

Oberstein & Goedde Expires April 13, 2016 [Page 58]

Internet-Draft WAMP October 2015

13.1. Messages

 The Advanced Profile defines the following additional messages which
 are explained in detail in separate sections.

13.1.1. Message Definitions

 The following 4 additional message types MAY be used in the Advanced
 Profile.

13.1.1.1. CHALLENGE

 The "CHALLENGE" message is used with certain Authentication Methods.
 During authenticated session establishment, a *Router* sends a
 challenge message.

 [CHALLENGE, AuthMethod|string, Extra|dict]

13.1.1.2. AUTHENTICATE

 The "AUTHENTICATE" message is used with certain Authentication
 Methods. A *Client* having received a challenge is expected to
 respond by sending a signature or token.

 [AUTHENTICATE, Signature|string, Extra|dict]

13.1.1.3. CANCEL

 The "CANCEL" message is used with the Call Canceling advanced
 feature. A _Caller_ can cancel and issued call actively by sending a
 cancel message to the _Dealer_.

 [CANCEL, CALL.Request|id, Options|dict]

13.1.1.4. INTERRUPT

 The "INTERRUPT" message is used with the Call Canceling advanced
 feature. Upon receiving a cancel for a pending call, a _Dealer_ will
 issue an interrupt to the _Callee_.

 [INTERRUPT, INVOCATION.Request|id, Options|dict]

13.1.2. Message Codes and Direction

 The following table list the message type code for *the OPTIONAL
 messages* defined in this part of the document and their direction
 between peer roles.

Oberstein & Goedde Expires April 13, 2016 [Page 59]

Internet-Draft WAMP October 2015

 +-----+----------------+-----+-----+------+------+-------+--------+
 | Cod | Message | Pub | Brk | Subs | Calr | Dealr | Callee |
 +-----+----------------+-----+-----+------+------+-------+--------+
 | 4 | "CHALLENGE" | Rx | Tx | Rx | Rx | Tx | Rx |
 | 5 | "AUTHENTICATE" | Tx | Rx | Tx | Tx | Rx | Tx |
 | 49 | "CANCEL" | | | | Tx | Rx | |
 | 69 | "INTERRUPT" | | | | | Tx | Rx |
 +-----+----------------+-----+-----+------+------+-------+--------+

 "Tx" ("Rx") means the message is sent (received) by a peer of the
 respective role.

13.2. Features

 Support for advanced features must be announced by the peers which
 implement them. The following is a complete list of advanced
 features currently defined or proposed.

 +--------+--+
 | Status | Description |
 +--------+--+
sketch	There is a rough description of an itch to scratch, but
	the feature use case isn't clear, and there is no
	protocol proposal at all.
alpha	The feature use case is still fuzzy and/or the feature
	definition is unclear, but there is at least a protocol
	level proposal.
beta	The feature use case is clearly defined and the feature
	definition in the spec is sufficient to write a
	prototype implementation. The feature definition and
	details may still be incomplete and change.
stable	The feature definition in the spec is complete and
	stable and the feature use case is field proven in real
	applications. There are multiple, interoperatble
	implementations.
 +--------+--+

13.2.1. RPC Features

Oberstein & Goedde Expires April 13, 2016 [Page 60]

Internet-Draft WAMP October 2015

 +----------------------------+--------+---+---+---+----+---+----+
 | Feature | Status | P | B | S | Cr | D | Ce |
 +----------------------------+--------+---+---+---+----+---+----+
progressive_call_results	beta				X	X	X
progressive_calls	sketch				X	X	X
call_timeout	alpha				X	X	X
call_canceling	alpha				X	X	X
caller_identification	alpha				X	X	X
call_trustlevels	alpha					X	X
registration_meta_api	beta					X	
pattern_based_registration	beta					X	X
shared_registration	beta					X	X
sharded_registration	alpha					X	X
registration_revocation	alpha					X	X
procedure_reflection	sketch					X	
 +----------------------------+--------+---+---+---+----+---+----+

13.2.2. PubSub Features

 +-------------------------------+--------+---+---+---+----+---+----+
 | Feature | Status | P | B | S | Cr | D | Ce |
 +-------------------------------+--------+---+---+---+----+---+----+
subscriber_blackwhite_listing	stable	X	X				
publisher_exclusion	stable	X	X				
publisher_identification	alpha	X	X	X			
publication_trustlevels	alpha		X	X			
session_meta_api	beta		X				
subscription_meta_api	beta		X				
pattern_based_subscription	beta		X	X			
sharded_subscription	alpha		X	X			
event_history	alpha		X	X			
topic_reflection	sketch		X				
 +-------------------------------+--------+---+---+---+----+---+----+

13.2.3. Other Advanced Features

 +-----------------------------------+--------+
 | Feature | Status |
 +-----------------------------------+--------+
challenge-response authentication	beta
cookie authentication	beta
ticket authentication	beta
rawsocket transport	stable
batched WS transport	sketch
longpoll transport	beta
session meta api	beta
 +-----------------------------------+--------+

Oberstein & Goedde Expires April 13, 2016 [Page 61]

Internet-Draft WAMP October 2015

13.3. Advanced RPC Features

13.3.1. Progressive Call Results

13.3.1.1. Feature Definition

 A procedure implemented by a _Callee_ and registered at a _Dealer_
 may produce progressive results. Progressive results can e.g. be
 used to return partial results for long-running operations, or to
 chunk the transmission of larger results sets.

 The message flow for progressive results involves:

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | -----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------- |
 | | |
 | | YIELD (progress)|
 | | <----------------
 | | |
 | RESULT (progress)| |
 | <----------------- |
 | | |
 | | |
 | ... | ... |
 | | |
 | | YIELD or ERROR |
 | | <----------------
 | | |
 | RESULT or ERROR | |
 | <----------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 A _Caller_ indicates its willingness to receive progressive results
 by setting

Oberstein & Goedde Expires April 13, 2016 [Page 62]

Internet-Draft WAMP October 2015

 CALL.Options.receive_progress|bool := true

 Example. Caller-to-Dealer "CALL"

 [
 48,
 77133,
 {
 "receive_progress": true
 },
 "com.myapp.compute_revenue",
 [2010, 2011, 2012]
]

 If the _Callee_ supports progressive calls, the _Dealer_ will forward
 the _Caller's_ willingness to receive progressive results by setting

 INVOCATION.Options.receive_progress|bool := true

 Example. Dealer-to-Callee "INVOCATION"

 [
 68,
 87683,
 324,
 {
 "receive_progress": true
 },
 [2010, 2011, 2012]
]

 An endpoint implementing the procedure produces progressive results
 by sending "YIELD" messages to the _Dealer_ with

 YIELD.Options.progress|bool := true

 Example. Callee-to-Dealer progressive "YIELDs"

 [
 70,
 87683,
 {
 "progress": true
 },
 ["Y2010", 120]
]

Oberstein & Goedde Expires April 13, 2016 [Page 63]

Internet-Draft WAMP October 2015

 [
 70,
 87683,
 {
 "progress": true
 },
 ["Y2011", 205]
]

 Upon receiving an "YIELD" message from a _Callee_ with
 "YIELD.Options.progress == true" (for a call that is still ongoing),
 the _Dealer_ will *immediately* send a "RESULT" message to the
 original _Caller_ with

 RESULT.Details.progress|bool := true

 Example. Dealer-to-Caller progressive "RESULTs"

 [
 50,
 77133,
 {
 "progress": true
 },
 ["Y2010", 120]
]

 [
 50,
 77133,
 {
 "progress": true
 },
 ["Y2011", 205]
]

 ...

 An invocation MUST _always_ end in either a _normal_ "RESULT" or
 "ERROR" message being sent by the _Callee_ and received by the
 Dealer.

 Example. Callee-to-Dealer final "YIELD"

Oberstein & Goedde Expires April 13, 2016 [Page 64]

Internet-Draft WAMP October 2015

 [
 70,
 87683,
 {},
 ["Total", 490]
]

 Example. Callee-to-Dealer final "ERROR"

 [
 4,
 87683,
 {},
 "com.myapp.invalid_revenue_year",
 [1830]
]

 A call MUST _always_ end in either a _normal_ "RESULT" or "ERROR"
 message being sent by the _Dealer_ and received by the _Caller_.

 Example. Dealer-to-Caller final "RESULT"

 [
 50,
 77133,
 {},
 ["Total", 490]
]

 Example. Dealer-to-Caller final "ERROR"

 [
 4,
 77133,
 {},
 "com.myapp.invalid_revenue_year",
 [1830]
]

 In other words: "YIELD" with "YIELD.Options.progress == true" and
 "RESULT" with "RESULT.Details.progress == true" messages may only be
 sent _during_ a call or invocation is still ongoing.

 The final "YIELD" and final "RESULT" may also be empty, e.g. when all
 actual results have already been transmitted in progressive result
 messages.

 Example. Callee-to-Dealer "YIELDs"

Oberstein & Goedde Expires April 13, 2016 [Page 65]

Internet-Draft WAMP October 2015

 [70, 87683, {"progress": true}, ["Y2010", 120]]
 [70, 87683, {"progress": true}, ["Y2011", 205]]
 ...
 [70, 87683, {"progress": true}, ["Total", 490]]
 [70, 87683, {}]

 Example. Dealer-to-Caller "RESULTs"

 [50, 77133, {"progress": true}, ["Y2010", 120]]
 [50, 77133, {"progress": true}, ["Y2011", 205]]
 ...
 [50, 77133, {"progress": true}, ["Total", 490]]
 [50, 77133, {}]

 The progressive "YIELD" and progressive "RESULT" may also be empty,
 e.g. when those messages are only used to signal that the procedure
 is still running and working, and the actual result is completely
 delivered in the final "YIELD" and "RESULT":

 Example. Callee-to-Dealer "YIELDs"

 [70, 87683, {"progress": true}]
 [70, 87683, {"progress": true}]
 ...
 [70, 87683, {}, [["Y2010", 120], ["Y2011", 205], ...,
 ["Total", 490]]]

 Example. Dealer-to-Caller "RESULTs"

 [50, 77133, {"progress": true}]
 [50, 77133, {"progress": true}]
 ...
 [50, 77133, {}, [["Y2010", 120], ["Y2011", 205], ...,
 ["Total", 490]]]

 Note that intermediate, progressive results and/or the final
 result MAY have different structure. The WAMP peer implementation
 is responsible for mapping everything into a form suitable for
 consumption in the host language.

 Example. Callee-to-Dealer "YIELDs"

 [70, 87683, {"progress": true}, ["partial 1", 10]]
 [70, 87683, {"progress": true}, [], {"foo": 10,
 "bar": "partial 1"}]
 ...
 [70, 87683, {}, [1, 2, 3], {"moo": "hello"}]

Oberstein & Goedde Expires April 13, 2016 [Page 66]

Internet-Draft WAMP October 2015

 Example. Dealer-to-Caller "RESULTs"

 [50, 77133, {"progress": true}, ["partial 1", 10]]
 [50, 77133, {"progress": true}, [], {"foo": 10,
 "bar": "partial 1"}]
 ...
 [50, 77133, {}, [1, 2, 3], {"moo": "hello"}]

 Even if a _Caller_ has indicated it's expectation to receive
 progressive results by setting "CALL.Options.receive_progress|bool :=
 true", a _Callee_ is *not required* to produce progressive results.
 "CALL.Options.receive_progress" and
 "INVOCATION.Options.receive_progress" are simply indications that the
 Caller is prepared to process progressive results, should there be
 any produced. In other words, _Callees_ are free to ignore such
 "receive_progress" hints at any time.

13.3.1.2. Feature Announcement

 Support for this advanced feature MUST be announced by _Callers_
 ("role := "caller""), _Callees_ ("role := "callee"") and _Dealers_
 ("role := "dealer"") via

 HELLO.Details.roles.<role>.features.
 progressive_call_results|bool := true

13.3.2. Progressive Calls

13.3.2.1. Feature Definition

 A procedure implemented by a _Callee_ and registered at a _Dealer_
 may receive a progressive call. Progressive results can e.g. be used
 to start processing initial data where a larger data set may not yet
 have been generated or received by the _Caller_.

 See this GitHub issue for more discussion: <https://github.com/wamp-
proto/wamp-proto/issues/167>

13.3.3. Call Timeouts

13.3.3.1. Feature Definition

 A _Caller_ might want to issue a call providing a _timeout_ for the
 call to finish.

 A _timeout_ allows to *automatically* cancel a call after a specified
 time either at the _Callee_ or at the _Dealer_.

https://github.com/wamp-proto/wamp-proto/issues/167
https://github.com/wamp-proto/wamp-proto/issues/167

Oberstein & Goedde Expires April 13, 2016 [Page 67]

Internet-Draft WAMP October 2015

 A _Caller_ specifies a timeout by providing

 CALL.Options.timeout|integer

 in ms. A timeout value of "0" deactivates automatic call timeout.
 This is also the default value.

 The timeout option is a companion to, but slightly different from the
 "CANCEL" and "INTERRUPT" messages that allow a _Caller_ and _Dealer_
 to *actively* cancel a call or invocation.

 In fact, a timeout timer might run at three places:

 o _Caller_

 o _Dealer_

 o _Callee_

13.3.3.2. Feature Announcement

 Support for this feature MUST be announced by _Callers_ ("role :=
 "caller""), _Callees_ ("role := "callee"") and _Dealers_ ("role :=
 "dealer"") via

 HELLO.Details.roles.<role>.features.call_timeout|bool := true

13.3.4. Call Canceling

13.3.4.1. Feature Definition

 A _Caller_ might want to actively cancel a call that was issued, but
 not has yet returned. An example where this is useful could be a
 user triggering a long running operation and later changing his mind
 or no longer willing to wait.

 The message flow between _Callers_, a _Dealer_ and _Callees_ for
 canceling remote procedure calls involves the following messages:

 o "CANCEL"

 o "INTERRUPT"

 A call may be cancelled at the _Callee_

Oberstein & Goedde Expires April 13, 2016 [Page 68]

Internet-Draft WAMP October 2015

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | CANCEL | |
 | ----------------> |
 | | |
 | | INTERRUPT |
 | | ---------------->
 | | |
 | | ERROR |
 | | <----------------
 | | |
 | ERROR | |
 | <---------------- |
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 A call may be cancelled at the _Dealer_

Oberstein & Goedde Expires April 13, 2016 [Page 69]

Internet-Draft WAMP October 2015

 ,------. ,------. ,------.
 |Caller| |Dealer| |Callee|
 `--+---' `--+---' `--+---'
 | CALL | |
 | ----------------> |
 | | |
 | | INVOCATION |
 | | ---------------->
 | | |
 | CANCEL | |
 | ----------------> |
 | | |
 | ERROR | |
 | <---------------- |
 | | |
 | | INTERRUPT |
 | | ---------------->
 | | |
 | | ERROR |
 | | <----------------
 ,--+---. ,--+---. ,--+---.
 |Caller| |Dealer| |Callee|
 `------' `------' `------'

 A _Caller_ cancels a remote procedure call initiated (but not yet
 finished) by sending a "CANCEL" message to the _Dealer_:

 [CANCEL, CALL.Request|id, Options|dict]

 A _Dealer_ cancels an invocation of an endpoint initiated (but not
 yet finished) by sending a "INTERRUPT" message to the _Callee_:

 [INTERRUPT, INVOCATION.Request|id, Options|dict]

 Options:

 CANCEL.Options.mode|string == "skip" | "kill" | "killnowait"

13.3.4.2. Feature Announcement

 Support for this feature MUST be announced by _Callers_ ("role :=
 "caller""), _Callees_ ("role := "callee"") and _Dealers_ ("role :=
 "dealer"") via

 HELLO.Details.roles.<role>.features.call_canceling|bool := true

Oberstein & Goedde Expires April 13, 2016 [Page 70]

Internet-Draft WAMP October 2015

13.3.5. Caller Identification

13.3.5.1. Feature Definition

 A _Caller_ MAY *request* the disclosure of its identity (its WAMP
 session ID) to endpoints of a routed call via

 CALL.Options.disclose_me|bool := true

 Example

 [48, 7814135, {"disclose_me": true}, "com.myapp.echo",
 ["Hello, world!"]]

 If above call is issued by a _Caller_ with WAMP session ID "3335656",
 the _Dealer_ sends an "INVOCATION" message to _Callee_ with the
 Caller's WAMP session ID in "INVOCATION.Details.caller":

 Example

 [68, 6131533, 9823526, {"caller": 3335656}, ["Hello, world!"]]

 Note that a _Dealer_ MAY disclose the identity of a _Caller_ even
 without the _Caller_ having explicitly requested to do so when the
 Dealer configuration (for the called procedure) is setup to do so.

 A _Dealer_ MAY deny a _Caller's_ request to disclose its identity:

 Example

 [8, 7814135, "wamp.error.disclose_me.not_allowed"]

 A _Callee_ MAY *request* the disclosure of caller identity via

 REGISTER.Options.disclose_caller|bool := true

 Example

 [64, 927639114088448, {"disclose_caller":true},
 "com.maypp.add2"]

 With the above registration, the registered procedure is called with
 the caller's sessionID as part of the call details object.

Oberstein & Goedde Expires April 13, 2016 [Page 71]

Internet-Draft WAMP October 2015

13.3.5.2. Feature Announcement

 Support for this feature MUST be announced by _Callers_ ("role :=
 "caller""), _Callees_ ("role := "callee"") and _Dealers_ ("role :=
 "dealer"") via

 HELLO.Details.roles.<role>.features.
 caller_identification|bool := true

13.3.6. Call Trust Levels

13.3.6.1. Feature Defintion

 A _Dealer_ may be configured to automatically assign _trust levels_
 to calls issued by _Callers_ according to the _Dealer_ configuration
 on a per-procedure basis and/or depending on the application defined
 role of the (authenticated) _Caller_.

 A _Dealer_ supporting trust level will provide

 INVOCATION.Details.trustlevel|integer

 in an "INVOCATION" message sent to a _Callee_. The trustlevel "0"
 means lowest trust, and higher integers represent (application-
 defined) higher levels of trust.

 Example

 [68, 6131533, 9823526, {"trustlevel": 2}, ["Hello, world!"]]

 In above event, the _Dealer_ has (by configuration and/or other
 information) deemed the call (and hence the invocation) to be of
 trustlevel "2".

13.3.6.2. Feature Announcement

 Support for this feature MUST be announced by _Callees_ ("role :=
 "callee"") and _Dealers_ ("role := "dealer"") via

 HELLO.Details.roles.<role>.features.call_trustlevels|bool := true

13.3.7. Registration Meta API

13.3.7.1. Feature Definition

Oberstein & Goedde Expires April 13, 2016 [Page 72]

Internet-Draft WAMP October 2015

13.3.7.1.1. Introduction

 Registration Meta Events are fired when registrations are first
 created, when _Callees_ are attached (removed) to (from) a
 registration, and when registrations are finally destroyed.

 Furthermore, WAMP allows actively retrieving information about
 registrations via *Registration Meta Procedures*.

 Meta-events are created by the router itself. This means that the
 events as well as the data received when calling a meta-procedure can
 be accorded the same trust level as the router.

 Note that an implementation that only supports a _Broker_ or
 Dealer role, not both at the same time, essentially cannot offer
 the *Registration Meta API*, as it requires both roles to support
 this feature.

13.3.7.1.2. Registration Meta Events

 A client can subscribe to the following registration meta-events,
 which cover the lifecycle of a registration:

 o "wamp.registration.on_create": Fired when a registration is
 created through a registration request for an URI which was
 previously without a registration.

 o "wamp.registration.on_register": Fired when a _Callee_ session is
 added to a registration.

 o "wamp.registration.on_unregister": Fired when a _Callee_ session
 is removed from a registration.

 o "wamp.registration.on_delete": Fired when a registration is
 deleted after the last _Callee_ session attached to it has been
 removed.

 A "wamp.registration.on_register" event MUST be fired subsequent to a
 "wamp.registration.on_create" event, since the first registration
 results in both the creation of the registration and the addition of
 a session.

 Similarly, the "wamp.registration.on_delete" event MUST be preceded
 by a "wamp.registration.on_unregister" event.

 Registration Meta Events MUST be dispatched by the router to the
 same realm as the WAMP session which triggered the event.

Oberstein & Goedde Expires April 13, 2016 [Page 73]

Internet-Draft WAMP October 2015

13.3.7.1.2.1. wamp.registration.on_create

 Fired when a registration is created through a registration request
 for an URI which was previously without a registration.

 Event Arguments

 o "session|id": The session ID performing the registration request.

 o "RegistrationDetails|dict": Information on the created
 registration.

 Object Schemas

 RegistrationDetails :=
 {
 "id": registration|id,
 "created": time_created|iso_8601_string,
 "uri": procedure|uri,
 "match": match_policy|string,
 "invoke": invocation_policy|string
 }

 See Pattern-based Registrations [2] for a description of
 "match_policy".

 NOTE: invocation_policy IS NOT YET DESCRIBED IN THE ADVANCED SPEC

13.3.7.1.2.2. wamp.registration.on_register

 Fired when a session is added to a registration.

 Event Arguments

 o "session|id": The ID of the session being added to a registration.

 o "registration|id": The ID of the registration to which a session
 is being added.

13.3.7.1.2.3. wamp.registration.on_unregister

 Fired when a session is removed from a subscription.

 Event Arguments

 o "session|id": The ID of the session being removed from a
 registration.

Oberstein & Goedde Expires April 13, 2016 [Page 74]

Internet-Draft WAMP October 2015

 o "registration|id": The ID of the registration from which a session
 is being removed.

13.3.7.1.2.4. wamp.registration.on_delete

 Fired when a registration is deleted after the last session attached
 to it has been removed.

 Event Arguments

 o "session|id": The ID of the last session being removed from a
 registration.

 o "registration|id": The ID of the registration being deleted.

13.3.7.1.3. Registration Meta-Procedures

 A client can actively retrieve information about registrations via
 the following meta-procedures:

 o "wamp.registration.list": Retrieves registration IDs listed
 according to match policies.

 o "wamp.registration.lookup": Obtains the registration (if any)
 managing a procedure, according to some match policy.

 o "wamp.registration.match": Obtains the registration best matching
 a given procedure URI.

 o "wamp.registration.get": Retrieves information on a particular
 registration.

 o "wamp.registration.list_callees": Retrieves a list of session IDs
 for sessions currently attached to the registration.

 o "wamp.registration.count_callees": Obtains the number of sessions
 currently attached to the registration.

13.3.7.1.3.1. wamp.registration.list

 Retrieves registration IDs listed according to match policies.

 Arguments

 o None

 Results

Oberstein & Goedde Expires April 13, 2016 [Page 75]

Internet-Draft WAMP October 2015

 o "RegistrationLists|dict": A dictionary with a list of registration
 IDs for each match policy.

 Object Schemas

 RegistrationLists :=
 {
 "exact": registration_ids|list,
 "prefix": registration_ids|list,
 "wildcard": registration_ids|list
 }

 See Pattern-based Registrations [3] for a description of match
 policies.

13.3.7.1.3.2. wamp.registration.lookup

 Obtains the registration (if any) managing a procedure, according to
 some match policy.

 Arguments

 o "procedure|uri": The procedure to lookup the registration for.

 o (Optional) "options|dict": Same options as when registering a
 procedure.

 Results

 o (Nullable) "registration|id": The ID of the registration managing
 the procedure, if found, or null.

13.3.7.1.3.3. wamp.registration.match

 Obtains the registration best matching a given procedure URI.

 Arguments

 o "procedure|uri": The procedure URI to match

 Results

 o (Nullable) "registration|id": The ID of best matching
 registration, or null.

Oberstein & Goedde Expires April 13, 2016 [Page 76]

Internet-Draft WAMP October 2015

13.3.7.1.3.4. wamp.registration.get

 Retrieves information on a particular registration.

 Arguments

 o "registration|id": The ID of the registration to retrieve.

 Results

 o "RegistrationDetails|dict": Details on the registration.

 Error URIs

 o "wamp.error.no_such_registration": No registration with the given
 ID exists on the router.

 Object Schemas

 RegistrationDetails :=
 {
 "id": registration|id,
 "created": time_created|iso_8601_string,
 "uri": procedure|uri,
 "match": match_policy|string,
 "invoke": invocation_policy|string
 }

 See Pattern-based Registrations [4] for a description of match
 policies.

 _NOTE: invocation_policy IS NOT YET DESCRIBED IN THE ADVANCED SPEC_

13.3.7.1.3.5. wamp.registration.list_callees

 Retrieves a list of session IDs for sessions currently attached to
 the registration.

 Arguments

 o "registration|id": The ID of the registration to get calles for.

 Results

 o "callee_ids|list": A list of WAMP session IDs of callees currently
 attached to the registration.

 Error URIs

Oberstein & Goedde Expires April 13, 2016 [Page 77]

Internet-Draft WAMP October 2015

 o "wamp.error.no_such_registration": No registration with the given
 ID exists on the router.

13.3.7.1.3.6. wamp.registration.count_callees

 Obtains the number of sessions currently attached to a registration.

 Arguments

 o "registration|id": The ID of the registration to get the number of
 callees for.

 Results

 o "count|int": The number of callees currently attached to a
 registration.

 Error URIs

 o "wamp.error.no_such_registration": No registration with the given
 ID exists on the router.

13.3.7.2. Feature Announcement

 Support for this feature MUST be announced by a _Dealers_ ("role :=
 "dealer"") via:

 HELLO.Details.roles.<role>.features.
 session_meta_api|bool := true

 Example

 Here is a "WELCOME" message from a _Router_ with support for both the
 Broker and _Dealer_ role, and with support for *Registration Meta
 API*:

Oberstein & Goedde Expires April 13, 2016 [Page 78]

Internet-Draft WAMP October 2015

 [
 2,
 4580268554656113,
 {
 "authid":"OL3AeppwDLXiAAPbqm9IVhnw",
 "authrole": "anonymous",
 "authmethod": "anonymous",
 "roles": {
 "broker": {
 "features": {
 }
 },
 "dealer": {
 "features": {
 "registration_meta_api": true
 }
 }
 }
 }
]

13.3.8. Pattern-based Registrations

13.3.8.1. Feature Definition

13.3.8.1.1. Introduction

 By default, _Callees_ register procedures with *exact matching
 policy*. That is a call will only be routed to a _Callee_ by the
 Dealer if the procedure called ("CALL.Procedure") _exactly_ matches
 the endpoint registered ("REGISTER.Procedure").

 A _Callee_ might want to register procedures based on a _pattern_.
 This can be useful to reduce the number of individual registrations
 to be set up or to subscribe to a open set of topics, not known
 beforehand by the _Subscriber_.

 If the _Dealer_ and the _Callee_ support *pattern-based
 registrations*, this matching can happen by

 o *prefix-matching policy*

 o *wildcard-matching policy*

Oberstein & Goedde Expires April 13, 2016 [Page 79]

Internet-Draft WAMP October 2015

13.3.8.1.2. Prefix Matching

 A _Callee_ requests *prefix-matching policy* with a registration
 request by setting

 REGISTER.Options.match|string := "prefix"

 Example

 [
 64,
 612352435,
 {
 "match": "prefix"
 },
 "com.myapp.myobject1"
]

 When a *prefix-matching policy* is in place, any call with a
 procedure that has "REGISTER.Procedure" as a _prefix_ will match the
 registration, and potentially be routed to _Callees_ on that
 registration.

 In above example, the following calls with "CALL.Procedure"

 o "com.myapp.myobject1.myprocedure1"

 o "com.myapp.myobject1-mysubobject1"

 o "com.myapp.myobject1.mysubobject1.myprocedure1"

 o "com.myapp.myobject1"

 will all apply for call routing. A call with one of the following
 "CALL.Procedure"

 o "com.myapp.myobject2"

 o "com.myapp.myobject"

 will not apply.

13.3.8.1.3. Wildcard Matching

 A _Callee_ requests *wildcard-matching policy* with a registration
 request by setting

 REGISTER.Options.match|string := "wildcard"

Oberstein & Goedde Expires April 13, 2016 [Page 80]

Internet-Draft WAMP October 2015

 Wildcard-matching allows to provide wildcards for *whole* URI
 components.

 Example

 [
 64,
 612352435,
 {
 "match": "wildcard"
 },
 "com.myapp..myprocedure1"
]

 In the above registration request, the 3rd URI component is empty,
 which signals a wildcard in that URI component position. In this
 example, calls with "CALL.Procedure" e.g.

 o "com.myapp.myobject1.myprocedure1"

 o "com.myapp.myobject2.myprocedure1"

 will all apply for call routing. Calls with "CALL.Procedure" e.g.

 o "com.myapp.myobject1.myprocedure1.mysubprocedure1"

 o "com.myapp.myobject1.myprocedure2"

 o "com.myapp2.myobject1.myprocedure1"

 will not apply for call routing.

 When a single call matches more than one of a _Callees_
 registrations, the call MAY be routed for invocation on multiple
 registrations, depending on call settings.

13.3.8.1.4. General

13.3.8.1.4.1. No set semantics

 Since each _Callee_'s' registrations "stands on it's own", there is
 no _set semantics_ implied by pattern-based registrations.

 E.g. a _Callee_ cannot register to a broad pattern, and then
 unregister from a subset of that broad pattern to form a more complex
 registration. Each registration is separate.

Oberstein & Goedde Expires April 13, 2016 [Page 81]

Internet-Draft WAMP October 2015

13.3.8.1.4.2. Calls matching multiple registrations

 The behavior when a single call matches more than one of a _Callee's_
 registrations or more than one registration in general is still being
 discussed - see <https://github.com/tavendo/WAMP/issues/182>.

13.3.8.1.4.3. Concrete procedure called

 If an endpoint was registered with a pattern-based matching policy, a
 Dealer MUST supply the original "CALL.Procedure" as provided by the
 Caller in

 INVOCATION.Details.procedure

 to the _Callee_.

 Example

 [
 68,
 6131533,
 9823527,
 {
 "procedure": "com.myapp.procedure.proc1"
 },
 ["Hello, world!"]
]

13.3.8.2. Feature Announcement

 Support for this feature MUST be announced by _Callees_ ("role :=
 "callee"") and _Dealers_ ("role := "dealer"") via

 HELLO.Details.roles.<role>.features.
 pattern_based_registration|bool := true

13.3.9. Shared Registration

 Feature status: *alpha*

13.3.9.1. Feature Definition

 As a default, only a single *Callee* may register a procedure for an
 URI.

 There are use cases where more flexibility is required. As an
 example, for an application component with a high computing load,
 several instances may run, and load balancing of calls across these

https://github.com/tavendo/WAMP/issues/182

Oberstein & Goedde Expires April 13, 2016 [Page 82]

Internet-Draft WAMP October 2015

 may be desired. As another example, in an an application a second or
 third component providing a procedure may run, which are only to be
 called in case the primary component is no longer reachable (hot
 standby).

 When shared registrations are supported, then the first *Callee* to
 register a procedure for a particular URI MAY determine that
 additional registrations for this URI are allowed, and what
 Invocation Rules to apply in case such additional registrations are
 made.

 This is done through setting

 REGISTER.Options.invoke|string := <invocation_policy>

 where is one of

 o 'single'

 o 'roundrobin'

 o 'random'

 o 'first'

 o 'last'

 If the option is not set, 'single' is applied as a default.

 With 'single', the *Dealer* MUST fail all subsequent attempts to
 register a procedure for the URI while the registration remains in
 existence.

 With the other values, the *Dealer* MUST fail all subsequent attempst
 to register a procedure for the URI where the value for this option
 does not match that of the initial registration.

13.3.9.1.1. Load Balancing

 For sets of registrations registered using either 'roundrobin' or
 'random', load balancing is performed across calls to the URI.

 For 'roundrobin', callees are picked subsequently from the list of
 registrations (ordered by the order of registration), with the
 picking looping back to the beginning of the list once the end has
 been reached.

Oberstein & Goedde Expires April 13, 2016 [Page 83]

Internet-Draft WAMP October 2015

 For 'random' a callee is picked randomly from the list of
 registrations for each call.

13.3.9.1.2. Hot Stand-By

 For sets of registrations registered using either 'first' or 'last',
 the first respectively last callee on the current list of
 registrations (ordered by the order of registration) is called.

13.3.9.2. Feature Announcement

 Support for this feature MUST be announced by _Callees_ ("role :=
 "callee"") and _Dealers_ ("role := "dealer"") via

 HELLO.Details.roles.<role>.features.
 shared_registration|bool := true

13.3.10. Sharded Registration

 Feature status: *sketch*

13.3.10.1. Feature Definition

 Sharded Registrations are intended to allow calling a procedure
 which is offered by a sharded database, by routing the call to a
 single shard.

13.3.10.2. "Partitioned" Calls

 If "CALL.Options.runmode == "partition"", then "CALL.Options.rkey"
 MUST be present.

 The call is then routed to all endpoints that were registered ..

 The call is then processed as for "All" Calls.

13.3.10.3. Feature Announcement

 Support for this feature MUST be announced by _Callers_ ("role :=
 "caller""), _Callees_ ("role := "callee"") and _Dealers_ ("role :=
 "dealer"") via

 HELLO.Details.roles.<role>.features.sharded_registration|bool := true

Oberstein & Goedde Expires April 13, 2016 [Page 84]

Internet-Draft WAMP October 2015

13.3.11. Registration Revocation

13.3.11.1. Feature Definition

 Actively and forcefully revoke a previously granted registration from
 a session.

13.3.11.2. Feature Announcement

13.3.12. Procedure Reflection

 Feature status: *sketch*

 Reflection denotes the ability of WAMP peers to examine the
 procedures, topics and errors provided or used by other peers.

 I.e. a WAMP _Caller_, _Callee_, _Subscriber_ or _Publisher_ may be
 interested in retrieving a machine readable list and description of
 WAMP procedures and topics it is authorized to access or provide in
 the context of a WAMP session with a _Dealer_ or _Broker_.

 Reflection may be useful in the following cases:

 o documentation

 o discoverability

 o generating stubs and proxies

 WAMP predefines the following procedures for performing run-time
 reflection on WAMP peers which act as _Brokers_ and/or _Dealers_.

 Predefined WAMP reflection procedures to _list_ resources by type:

 wamp.reflection.topic.list
 wamp.reflection.procedure.list
 wamp.reflection.error.list

 Predefined WAMP reflection procedures to _describe_ resources by
 type:

 wamp.reflection.topic.describe
 wamp.reflection.procedure.describe
 wamp.reflection.error.describe

 A peer that acts as a _Broker_ SHOULD announce support for the
 reflection API by sending

Oberstein & Goedde Expires April 13, 2016 [Page 85]

Internet-Draft WAMP October 2015

 HELLO.Details.roles.broker.reflection|bool := true

 A peer that acts as a _Dealer_ SHOULD announce support for the
 reflection API by sending

 HELLO.Details.roles.dealer.reflection|bool := true

 Since _Brokers_ might provide (broker) procedures and _Dealers_
 might provide (dealer) topics, both SHOULD implement the complete
 API above (even if the peer only implements one of _Broker_ or
 Dealer roles).

 Reflection

 A topic or procedure is defined for reflection:

 wamp.reflect.define

 A topic or procedure was asked to be described (reflected upon):

 wamp.reflect.describe

 Reflection

 A topic or procedure has been defined for reflection:

 wamp.reflect.on_define

 A topic or procedure has been unfined from reflection:

 wamp.reflect.on_undefine

13.4. Advanced PubSub Features

13.4.1. Subscriber Black- and Whitelisting

13.4.1.1. Introduction

 Subscriber Black- and Whitelisting is an advanced _Broker_ feature
 where a _Publisher_ is able to restrict the set of receivers of a
 published event.

 Under normal Publish & Subscriber event dispatching, a _Broker_ will
 dispatch a published event to all (authorized) _Subscribers_ other
 than the _Publisher_ itself. This set of receivers can be further
 reduced on a per-publication basis by the _Publisher_ using
 Subscriber Black- and Whitelisting.

Oberstein & Goedde Expires April 13, 2016 [Page 86]

Internet-Draft WAMP October 2015

 The _Publisher_ can explicitly *exclude* _Subscribers_ based on WAMP
 "sessionid", "authid" or "authrole". This is referred to as
 Blacklisting.

 A _Publisher_ may also explicitly define a *eligible* list of
 *Subscribers** based on WAMP "sessionid", "authid" or "authrole".
 This is referred to as *Whitelisting*.

13.4.1.2. Use Cases

13.4.1.2.1. Avoiding Callers from being self-notified

 Consider an application that exposes a procedure to update a product
 price. The procedure might not only actually update the product
 price (e.g. in a backend database), but additionally publish an event
 with the updated product price, so that *all* application components
 get notified actively of the new price.

 However, the application might want to exclude the originator of the
 product price update (the *Caller* of the price update procedure)
 from receiving the update event - as the originator naturally already
 knows the new price, and might get confused when it receives an
 update the *Caller* has triggered himself.

 The product price update procedure can use
 "PUBLISH.Options.exclude|list[int]" to exclude the *Caller* of the
 procedure.

 Note that the product price update procedure needs to know the
 session ID of the *Caller* to be able to exclude him. For this,
 please see *Caller Identification*.

 A similar approach can be used for other CRUD-like procedures.

13.4.1.2.2. Restricting receivers of sensitive information

 Consider an application with users that have different "authroles",
 such as "manager" and "staff" that publishes events with updates to
 "customers". The topics being published to could be structured like

 com.example.myapp.customer.<customer ID>

 The application might want to restrict the receivers of customer
 updates depending on the "authrole" of the user. E.g. a user
 authenticated under "authrole" "manager" might be allowed to receive
 any kind of customer update, including personal and business
 sensitive information. A user under "authrole" "staff" might only be
 allowed to receive a subset of events.

Oberstein & Goedde Expires April 13, 2016 [Page 87]

Internet-Draft WAMP October 2015

 The application can publish *all* customer updates to the *same*
 topic "com.example.myapp.customer.<customer ID>" and use
 "PUBLISH.Options.eligible_authrole|list[string]" to safely restrict
 the set of actual receivers as desired.

13.4.1.3. Feature Definition

 A _Publisher_ may restrict the actual receivers of an event from the
 set of _Subscribers_ through the use of

 o Blacklisting Options

 * "PUBLISH.Options.exclude|list[int]"

 * "PUBLISH.Options.exclude_authid|list[string]"

 * "PUBLISH.Options.exclude_authrole|list[string]"

 o Whitelisting Options

 * "PUBLISH.Options.eligible|list[int]"

 * "PUBLISH.Options.eligible_authid|list[string]"

 * "PUBLISH.Options.eligible_authrole|list[string]"

 "PUBLISH.Options.exclude" is a list of integers with WAMP
 "sessionids" providing an explicit list of (potential) _Subscribers_
 that won't receive a published event, even though they may be
 subscribed. In other words, "PUBLISH.Options.exclude" is a
 blacklist of (potential) _Subscribers_.

 "PUBLISH.Options.eligible" is a list of integeres with WAMP WAMP
 "sessionids" providing an explicit list of (potential) _Subscribers_
 that are allowed to receive a published event. In other words,
 "PUBLISH.Options.eligible" is a *whitelist* of (potential)
 Subscribers.

 The "exclude_authid", "exclude_authrole", "eligible_authid" and
 "eligible_authrole" options work similar, but not on the basis of
 WAMP "sessionid", but "authid" and "authrole".

 An (authorized) _Subscriber_ to topic T will receive an event
 published to T if and only if all of the following statements hold
 true:

 1. if there is an "eligible" attribute present, the _Subscriber_'s
 "sessionid" is in this list

Oberstein & Goedde Expires April 13, 2016 [Page 88]

Internet-Draft WAMP October 2015

 2. if there is an "eligible_authid" attribute present, the
 Subscriber's "authid" is in this list

 3. if there is an "eligible_authrole" attribute present, the
 Subscriber's "authrole" is in this list

 4. if there is an "exclude attribute" present, the _Subscriber_'s
 "sessionid" is NOT in this list

 5. if there is an "exclude_authid" attribute present, the
 Subscriber's "authid" is NOT in this list

 6. if there is an "exclude_authrole" attribute present, the
 Subscriber's "authrole" is NOT in this list

 For example, if both "PUBLISH.Options.exclude" and
 "PUBLISH.Options.eligible" are present, the _Broker_ will dispatch
 events published only to _Subscribers_ that are not explicitly
 excluded in "PUBLISH.Options.exclude" *and* which are explicitly
 eligible via "PUBLISH.Options.eligible".

 Example

 [
 16,
 239714735,
 {
 "exclude": [
 7891255,
 1245751
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

 The above event will get dispatched to all _Subscribers_ of
 "com.myapp.mytopic1", but not WAMP sessions with IDs "7891255" or
 "1245751" (and also not the publishing session).

 Example

Oberstein & Goedde Expires April 13, 2016 [Page 89]

Internet-Draft WAMP October 2015

 [
 16,
 239714735,
 {
 "eligible": [
 7891255,
 1245751
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

 The above event will get dispatched to WAMP sessions with IDs
 "7891255" or "1245751" only - but only if those are actually
 subscribed to the topic "com.myapp.mytopic1".

 Example

 [
 16,
 239714735,
 {
 "eligible": [
 7891255,
 1245751,
 9912315
],
 "exclude": [
 7891255
]
 },
 "com.myapp.mytopic1",
 [
 "Hello, world!"
]
]

 The above event will get dispatched to WAMP sessions with IDs
 "1245751" or "9912315" only, since "7891255" is excluded - but only
 if those are actually subscribed to the topic "com.myapp.mytopic1".

Oberstein & Goedde Expires April 13, 2016 [Page 90]

Internet-Draft WAMP October 2015

13.4.1.4. Feature Announcement

 Support for this feature MUST be announced by _Publishers_ ("role :=
 "publisher"") and _Brokers_ ("role := "broker"") via

 HELLO.Details.roles.<role>.features.
 subscriber_blackwhite_listing|bool := true

13.4.2. Publisher Exclusion

13.5. Feature Definition

 By default, a _Publisher_ of an event will *not* itself receive an
 event published, even when subscribed to the "Topic" the _Publisher_
 is publishing to. This behavior can be overridden using this
 feature.

 To override the exclusion of a publisher from it's own publication,
 the "PUBLISH" message must include the following option:

 PUBLISH.Options.exclude_me|bool

 When publishing with "PUBLISH.Options.exclude_me := false", the
 Publisher of the event will receive that event, if it is subscribed
 to the "Topic" published to.

 Example

 [
 16,
 239714735,
 {
 "exclude_me": false
 },
 "com.myapp.mytopic1",
 ["Hello, world!"]
]

 In this example, the _Publisher_ will receive the published event, if
 it is subscribed to "com.myapp.mytopic1".

13.6. Feature Announcement

 Support for this feature MUST be announced by _Publishers_ ("role :=
 "publisher"") and _Brokers_ ("role := "broker"") via

 HELLO.Details.roles.<role>.features.
 publisher_exclusion|bool := true

Oberstein & Goedde Expires April 13, 2016 [Page 91]

Internet-Draft WAMP October 2015

13.6.1. Publisher Identification

13.6.1.1. Feature Definition

 A _Publisher_ may request the disclosure of its identity (its WAMP
 session ID) to receivers of a published event by setting

 PUBLISH.Options.disclose_me|bool := true

 Example

 [16, 239714735, {"disclose_me": true}, "com.myapp.mytopic1",
 ["Hello, world!"]]

 If above event is published by a _Publisher_ with WAMP session ID
 "3335656", the _Broker_ would send an "EVENT" message to
 Subscribers with the _Publisher's_ WAMP session ID in
 "EVENT.Details.publisher":

 Example

 [36, 5512315355, 4429313566, {"publisher": 3335656},
 ["Hello, world!"]]

 Note that a _Broker_ may deny a _Publisher's_ request to disclose its
 identity:

 Example

 [8, 239714735, {}, "wamp.error.option_disallowed.disclose_me"]

 A _Broker_ may also (automatically) disclose the identity of a
 Publisher even without the _Publisher_ having explicitly requested
 to do so when the _Broker_ configuration (for the publication topic)
 is set up to do so.

13.6.1.2. Feature Announcement

 Support for this feature MUST be announced by _Publishers_ ("role :=
 "publisher""), _Brokers_ ("role := "broker"") and _Subscribers_
 ("role := "subscriber"") via

 HELLO.Details.roles.<role>.features.
 publisher_identification|bool := true

Oberstein & Goedde Expires April 13, 2016 [Page 92]

Internet-Draft WAMP October 2015

13.6.2. Publication Trust Levels

13.6.2.1. Feature Definition

 A _Broker_ may be configured to automatically assign _trust levels_
 to events published by _Publishers_ according to the _Broker_
 configuration on a per-topic basis and/or depending on the
 application defined role of the (authenticated) _Publisher_.

 A _Broker_ supporting trust level will provide

 EVENT.Details.trustlevel|integer

 in an "EVENT" message sent to a _Subscriber_. The trustlevel "0"
 means lowest trust, and higher integers represent (application-
 defined) higher levels of trust.

 Example

 [36, 5512315355, 4429313566, {"trustlevel": 2},
 ["Hello, world!"]]

 In above event, the _Broker_ has (by configuration and/or other
 information) deemed the event publication to be of trustlevel "2".

13.6.2.2. Feature Announcement

 Support for this feature MUST be announced by _Subscribers_ ("role :=
 "subscriber"") and _Brokers_ ("role := "broker"") via

 HELLO.Details.roles.<role>.features.
 publication_trustlevels|bool := true

13.6.3. Subscription Meta API

 Within an application, it may be desirable for a publisher to know
 whether a publication to a specific topic currently makes sense, i.e.
 whether there are any subscribers who would receive an event based on
 the publication. It may also be desirable to keep a current count of
 subscribers to a topic to then be able to filter out any subscribers
 who are not supposed to receive an event.

 Subscription _meta-events_ are fired when topics are first created,
 when clients subscribe/unsubscribe to them, and when topics are
 deleted. WAMP allows retrieving information about subscriptions via
 subscription _meta-procedures_.

 Support for this feature MUST be announced by Brokers via

Oberstein & Goedde Expires April 13, 2016 [Page 93]

Internet-Draft WAMP October 2015

 HELLO.Details.roles.broker.features.subscription_meta_api|
 bool := true

 Meta-events are created by the router itself. This means that the
 events as well as the data received when calling a meta-procedure can
 be accorded the same trust level as the router.

13.6.3.1. Subscription Meta-Events

 A client can subscribe to the following session meta-events, which
 cover the lifecycle of a subscription:

 o "wamp.subscription.on_create": Fired when a subscription is
 created through a subscription request for a topic which was
 previously without subscribers.

 o "wamp.subscription.on_subscribe": Fired when a session is added to
 a subscription.

 o "wamp.subscription.on_unsubscribe": Fired when a session is
 removed from a subscription.

 o "wamp.subscription.on_delete": Fired when a subscription is
 deleted after the last session attached to it has been removed.

 A "wamp.subscription.on_subscribe" event MUST always be fired
 subsequent to a "wamp.subscription.on_create" event, since the first
 subscribe results in both the creation of the subscription and the
 addition of a session. Similarly, the "wamp.subscription.on_delete"
 event MUST always be preceded by a "wamp.subscription.on_unsubscribe"
 event.

 The WAMP subscription meta events shall be dispatched by the router
 to the same realm as the WAMP session which triggered the event.

13.6.3.1.1. Meta-Event Specifications

13.6.3.1.1.1. wamp.subscription.on_create

 Fired when a subscription is created through a subscription request
 for a topic which was previously without subscribers.

 Event Arguments

 o "session|id": ID of the session performing the subscription
 request.

Oberstein & Goedde Expires April 13, 2016 [Page 94]

Internet-Draft WAMP October 2015

 o "SubscriptionDetails|dict": Information on the created
 subscription.

 Object Schemas

 SubscriptionDetails :=
 {
 "id": subscription|id,
 "created": time_created|iso_8601_string,
 "uri": topic|uri,
 "match": match_policy|string
 }

 See Section 13.6.4 for a description of "match_policy".

13.6.3.1.1.2. wamp.subscription.on_subscribe

 Fired when a session is added to a subscription.

 Event Arguments

 o "session|id": ID of the session being added to a subscription.

 o "subscription|id": ID of the subscription to which the session is
 being added.

13.6.3.1.1.3. wamp.subscription.on_unsubscribe

 Fired when a session is removed from a subscription.

 Event Arguments

 o "session|id": ID of the session being removed from a subscription.

 o "subscription|id": ID of the subscription from which the session
 is being removed.

13.6.3.1.1.4. wamp.subscription.on_delete

 Fired when a subscription is deleted after the last session attached
 to it has been removed.

 Arguments

 o "session|id": ID of the last session being removed from a
 subscription.

 o "subscription|id": ID of the subscription being deleted.

Oberstein & Goedde Expires April 13, 2016 [Page 95]

Internet-Draft WAMP October 2015

13.6.3.2. Subscription Meta-Procedures

 A client can actively retrieve information about subscriptions via
 the following meta-procedures:

 o "wamp.subscription.list": Retrieves subscription IDs listed
 according to match policies.

 o "wamp.subscription.lookup": Obtains the subscription (if any)
 managing a topic, according to some match policy.

 o "wamp.subscription.match": Retrieves a list of IDs of
 subscriptions matching a topic URI, irrespective of match policy.

 o "wamp.subscription.get": Retrieves information on a particular
 subscription.

 o "wamp.subscription.list_subscribers": Retrieves a list of session
 IDs for sessions currently attached to the subscription.

 o "wamp.subscription.count_subscribers": Obtains the number of
 sessions currently attached to the subscription.

13.6.3.2.1. Meta-Procedure Specifications

13.6.3.2.1.1. wamp.subscription.list

 Retrieves subscription IDs listed according to match policies.

 Arguments

 o None

 Results

 o "SubscriptionLists|dict": A dictionary with a list of subscription
 IDs for each match policy.

 Object Schemas

 SubscriptionLists :=
 {
 "exact": subscription_ids|list,
 "prefix": subscription_ids|list,
 "wildcard": subscription_ids|list
 }

 See Section 13.6.4 for information on match policies.

Oberstein & Goedde Expires April 13, 2016 [Page 96]

Internet-Draft WAMP October 2015

13.6.3.2.1.2. wamp.subscription.lookup

 Obtains the subscription (if any) managing a topic, according to some
 match policy.

 Arguments

 o "topic|uri": The URI of the topic.

 o (Optional) "options|dict": Same options as when subscribing to a
 topic.

 Results

 o (Nullable) "subscription|id": The ID of the subscription managing
 the topic, if found, or null.

13.6.3.2.1.3. wamp.subscription.match

 Retrieves a list of IDs of subscriptions matching a topic URI,
 irrespective of match policy.

 Arguments

 o "topic|uri": The topic to match.

 Results

 o (Nullable) "subscription_ids|list": A list of all matching
 subscription IDs, or null.

13.6.3.2.1.4. wamp.subscription.get

 Retrieves information on a particular subscription.

 Arguments

 o "subscription|id": The ID of the subscription to retrieve.

 Results

 o "SubscriptionDetails|dict": Details on the subscription.

 Error URIs

 o "wamp.error.no_such_subscription": No subscription with the given
 ID exists on the router.

Oberstein & Goedde Expires April 13, 2016 [Page 97]

Internet-Draft WAMP October 2015

 Object Schemas

 SubscriptionDetails :=
 {
 "id": subscription|id,
 "created": time_created|iso_8601_string,
 "uri": topic|uri,
 "match": match_policy|string
 }

 See Section 13.6.4 for information on match policies.

13.6.3.2.1.5. wamp.subscription.list_subscribers

 Retrieves a list of session IDs for sessions currently attached to
 the subscription.

 Arguments

 o "subscription|id": The ID of the subscription to get subscribers
 for.

 Results

 o "subscribers_ids|list": A list of WAMP session IDs of subscribers
 currently attached to the subscription.

 Error URIs

 o "wamp.error.no_such_subscription": No subscription with the given
 ID exists on the router.

13.6.3.2.1.6. wamp.subscription.count_subscribers

 Obtains the number of sessions currently attached to a subscription.

 Arguments

 o "subscription|id": The ID of the subscription to get the number of
 subscribers for.

 Results

 o "count|int": The number of sessions currently attached to a
 subscription.

 Error URIs

Oberstein & Goedde Expires April 13, 2016 [Page 98]

Internet-Draft WAMP October 2015

 o "wamp.error.no_such_subscription": No subscription with the given
 ID exists on the router.

13.6.4. Pattern-based Subscriptions

13.6.4.1. Introdution

 By default, _Subscribers_ subscribe to topics with *exact matching
 policy*. That is an event will only be dispatched to a _Subscriber_
 by the _Broker_ if the topic published to ("PUBLISH.Topic") _exactly_
 matches the topic subscribed to ("SUBSCRIBE.Topic").

 A _Subscriber_ might want to subscribe to topics based on a
 pattern. This can be useful to reduce the number of individual
 subscriptions to be set up and to subscribe to topics the
 Subscriber is not aware of at the time of subscription, or which do
 not yet exist at this time.

 If the _Broker_ and the _Subscriber_ support *pattern-based
 subscriptions*, this matching can happen by

 o prefix-matching policy

 o wildcard-matching policy

13.6.4.2. Prefix Matching

 A _Subscriber_ requests *prefix-matching policy* with a subscription
 request by setting

 SUBSCRIBE.Options.match|string := "prefix"

 Example

 [
 32,
 912873614,
 {
 "match": "prefix"
 },
 "com.myapp.topic.emergency"
]

 When a *prefix-matching policy* is in place, any event with a topic
 that has "SUBSCRIBE.Topic" as a _prefix_ will match the subscription,
 and potentially be delivered to _Subscribers_ on the subscription.

 In the above example, events with "PUBLISH.Topic"

Oberstein & Goedde Expires April 13, 2016 [Page 99]

Internet-Draft WAMP October 2015

 o "com.myapp.topic.emergency.11"

 o "com.myapp.topic.emergency-low"

 o "com.myapp.topic.emergency.category.severe"

 o "com.myapp.topic.emergency"

 will all apply for dispatching. An event with "PUBLISH.Topic" e.g.
 "com.myapp.topic.emerge" will not apply.

13.6.4.3. Wildcard Matching

 A _Subscriber_ requests *wildcard-matching policy* with a
 subscription request by setting

 SUBSCRIBE.Options.match|string := "wildcard"

 Wildcard-matching allows to provide wildcards for *whole* URI
 components.

 Example

 [
 32,
 912873614,
 {
 "match": "wildcard"
 },
 "com.myapp..userevent"
]

 In above subscription request, the 3rd URI component is empty, which
 signals a wildcard in that URI component position. In this example,
 events with "PUBLISH.Topic"

 o "com.myapp.foo.userevent"

 o "com.myapp.bar.userevent"

 o "com.myapp.a12.userevent"

 will all apply for dispatching. Events with "PUBLISH.Topic"

 o "com.myapp.foo.userevent.bar"

 o "com.myapp.foo.user"

Oberstein & Goedde Expires April 13, 2016 [Page 100]

Internet-Draft WAMP October 2015

 o "com.myapp2.foo.userevent"

 will not apply for dispatching.

13.6.4.4. General

13.6.4.4.1. No set semantics

 Since each _Subscriber's_ subscription "stands on its own", there is
 no _set semantics_ implied by pattern-based subscriptions.

 E.g. a _Subscriber_ cannot subscribe to a broad pattern, and then
 unsubscribe from a subset of that broad pattern to form a more
 complex subscription. Each subscription is separate.

13.6.4.4.2. Events matching multiple subscriptions

 When a single event matches more than one of a _Subscriber's_
 subscriptions, the event will be delivered for each subscription.

 The _Subscriber_ can detect the delivery of that same event on
 multiple subscriptions via "EVENT.PUBLISHED.Publication", which will
 be identical.

13.6.4.4.3. Concrete topic published to

 If a subscription was established with a pattern-based matching
 policy, a _Broker_ MUST supply the original "PUBLISH.Topic" as
 provided by the _Publisher_ in

 EVENT.Details.topic|uri

 to the _Subscribers_.

 Example

 [
 36,
 5512315355,
 4429313566,
 {
 "topic": "com.myapp.topic.emergency.category.severe"
 },
 ["Hello, world!"]
]

Oberstein & Goedde Expires April 13, 2016 [Page 101]

Internet-Draft WAMP October 2015

13.6.4.5. Feature Announcement

 Support for this feature MUST be announced by _Subscribers_ ("role :=
 "subscriber"") and _Brokers_ ("role := "broker"") via

 HELLO.Details.roles.<role>.features.
 pattern_based_subscription|bool := true

13.6.5. Sharded Subscriptions

 Feature status: *alpha*

 Support for this feature MUST be announced by _Publishers_ ("role :=
 "publisher""), _Subscribers_ ("role := "subscriber"") and _Brokers_
 ("role := "broker"") via

 HELLO.Details.roles.<role>.features.shareded_subscriptions|
 bool := true

 Resource keys: "PUBLISH.Options.rkey|string" is a stable, technical
 resource key.

 E.g. if your sensor has a unique serial identifier, you can use
 that.

 Example

 [16, 239714735, {"rkey": "sn239019"}, "com.myapp.sensor.sn239019.
 temperature", [33.9]]

 Node keys: "SUBSCRIBE.Options.nkey|string" is a stable, technical
 node key.

 E.g. if your backend process runs on a dedicated host, you can use
 its hostname.

 Example

 [32, 912873614, {"match": "wildcard", "nkey": "node23"},
 "com.myapp.sensor..temperature"]

13.6.6. Event History

13.6.6.1. Feature Definition

 Instead of complex QoS for message delivery, a _Broker_ may provide
 message history. A _Subscriber_ is responsible to handle overlaps

Oberstein & Goedde Expires April 13, 2016 [Page 102]

Internet-Draft WAMP October 2015

 (duplicates) when it wants "exactly-once" message processing across
 restarts.

 The _Broker_ may allow for configuration on a per-topic basis.

 The event history may be transient or persistent message history
 (surviving _Broker_ restarts).

 A _Broker_ that implements _event history_ must (also) announce role
 "HELLO.roles.callee", indicate "HELLO.roles.broker.history == 1" and
 provide the following (builtin) procedures.

 A _Caller_ can request message history by calling the _Broker_
 procedure

 wamp.topic.history.last

 with "Arguments = [topic|uri, limit|integer]" where

 o "topic" is the topic to retrieve event history for

 o "limit" indicates the number of last N events to retrieve

 or by calling

 wamp.topic.history.since

 with "Arguments = [topic|uri, timestamp|string]" where

 o "topic" is the topic to retrieve event history for

 o "timestamp" indicates the UTC timestamp since when to retrieve the
 events in the ISO-8601 format "yyyy-MM-ddThh:mm:ss:SSSZ" (e.g.
 ""2013-12-21T13:43:11:000Z"")

 or by calling

 wamp.topic.history.after

 with "Arguments = [topic|uri, publication|id]"

 o "topic" is the topic to retrieve event history for

 o "publication" is the id of an event which marks the start of the
 events to retrieve from history

 FIXME

Oberstein & Goedde Expires April 13, 2016 [Page 103]

Internet-Draft WAMP October 2015

 1. Should we use "topic|uri" or "subscription|id" in "Arguments"?

 * Since we need to be able to get history for pattern-based
 subscriptions as well, a subscription|id makes more sense:
 create pattern-based subscription, then get the event history
 for this.

 * The only restriction then is that we may not get event history
 without a current subscription covering the events. This is a
 minor inconvenience at worst.

 2. Can "wamp.topic.history.after" be implemented (efficiently) at
 all?

 3. How does that interact with pattern-based subscriptions?

 4. The same question as with the subscriber lists applies where: to
 stay within our separation of roles, we need a broker + a
 separate peer which implements the callee role. Here we do not
 have a mechanism to get the history from the broker.

13.6.6.2. Feature Announcement

 Support for this feature MUST be announced by _Subscribers_ ("role :=
 "subscriber"") and _Brokers_ ("role := "broker"") via

 HELLO.Details.roles.<role>.features.event_history|bool := true

13.6.7. Registration Revocation

13.6.7.1. Feature Definition

 Actively and forcefully revoke a previously granted subscription from
 a session.

13.6.7.2. Feature Announcement

13.6.8. Topic Reflection

 o see *Procedure Reflection* for now

13.7. Other Advanced Features

13.7.1. Session Meta API

Oberstein & Goedde Expires April 13, 2016 [Page 104]

Internet-Draft WAMP October 2015

13.7.1.1. Introduction

 WAMP enables the monitoring of when sessions join a realm on the
 router or when they leave it via *Session Meta Events*. It also
 allows retrieving information about currently connected sessions via
 Session Meta Procedures.

 Meta events are created by the router itself. This means that the
 events, as well as the data received when calling a meta procedure,
 can be accorded the same trust level as the router.

 Note that an implementation that only supports a _Broker_ or
 Dealer role, not both at the same time, essentially cannot offer
 the *Session Meta API*, as it requires both roles to support this
 feature.

13.7.1.2. Session Meta Events

 A client can subscribe to the following session meta-events, which
 cover the lifecycle of a session:

 o "wamp.session.on_join": Fired when a session joins a realm on the
 router.

 o "wamp.session.on_leave": Fired when a session leaves a realm on
 the router or is disconnected.

 Session Meta Events MUST be dispatched by the _Router_ to the same
 realm as the WAMP session which triggered the event.

13.7.1.2.1. wamp.session.on_join

 Fired when a session joins a realm on the router. The event payload
 consists of a single positional argument "details|dict":

 o "session|id" - The session ID of the session that joined

 o "authid|string" - The authentication ID of the session that joined

 o "authrole|string" - The authentication role of the session that
 joined

 o "authmethod|string" - The authentication method that was used for
 authentication the session that joined

 o "authprovider|string"- The provider that performed the
 authentication of the session that joined

Oberstein & Goedde Expires April 13, 2016 [Page 105]

Internet-Draft WAMP October 2015

 o "transport|dict" - Optional, implementation defined information
 about the WAMP transport the joined session is running over.

 See *Authentication* for a description of the "authid",
 "authrole", "authmethod" and "authprovider" properties.

13.7.1.2.2. wamp.session.on_leave

 Fired when a session leaves a realm on the router or is disconnected.
 The event payload consists of a single positional argument
 "session|id" with the session ID of the session that left.

13.7.1.3. Session Meta Procedures

 A client can actively retrieve information about sessions via the
 following meta-procedures:

 o "wamp.session.count": Obtains the number of sessions currently
 attached to the realm.

 o "wamp.session.list": Retrieves a list of the session IDs for all
 sessions currently attached to the realm.

 o "wamp.session.get": Retrieves information on a specific session.

 Session meta procedures MUST be registered by the _Router_ on the
 same realm as the WAMP session about which information is retrieved.

13.7.1.3.1. wamp.session.count

 Obtains the number of sessions currently attached to the realm:

 Positional arguments

 1. "filter_authroles|list[string]" - Optional filter: if provided,
 only count sessions with an "authrole" from this list.

 Positional results

 1. "count|int" - The number of sessions currently attached to the
 realm.

13.7.1.3.2. wamp.session.list

 Retrieves a list of the session IDs for all sessions currently
 attached to the realm.

 Positional arguments

Oberstein & Goedde Expires April 13, 2016 [Page 106]

Internet-Draft WAMP October 2015

 1. "filter_authroles|list[string]" - Optional filter: if provided,
 only count sessions with an "authrole" from this list.

 Positional results

 1. "session_ids|list" - List of WAMP session IDs (order undefined).

13.7.1.3.3. wamp.session.get

 Retrieves information on a specific session.

 Positional arguments

 1. "session|id" - The session ID of the session to retrieve details
 for.

 Positional results

 1. "details|dict" - Information on a particular session:

 * "session|id" - The session ID of the session that joined

 * "authid|string" - The authentication ID of the session that
 joined

 * "authrole|string" - The authentication role of the session
 that joined

 * "authmethod|string" - The authentication method that was used
 for authentication the session that joined

 * "authprovider|string"- The provider that performed the
 authentication of the session that joined

 * "transport|dict" - Optional, implementation defined
 information about the WAMP transport the joined session is
 running over.

 See *Authentication* for a description of the "authid",
 "authrole", "authmethod" and "authprovider" properties.

 Errors

 o "wamp.error.no_such_session" - No session with the given ID exists
 on the router.

Oberstein & Goedde Expires April 13, 2016 [Page 107]

Internet-Draft WAMP October 2015

13.7.1.4. Feature Announcement

 Support for this feature MUST be announced by *both* _Dealers_ and
 Brokers via:

 HELLO.Details.roles.<role>.features.
 session_meta_api|bool := true

 Example

 Here is a "WELCOME" message from a _Router_ with support for both the
 Broker and _Dealer_ role, and with support for *Session Meta API*:

 [
 2,
 4580268554656113,
 {
 "authid":"OL3AeppwDLXiAAPbqm9IVhnw",
 "authrole": "anonymous",
 "authmethod": "anonymous",
 "roles": {
 "broker": {
 "features": {
 "session_meta_api": true
 }
 },
 "dealer": {
 "features": {
 "session_meta_api": true
 }
 }
 }
 }
]

 Note in particular that the feature is announced on both the
 Broker and the _Dealer_ roles.

13.7.2. Authentication

 Authentication is a complex area.

 Some applications might want to leverage authentication information
 coming from the transport underlying WAMP, e.g. HTTP cookies or TLS
 certificates.

Oberstein & Goedde Expires April 13, 2016 [Page 108]

Internet-Draft WAMP October 2015

 Some transports might imply trust or implicit authentication by their
 very nature, e.g. Unix domain sockets with appropriate file system
 permissions in place.

 Other application might want to perform their own authentication
 using external mechanisms (completely outside and independent of
 WAMP).

 Some applications might want to perform their own authentication
 schemes by using basic WAMP mechanisms, e.g. by using application-
 defined remote procedure calls.

 And some applications might want to use a transport independent
 scheme, nevertheless predefined by WAMP.

13.7.2.1. WAMP-level Authentication

 The message flow between Clients and Routers for establishing and
 tearing down sessions MAY involve the following messages which
 authenticate a session:

 1. "CHALLENGE"

 2. "AUTHENTICATE"

 ,------. ,------.
 |Client| |Router|
 `--+---' `--+---'
 | HELLO |
 | ---------------->
 | |
 | CHALLENGE |
 | <----------------
 | |
 | AUTHENTICATE |
 | ---------------->
 | |
 | WELCOME or ABORT|
 | <----------------
 ,--+---. ,--+---.
 |Client| |Router|
 `------' `------'

 Concrete use of "CHALLENGE" and "AUTHENTICATE" messages depends on
 the specific authentication method.

 See Section 13.7.2.3 or Section 13.7.2.4 for the use in these
 authentication methods.

Oberstein & Goedde Expires April 13, 2016 [Page 109]

Internet-Draft WAMP October 2015

 If two-factor authentication is desired, then two subsequent rounds
 of "CHALLENGE" and "RESPONSE" may be employed.

13.7.2.1.1. CHALLENGE

 An authentication MAY be required for the establishment of a session.
 Such requirement MAY be based on the "Realm" the connection is
 requested for.

 To request authentication, the Router MUST send a "CHALLENGE" message
 to the _Endpoint_.

 [CHALLENGE, AuthMethod|string, Extra|dict]

13.7.2.1.2. AUTHENTICATE

 In response to a "CHALLENGE" message, the Client MUST send an
 "AUTHENTICATION" message.

 [AUTHENTICATE, Signature|string, Extra|dict]

 If the authentication succeeds, the Router MUST send a "WELCOME"
 message, else it MUST send an "ABORT" message.

13.7.2.2. Transport-level Authentication

13.7.2.2.1. Cookie-based Authentication

 When running WAMP over WebSocket, the transport provides HTTP client
 cookies during the WebSocket opening handshake. The cookies can be
 used to authenticate one peer (the client) against the other (the
 server). The other authentication direction cannot be supported by
 cookies.

 This transport-level authentication information may be forward to the
 WAMP level within "HELLO.Details.transport.auth|any" in the client-
 to-server direction.

13.7.2.2.2. TLS Certificate Authentication

 When running WAMP over a TLS (either secure WebSocket or raw TCP)
 transport, a peer may authenticate to the other via the TLS
 certificate mechanism. A server might authenticate to the client,
 and a client may authenticate to the server (TLS client-certificate
 based authentication).

Oberstein & Goedde Expires April 13, 2016 [Page 110]

Internet-Draft WAMP October 2015

 This transport-level authentication information may be forward to the
 WAMP level within "HELLO.Details.transport.auth|any" in both
 directions (if available).

13.7.2.3. Challenge Response Authentication

 WAMP Challenge-Response ("WAMP-CRA") authentication is a simple,
 secure authentication mechanism using a shared secret. The client
 and the server share a secret. The secret never travels the wire,
 hence WAMP-CRA can be used via non-TLS connections. The actual pre-
 sharing of the secret is outside the scope of the authentication
 mechanism.

 A typical authentication begins with the client sending a "HELLO"
 message specifying the "wampcra" method as (one of) the
 authentication methods:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["wampcra"],
 "authid": "peter"
 }
]

 The "HELLO.Details.authmethods|list" is used by the client to
 announce the authentication methods it is prepared to perform. For
 WAMP-CRA, this MUST include ""wampcra"".

 The "HELLO.Details.authid|string" is the authentication ID (e.g.
 username) the client wishes to authenticate as. For WAMP-CRA, this
 MUST be provided.

 If the server is unwilling or unable to perform WAMP-CRA
 authentication, it MAY either skip forward trying other
 authentication methods (if the client announced any) or send an
 "ABORT" message.

 If the server is willing to let the client authenticate using WAMP-
 CRA, and the server recognizes the provided "authid", it MUST send a
 "CHALLENGE" message:

Oberstein & Goedde Expires April 13, 2016 [Page 111]

Internet-Draft WAMP October 2015

 [4, "wampcra",
 {
 "challenge": "{ \"nonce\": \"LHRTC9zeOIrt_9U3\",
 \"authprovider\": \"userdb\", \"authid\": \"peter\",
 \"timestamp\": \"2014-06-22T16:36:25.448Z\",
 \"authrole\": \"user\", \"authmethod\": \"wampcra\",
 \"session\": 3251278072152162}"
 }
]

 The "CHALLENGE.Details.challenge|string" is a string the client needs
 to create a signature for. The string MUST BE a JSON serialized
 object which MUST contain:

 1. "authid|string": The authentication ID the client will be
 authenticated as when the authentication succeeds.

 2. "authrole|string": The authentication role the client will be
 authenticated as when the authentication succeeds.

 3. "authmethod|string": The authentication methods, here ""wampcra""

 4. "authprovider|string": The actual provider of authentication.
 For WAMP-CRA, this can be freely chosen by the app, e.g.
 "userdb".

 5. "nonce|string": A random value.

 6. "timestamp|string": The UTC timestamp (ISO8601 format) the
 authentication was started, e.g. "2014-06-22T16:51:41.643Z".

 7. "session|int": The WAMP session ID that will be assigned to the
 session once it is authenticated successfully.

 The client needs to compute the signature as follows:

 signature := HMAC[SHA256]_{secret} (challenge)

 That is, compute the HMAC-SHA256 using the shared "secret" over the
 "challenge".

 After computing the signature, the client will send an "AUTHENTICATE"
 message containing the signature:

 [5, "gir1mSx+deCDUV7wRM5SGIn/+R/ClqLZuH4m7FJeBVI=", {}]

 The server will then check if

Oberstein & Goedde Expires April 13, 2016 [Page 112]

Internet-Draft WAMP October 2015

 o the signature matches the one expected

 o the "AUTHENTICATE" message was sent in due time

 If the authentication succeeds, the server will finally respond with
 a "WELCOME" message:

 [2, 3251278072152162,
 {
 "authid": "peter",
 "authrole": "user",
 "authmethod": "wampcra",
 "authprovider": "userdb",
 "roles": ...
 }
]

 The "WELCOME.Details" again contain the actual authentication
 information active.

 If the authentication fails, the server will response with an "ABORT"
 message.

13.7.2.3.1. Server-side Verification

 The challenge sent during WAMP-CRA contains

 1. random information (the "nonce") to make WAMP-CRA robust against
 replay attacks

 2. timestamp information (the "timestamp") to allow WAMP-CRA timeout
 on authentication requests that took too long

 3. session information (the "session") to bind the authentication to
 a WAMP session ID

 4. all the authentication information that relates to authorization
 like "authid" and "authrole"

13.7.2.3.2. Three-legged Authentication

 The signing of the challenge sent by the server usually is done
 directly on the client. However, this is no strict requirement.

 E.g. a client might forward the challenge to another party (hence the
 "three-legged") for creating the signature. This can be used when
 the client was previously already authenticated to that third party,
 and WAMP-CRA should run piggy packed on that authentication.

Oberstein & Goedde Expires April 13, 2016 [Page 113]

Internet-Draft WAMP October 2015

 The third party would, upon receiving a signing request, simply check
 if the client is already authenticated, and if so, create a signature
 for WAMP-CRA.

 In this case, the secret is actually shared between the WAMP server
 who wants to authenticate clients using WAMP-CRA and the third party
 server, who shares a secret with the WAMP server.

 This scenario is also the reason the challenge sent with WAMP-CRA is
 not simply a random value, but a JSON serialized object containing
 sufficient authentication information for the thrid party to check.

13.7.2.3.3. Password Salting

 WAMP-CRA operates using a shared secret. While the secret is never
 sent over the wire, a shared secret often requires storage of that
 secret on the client and the server - and storing a password verbatim
 (unencrypted) is not recommended in general.

 WAMP-CRA allows the use of salted passwords following the PBKDF2 [5]
 key derivation scheme. With salted passwords, the password itself is
 never stored, but only a key derived from the password and a password
 salt. This derived key is then practically working as the new shared
 secret.

 When the password is salted, the server will during WAMP-CRA send a
 "CHALLENGE" message containing additional information:

 [4, "wampcra",
 {
 "challenge": "{ \"nonce\": \"LHRTC9zeOIrt_9U3\",
 \"authprovider\": \"userdb\", \"authid\": \"peter\",
 \"timestamp\": \"2014-06-22T16:36:25.448Z\",
 \"authrole\": \"user\", \"authmethod\": \"wampcra\",
 \"session\": 3251278072152162}",
 "salt": "salt123",
 "keylen": 32,
 "iterations": 1000
 }
]

 The "CHALLENGE.Details.salt|string" is the password salt in use. The
 "CHALLENGE.Details.keylen|int" and "CHALLENGE.Details.iterations|int"
 are parameters for the PBKDF2 algorithm.

Oberstein & Goedde Expires April 13, 2016 [Page 114]

Internet-Draft WAMP October 2015

13.7.2.4. Ticket-based Authentication

 With _Ticket-based authentication_, the client needs to present the
 server an authentication "ticket" - some magic value to authenticate
 itself to the server.

 This "ticket" could be a long-lived, pre-agreed secret (e.g. a user
 password) or a short-lived authentication token (like a Kerberos
 token). WAMP does not care or interpret the ticket presented by the
 client.

 Caution: This scheme is extremely simple and flexible, but the
 resulting security may be limited. E.g., the ticket value will be
 sent over the wire. If the transport WAMP is running over is not
 encrypted, a man-in-the-middle can sniff and possibly hijack the
 ticket. If the ticket value is reused, that might enable replay
 attacks.

 A typical authentication begins with the client sending a "HELLO"
 message specifying the "ticket" method as (one of) the authentication
 methods:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["ticket"],
 "authid": "joe"
 }
]

 The "HELLO.Details.authmethods|list" is used by the client to
 announce the authentication methods it is prepared to perform. For
 Ticket-based, this MUST include ""ticket"".

 The "HELLO.Details.authid|string" is the authentication ID (e.g.
 username) the client wishes to authenticate as. For Ticket-based
 authentication, this MUST be provided.

 If the server is unwilling or unable to perform Ticket-based
 authentication, it'll either skip forward trying other authentication
 methods (if the client announced any) or send an "ABORT" message.

 If the server is willing to let the client authenticate using a
 ticket and the server recognizes the provided "authid", it'll send a
 "CHALLENGE" message:

 [4, "ticket", {}]

Oberstein & Goedde Expires April 13, 2016 [Page 115]

Internet-Draft WAMP October 2015

 The client will send an "AUTHENTICATE" message containing a ticket:

 [5, "secret!!!", {}]

 The server will then check if the ticket provided is permissible (for
 the "authid" given).

 If the authentication succeeds, the server will finally respond with
 a "WELCOME" message:

 [2, 3251278072152162,
 {
 "authid": "joe",
 "authrole": "user",
 "authmethod": "ticket",
 "authprovider": "static",
 "roles": ...
 }
]

 where

 1. "authid|string": The authentication ID the client was (actually)
 authenticated as.

 2. "authrole|string": The authentication role the client was
 authenticated for.

 3. "authmethod|string": The authentication method, here ""ticket""

 4. "authprovider|string": The actual provider of authentication.
 For Ticket-based authentication, this can be freely chosen by the
 app, e.g. "static" or "dynamic".

 The "WELCOME.Details" again contain the actual authentication
 information active. If the authentication fails, the server will
 response with an "ABORT" message.

13.7.3. Alternative Transports

 The only requirements that WAMP expects from a transport are: the
 transport must be message-based, bidirectional, reliable and ordered.
 This allows WAMP to run over different transports without any impact
 at the application layer.

 Besides the WebSocket transport, the following WAMP transports are
 currently specified:

Oberstein & Goedde Expires April 13, 2016 [Page 116]

Internet-Draft WAMP October 2015

 o Section 13.7.3.1

 o Section 13.7.3.2

 o Section 13.7.3.3

 o Section 13.7.3.4

 Other transports such as HTTP 2.0 ("SPDY") or UDP might be defined
 in the future.

13.7.3.1. RawSocket Transport

 WAMP-over-RawSocket is an (alternative) transport for WAMP that
 uses length-prefixed, binary messages - a message framing different
 from WebSocket.

 Compared to WAMP-over-WebSocket, WAMP-over-RawSocket is simple to
 implement, since there is no need to implement the WebSocket protocol
 which has some features that make it non-trivial (like a full HTTP-
 based opening handshake, message fragmentation, masking and variable
 length integers).

 WAMP-over-RawSocket has even lower overhead than WebSocket, which can
 be desirable in particular when running on local connections like
 loopback TCP or Unix domain sockets. It is also expected to allow
 implementations in microcontrollers in under 2KB RAM.

 WAMP-over-RawSocket can run over TCP, TLS, Unix domain sockets or any
 reliable streaming underlying transport. When run over TLS on the
 standard port for secure HTTPS (443), it is also able to traverse
 most locked down networking environments such as enterprise or mobile
 networks (unless man-in-the-middle TLS intercepting proxies are in
 use).

 However, WAMP-over-RawSocket cannot be used with Web browser clients,
 since browsers do not allow raw TCP connections. Browser extensions
 would do, but those need to be installed in a browser. WAMP-over-
 RawSocket also (currently) does not support transport-level
 compression as WebSocket does provide ("permessage-deflate" WebSocket
 extension).

13.7.3.1.1. Endianess

 WAMP-over-RawSocket uses _network byte order_ ("big-endian"). That
 means, given a unsigned 32 bit integer

 0x 11 22 33 44

Oberstein & Goedde Expires April 13, 2016 [Page 117]

Internet-Draft WAMP October 2015

 the first octet sent out to (or received from) the wire is "0x11" and
 the last octet sent out (or received) is "0x44".

 Here is how you would convert octets received from the wire into an
 integer in Python:

 <CODE BEGINS>
 import struct

 octets_received = b"\x11\x22\x33\x44"
 i = struct.unpack(">L", octets_received)[0]
 <CODE ENDS>

 The integer received has the value "287454020".

 And here is how you would send out an integer to the wire in Python:

 <CODE BEGINS>
 octets_to_be_send = struct.pack(">L", i)
 <CODE ENDS>

 The octets to be sent are "b"\x11\x22\x33\x44"".

13.7.3.1.2. Handshake

 Client-to-Router Request

 WAMP-over-RawSocket starts with a handshake where the client
 connecting to a router sends 4 octets:

 MSB LSB
 31 0
 0111 1111 LLLL SSSS RRRR RRRR RRRR RRRR

 The _first octet_ is a magic octet with value "0x7F". This value is
 chosen to avoid any possible collision with the first octet of a
 valid HTTP request (see here [6] and here [7]). No valid HTTP
 request can have "0x7F" as its first octet.

 By using a magic first octet that cannot appear in a regular HTTP
 request, WAMP-over-RawSocket can be run e.g. on the same TCP
 listening port as WAMP-over-WebSocket or WAMP-over-LongPoll.

 The _second octet_ consists of a 4 bit "LENGTH" field and a 4 bit
 "SERIALIZER" field.

 The "LENGTH" value is used by the _Client_ to signal the *maximum
 message length* of messages it is willing to *receive*. When the

Oberstein & Goedde Expires April 13, 2016 [Page 118]

Internet-Draft WAMP October 2015

 handshake completes successfully, a _Router_ MUST NOT send messages
 larger than this size.

 The possible values for "LENGTH" are:

 0: 2**9 octets
 1: 2**10 octets
 ...
 15: 2**24 octets

 This means a _Client_ can choose the maximum message length between
 512 and *16M* octets.

 The "SERIALIZER" value is used by the _Client_ to request a specific
 serializer to be used. When the handshake completes successfully,
 the _Client_ and _Router_ will use the serializer requested by the
 Client.

 The possible values for "SERIALIZER" are:

 0: illegal
 1: JSON
 2: MsgPack
 3 - 15: reserved for future serializers

 Here is a Python program that prints all (currently) permissible
 values for the _second octet_:

 <CODE BEGINS>
 SERMAP = {
 1: 'json',
 2: 'msgpack'
 }

 ## map serializer / max. msg length to RawSocket handshake request
 ## or success reply (2nd octet)
 ##
 for ser in SERMAP:
 for l in range(16):
 octet_2 = (l << 4) | ser
 print("serializer: {}, maxlen: {} =>
 0x{:02x}".format(SERMAP[ser], 2 ** (l + 9), octet_2))
 <CODE ENDS>

 The _third and forth octet_ are *reserved* and MUST be all zeros for
 now.

 Router-to-Client Reply

Oberstein & Goedde Expires April 13, 2016 [Page 119]

Internet-Draft WAMP October 2015

 After a _Client_ has connected to a _Router_, the _Router_ will first
 receive the 4 octets handshake request from the _Client_.

 If the _first octet_ differs from "0x7F", it is not a WAMP-over-
 RawSocket request. Unless the _Router_ also supports other
 transports on the connecting port (such as WebSocket or LongPoll),
 the _Router_ MUST *fail the connection*.

 Here is an example of how a _Router_ could parse the _second octet_
 in a _Clients_ handshake request:

 <CODE BEGINS>
 ## map RawSocket handshake request (2nd octet) to
 ## serializer / max. msg length
 ##
 for i in range(256):
 ser_id = i & 0x0f
 if ser_id != 0:
 ser = SERMAP.get(ser_id, 'currently undefined')
 maxlen = 2 ** ((i >> 4) + 9)
 print("{:02x} => serializer: {}, maxlen: {}".
 format(i, ser, maxlen))
 else:
 print("fail the connection: illegal serializer value")
 <CODE ENDS>

 When the _Router_ is willing to speak the serializer requested by the
 Client, it will answer with a 4 octets response of identical
 structure as the _Client_ request:

 MSB LSB
 31 0
 0111 1111 LLLL SSSS RRRR RRRR RRRR RRRR

 Again, the _first octet_ MUST be the value "0x7F". The _third and
 forth octets_ are reserved and MUST be all zeros for now.

 In the _second octet_, the _Router_ MUST echo the serializer value in
 "SERIALIZER" as requested by the _Client_.

 Similar to the _Client_, the _Router_ sets the "LENGTH" field to
 request a limit on the length of messages sent by the _Client_.

 During the connection, _Router_ MUST NOT send messages to the
 Client longer than the "LENGTH" requested by the _Client_, and the
 Client MUST NOT send messages larger than the maximum requested by
 the _Router_ in it's handshake reply.

Oberstein & Goedde Expires April 13, 2016 [Page 120]

Internet-Draft WAMP October 2015

 If a message received during a connection exceeds the limit
 requested, a _Peer_ MUST *fail the connection*.

 When the _Router_ is unable to speak the serializer requested by the
 Client, or it is denying the _Client_ for other reasons, the
 Router replies with an error:

 MSB LSB
 31 0
 0111 1111 EEEE 0000 RRRR RRRR RRRR RRRR

 An error reply has 4 octets: the _first octet_ is again the magic
 "0x7F", and the _third and forth octet_ are reserved and MUST all be
 zeros for now.

 The _second octet_ has its lower 4 bits zero'ed (which distinguishes
 the reply from an success/accepting reply) and the upper 4 bits
 encode the error:

 0: illegal (must not be used)
 1: serializer unsupported
 2: maximum message length unacceptable
 3: use of reserved bits (unsupported feature)
 4: maximum connection count reached
 5 - 15: reserved for future errors

 Note that the error code "0" MUST NOT be used. This is to allow
 storage of error state in a host language variable, while allowing
 "0" to signal the current state "no error"

 Here is an example of how a _Router_ might create the _second octet_
 in an error response:

 <CODE BEGINS>
 ERRMAP = {
 0: "illegal (must not be used)",
 1: "serializer unsupported",
 2: "maximum message length unacceptable",
 3: "use of reserved bits (unsupported feature)",
 4: "maximum connection count reached"
 }

 ## map error to RawSocket handshake error reply (2nd octet)
 ##
 for err in ERRMAP:
 octet_2 = err << 4
 print("error: {} => 0x{:02x}").format(ERRMAP[err], err)
 <CODE ENDS>

Oberstein & Goedde Expires April 13, 2016 [Page 121]

Internet-Draft WAMP October 2015

 The _Client_ - after having sent its handshake request - will wait
 for the 4 octets from _Router_ handshake reply.

 Here is an example of how a _Client_ might parse the _second octet_
 in a _Router_ handshake reply:

 <CODE BEGINS>
 ## map RawSocket handshake reply (2nd octet)
 ##
 for i in range(256):
 ser_id = i & 0x0f
 if ser_id:
 ## verify the serializer is the one we requested!
 ## if not, fail the connection!
 ser = SERMAP.get(ser_id, 'currently undefined')
 maxlen = 2 ** ((i >> 4) + 9)
 print("{:02x} => serializer: {}, maxlen: {}".
 format(i, ser, maxlen))
 else:
 err = i >> 4
 print("error: {}".format(ERRMAP.get(err,
 'currently undefined')))
 <CODE ENDS>

13.7.3.1.3. Serialization

 To send a WAMP message, the message is serialized according to the
 WAMP serializer agreed in the handshake (e.g. JSON or MsgPack).

 The length of the serialized messages in octets MUST NOT exceed the
 maximum requested by the _Peer_.

 If the serialized length exceed the maximum requested, the WAMP
 message can not be sent to the _Peer_. Handling situations like the
 latter is left to the implementation.

 E.g. a _Router_ that is to forward a WAMP "EVENT" to a _Client_ which
 exceeds the maximum length requested by the _Client_ when serialized
 might:

 o drop the event (not forwarding to that specific client) and track
 dropped events

 o prohibit publishing to the topic already

 o remove the event payload, and send an event with extra information
 ("payload_limit_exceeded = true")

Oberstein & Goedde Expires April 13, 2016 [Page 122]

Internet-Draft WAMP October 2015

13.7.3.1.4. Framing

 The serialized octets for a message to be sent are prefixed with
 exactly 4 octets.

 MSB LSB
 31 0
 RRRR RTTT LLLL LLLL LLLL LLLL LLLL LLLL

 The _first octet_ has the following structure

 MSB LSB
 7 0
 RRRR RTTT

 The five bits "RRRRR" are reserved for future use and MUST be all
 zeros for now.

 The three bits "TTT" encode the type of the transport message:

 0: regular WAMP message
 1: PING
 2: PONG
 3-7: reserved

 The _three remaining octets_ constitute an unsigned 24 bit integer
 that provides the length of transport message payload following,
 excluding the 4 octets that constitute the prefix.

 For a regular WAMP message ("TTT == 0"), the length is the length of
 the serialized WAMP message: the number of octets after serialization
 (excluding the 4 octets of the prefix).

 For a "PING" message ("TTT == 1"), the length is the length of the
 arbitrary payload that follows. A _Peer_ MUST reply to each "PING"
 by sending exactly one "PONG" immediately, and the "PONG" MUST echo
 back the payload of the "PING" exactly.

 For receiving messages with WAMP-over-RawSocket, a _Peer_ will
 usually read exactly 4 octets from the incoming stream, decode the
 transport level message type and payload length, and then receive as
 many octets as the length was giving.

 When the transport level message type indicates a regular WAMP
 message, the transport level message payload is unserialized
 according to the serializer agreed in the handshake and the processed
 at the WAMP level.

Oberstein & Goedde Expires April 13, 2016 [Page 123]

Internet-Draft WAMP October 2015

13.7.3.2. Batched WebSocket Transport for WAMP

 WAMP-over-Batched-WebSocket is a variant of WAMP-over-WebSocket
 where multiple WAMP messages are sent in one WebSocket message.

 Using WAMP message batching can increase wire level efficiency
 further. In particular when using TLS and the WebSocket
 implementation is forcing every WebSocket message into a new TLS
 segment.

 WAMP-over-Batched-WebSocket is negotiated between Peers in the
 WebSocket opening handshake by agreeing on one of the following
 WebSocket subprotocols:

 o "wamp.2.json.batched"

 o "wamp.2.msgpack.batched"

 Batching with JSON works by serializing each WAMP message to JSON as
 normally, appending the single ASCII control character "\30" (record
 separator [8]) octet "0x1e" to _each_ serialized messages, and
 packing a sequence of such serialized messages into a single
 WebSocket message:

 Serialized JSON WAMP Msg 1 | 0x1e |
 Serialized JSON WAMP Msg 2 | 0x1e | ...

 Batching with MsgPack works by serializing each WAMP message to
 MsgPack as normally, prepending a 32 bit unsigned integer (4 octets
 in big-endian byte order) with the length of the serialized MsgPack
 message (excluding the 4 octets for the length prefix), and packing a
 sequence of such serialized (length-prefixed) messages into a single
 WebSocket message:

 Length of Msg 1 serialization (uint32) |
 serialized MsgPack WAMP Msg 1 | ...

 With batched transport, even if only a single WAMP message is to be
 sent in a WebSocket message, the (single) WAMP message needs to be
 framed as described above. In other words, a single WAMP message is
 sent as a batch of length *1*. Sending a batch of length *0* (no WAMP
 message) is illegal and a _Peer_ MUST fail the transport upon
 receiving such a transport message.

Oberstein & Goedde Expires April 13, 2016 [Page 124]

Internet-Draft WAMP October 2015

13.7.3.3. A HTTP Longpoll Transport for WAMP

 The _Long-Poll Transport_ is able to transmit a WAMP session over
 plain old HTTP 1.0/1.1. This is realized by the Client issuing HTTP/
 POSTs requests, one for sending, and one for receiving. Those latter
 requests are kept open at the server when there are no messages
 currently pending to be received.

 Opening a Session

 With the Long-Poll Transport, a Client opens a new WAMP session by
 sending a HTTP/POST request to a well-known URL, e.g.

http://mypp.com/longpoll/open

 Here, "http://mypp.com/longpoll" is the base URL for the Long-Poll
 Transport and "/open" is a path dedicated for opening new sessions.

 The HTTP/POST request SHOULD have a "Content-Type" header set to
 "application/json" and MUST have a request body with a JSON document
 that is a dictionary:

 {
 "protocols": ["wamp.2.json"]
 }

 The (mandatory) "protocols" attribute specifies the protocols the
 client is willing to speak. The server will chose one from this list
 when establishing the session or fail the request when no protocol
 overlap was found.

 The valid protocols are:

 o "wamp.2.json.batched"

 o "wamp.2.json"

 o "wamp.2.msgpack.batched"

 o "wamp.2.msgpack"

 The request path with this and subsequently described HTTP/POST
 requests MAY contain a query parameter "x" with some random or
 sequentially incremented value:

 <http://mypp.com/longpoll/open?x=382913>

http://mypp.com/longpoll/open
http://mypp.com/longpoll/open?x=382913

Oberstein & Goedde Expires April 13, 2016 [Page 125]

Internet-Draft WAMP October 2015

 The value is ignored, but may help in certain situations to
 prevent intermediaries from caching the request.

 Returned is a JSON document containing a transport ID and the
 protocol to speak:

 {
 "protocol": "wamp.2.json",
 "transport": "kjmd3sBLOUnb3Fyr"
 }

 As an implied side-effect, two HTTP endpoints are created

http://mypp.com/longpoll/<transport_id>/receive
http://mypp.com/longpoll/<transport_id>/send

 where "transport_id" is the transport ID returned from "open", e.g.

http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive
http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send

 Receiving WAMP Messages

 The Client will then issue HTTP/POST requests (with empty request
 body) to

http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive

 When there are WAMP messages pending downstream, a request will
 return with a single WAMP message (unbatched modes) or a batch of
 serialized WAMP messages (batched mode).

 The serialization format used is the one agreed during opening the
 session.

 The batching uses the same scheme as with "wamp.2.json.batched" and
 "wamp.2.msgpack.batched" transport over WebSocket.

 Note: In unbatched mode, when there is more than one message
 pending, there will be at most one message returned for each
 request. The other pending messages must be retrieved by new
 requests. With batched mode, all messages pending at request time
 will be returned in one batch of messages.

 Sending WAMP Messages

 For sending WAMP messages, the _Client_ will issue HTTP/POST requests
 to

http://mypp
http://mypp
http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive
http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send
http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/receive

Oberstein & Goedde Expires April 13, 2016 [Page 126]

Internet-Draft WAMP October 2015

http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send

 with request body being a single WAMP message (unbatched modes) or a
 batch of serialized WAMP messages (batched mode).

 The serialization format used is the one agreed during opening the
 session.

 The batching uses the same scheme as with "wamp.2.json.batched" and
 "wamp.2.msgpack.batched" transport over WebSocket.

 Upon success, the request will return with HTTP status code 202 ("no
 content"). Upon error, the request will return with HTTP status code
 400 ("bad request").

 Closing a Session

 To orderly close a session, a Client will issue a HTTP/POST to

http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/close

 with an empty request body. Upon success, the request will return
 with HTTP status code 202 ("no content").

13.7.3.4. Multiplexed Transport

 A Transport may support the multiplexing of multiple logical
 transports over a single "physical" transport.

 By using such a Transport, multiple WAMP sessions can be transported
 over a single underlying transport at the same time.

 As an example, the proposed WebSocket extension "permessage-priority"
 [9] would allow creating multiple logical Transports for WAMP over a
 single underlying WebSocket connection.

 Sessions running over a multiplexed Transport are completely
 independent: they get assigned different session IDs, may join
 different realms and each session needs to authenticate itself.

 Because of above, Multiplexed Transports for WAMP are actually not
 detailed in the WAMP spec, but a feature of the transport being used.

 Note: Currently no WAMP transport supports multiplexing. The work
 on the MUX extension with WebSocket has stalled, and the
 "permessage-priority" proposal above is still just a proposal.
 However, with RawSocket, we should be able to add multiplexing in
 the the future (with downward compatibility).

http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/send
http://mypp.com/longpoll/kjmd3sBLOUnb3Fyr/close

Oberstein & Goedde Expires April 13, 2016 [Page 127]

Internet-Draft WAMP October 2015

13.7.3.5. Ticket-based Authentication

 With _Ticket-based authentication_, the client needs to present the
 server an authentication "ticket" - some magic value to authenticate
 itself to the server.

 This "ticket" could be a long-lived, pre-agreed secret (e.g. a user
 password) or a short-lived authentication token (like a Kerberos
 token). WAMP does not care or interpret the ticket presented by the
 client.

 Caution: This scheme is extremely simple and flexible, but the
 resulting security may be limited. E.g., the ticket value will be
 sent over the wire. If the transport WAMP is running over is not
 encrypted, a man-in-the-middle can sniff and possibly hijack the
 ticket. If the ticket value is reused, that might enable replay
 attacks.

 A typical authentication begins with the client sending a "HELLO"
 message specifying the "ticket" method as (one of) the authentication
 methods:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["ticket"],
 "authid": "joe"
 }
]

 The "HELLO.Details.authmethods|list" is used by the client to
 announce the authentication methods it is prepared to perform. For
 Ticket-based, this MUST include ""ticket"".

 The "HELLO.Details.authid|string" is the authentication ID (e.g.
 username) the client wishes to authenticate as. For Ticket-based
 authentication, this MUST be provided.

 If the server is unwilling or unable to perform Ticket-based
 authentication, it'll either skip forward trying other authentication
 methods (if the client announced any) or send an "ABORT" message.

 If the server is willing to let the client authenticate using a
 ticket and the server recognizes the provided "authid", it'll send a
 "CHALLENGE" message:

 [4, "ticket", {}]

Oberstein & Goedde Expires April 13, 2016 [Page 128]

Internet-Draft WAMP October 2015

 The client will send an "AUTHENTICATE" message containing a ticket:

 [5, "secret!!!", {}]

 The server will then check if the ticket provided is permissible (for
 the "authid" given).

 If the authentication succeeds, the server will finally respond with
 a "WELCOME" message:

 [2, 3251278072152162,
 {
 "authid": "joe",
 "authrole": "user",
 "authmethod": "ticket",
 "authprovider": "static",
 "roles": ...
 }
]

 where

 1. "authid|string": The authentication ID the client was (actually)
 authenticated as.

 2. "authrole|string": The authentication role the client was
 authenticated for.

 3. "authmethod|string": The authentication method, here ""ticket""

 4. "authprovider|string": The actual provider of authentication.
 For Ticket-based authentication, this can be freely chosen by the
 app, e.g. "static" or "dynamic".

 The "WELCOME.Details" again contain the actual authentication
 information active. If the authentication fails, the server will
 response with an "ABORT" message.

13.7.3.6. Ticket-based Authentication

 With _Ticket-based authentication_, the client needs to present the
 server an authentication "ticket" - some magic value to authenticate
 itself to the server.

 This "ticket" could be a long-lived, pre-agreed secret (e.g. a user
 password) or a short-lived authentication token (like a Kerberos
 token). WAMP does not care or interpret the ticket presented by the
 client.

Oberstein & Goedde Expires April 13, 2016 [Page 129]

Internet-Draft WAMP October 2015

 Caution: This scheme is extremely simple and flexible, but the
 resulting security may be limited. E.g., the ticket value will be
 sent over the wire. If the transport WAMP is running over is not
 encrypted, a man-in-the-middle can sniff and possibly hijack the
 ticket. If the ticket value is reused, that might enable replay
 attacks.

 A typical authentication begins with the client sending a "HELLO"
 message specifying the "ticket" method as (one of) the authentication
 methods:

 [1, "realm1",
 {
 "roles": ...,
 "authmethods": ["ticket"],
 "authid": "joe"
 }
]

 The "HELLO.Details.authmethods|list" is used by the client to
 announce the authentication methods it is prepared to perform. For
 Ticket-based, this MUST include ""ticket"".

 The "HELLO.Details.authid|string" is the authentication ID (e.g.
 username) the client wishes to authenticate as. For Ticket-based
 authentication, this MUST be provided.

 If the server is unwilling or unable to perform Ticket-based
 authentication, it'll either skip forward trying other authentication
 methods (if the client announced any) or send an "ABORT" message.

 If the server is willing to let the client authenticate using a
 ticket and the server recognizes the provided "authid", it'll send a
 "CHALLENGE" message:

 [4, "ticket", {}]

 The client will send an "AUTHENTICATE" message containing a ticket:

 [5, "secret!!!", {}]

 The server will then check if the ticket provided is permissible (for
 the "authid" given).

 If the authentication succeeds, the server will finally respond with
 a "WELCOME" message:

Oberstein & Goedde Expires April 13, 2016 [Page 130]

Internet-Draft WAMP October 2015

 [2, 3251278072152162,
 {
 "authid": "joe",
 "authrole": "user",
 "authmethod": "ticket",
 "authprovider": "static",
 "roles": ...
 }
]

 where

 1. "authid|string": The authentication ID the client was (actually)
 authenticated as.

 2. "authrole|string": The authentication role the client was
 authenticated for.

 3. "authmethod|string": The authentication method, here ""ticket""

 4. "authprovider|string": The actual provider of authentication.
 For Ticket-based authentication, this can be freely chosen by the
 app, e.g. "static" or "dynamic".

 The "WELCOME.Details" again contain the actual authentication
 information active. If the authentication fails, the server will
 response with an "ABORT" message.

14. Binary conversion of JSON Strings

 Binary data follows a convention for conversion to JSON strings.

 A *byte array* is converted to a *JSON string* as follows:

 1. convert the byte array to a Base64 encoded (host language) string

 2. prepend the string with a "\0" character

 3. serialize the string to a JSON string

 Example

 Consider the byte array (hex representation):

 10e3ff9053075c526f5fc06d4fe37cdb

 This will get converted to Base64

Oberstein & Goedde Expires April 13, 2016 [Page 131]

Internet-Draft WAMP October 2015

 EOP/kFMHXFJvX8BtT+N82w==

 prepended with "\0"

 \x00EOP/kFMHXFJvX8BtT+N82w==

 and serialized to a JSON string

 "\\u0000EOP/kFMHXFJvX8BtT+N82w=="

 A *JSON string* is unserialized to either a *string* or a *byte
 array* using the following procedure:

 1. Unserialize a JSON string to a host language (Unicode) string

 2. If the string starts with a "\0" character, interpret the rest
 (after the first character) as Base64 and decode to a byte array

 3. Otherwise, return the Unicode string

 Below are complete Python and JavaScript code examples for conversion
 between byte arrays and JSON strings.

14.1. Python

 Here is a complete example in Python showing how byte arrays are
 converted to and from JSON:

Oberstein & Goedde Expires April 13, 2016 [Page 132]

Internet-Draft WAMP October 2015

 <CODE BEGINS>

 import os, base64, json, sys, binascii
 PY3 = sys.version_info >= (3,)
 if PY3:
 unicode = str

 data_in = os.urandom(16)
 print("In: {}".format(binascii.hexlify(data_in)))

 ## encoding
 encoded = json.dumps('\0' + base64.b64encode(data_in).
 decode('ascii'))

 print("JSON: {}".format(encoded))

 ## decoding
 decoded = json.loads(encoded)
 if type(decoded) == unicode:
 if decoded[0] == '\0':
 data_out = base64.b64decode(decoded[1:])
 else:
 data_out = decoded

 print("Out: {}".format(binascii.hexlify(data_out)))

 assert(data_out == data_in)

 <CODE ENDS>

14.2. JavaScript

 Here is a complete example in JavaScript showing how byte arrays are
 converted to and from JSON:

Oberstein & Goedde Expires April 13, 2016 [Page 133]

Internet-Draft WAMP October 2015

 <CODE BEGINS>

 var data_in = new Uint8Array(new ArrayBuffer(16));

 // initialize test data
 for (var i = 0; i < data_in.length; ++i) {
 data_in[i] = i;
 }
 console.log(data_in);

 // convert byte array to raw string
 var raw_out = '';
 for (var i = 0; i < data_in.length; ++i) {
 raw_out += String.fromCharCode(data_in[i]);
 }

 // base64 encode raw string, prepend with \0
 // and serialize to JSON
 var encoded = JSON.stringify("\0" + window.btoa(raw_out));
 console.log(encoded); // "\u0000AAECAwQFBgcICQoLDA0ODw=="

 // unserialize from JSON
 var decoded = JSON.parse(encoded);

 var data_out;
 if (decoded.charCodeAt(0) === 0) {
 // strip first character and decode base64 to raw string
 var raw = window.atob(decoded.substring(1));

 // convert raw string to byte array
 var data_out = new Uint8Array(new ArrayBuffer(raw.length));
 for (var i = 0; i < raw.length; ++i) {
 data_out[i] = raw.charCodeAt(i);
 }
 } else {
 data_out = decoded;
 }

 console.log(data_out);

 <CODE ENDS>

15. Security Considerations

 -- write me --

Oberstein & Goedde Expires April 13, 2016 [Page 134]

Internet-Draft WAMP October 2015

16. IANA Considerations

 TBD

17. Contributors

18. Acknowledgements

19. References

19.1. Normative References

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <http://www.rfc-editor.org/info/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, DOI 10.17487/RFC3986, January 2005,
 <http://www.rfc-editor.org/info/rfc3986>.

 [RFC6455] Fette, I. and A. Melnikov, "The WebSocket Protocol", RFC
6455, DOI 10.17487/RFC6455, December 2011,

 <http://www.rfc-editor.org/info/rfc6455>.

19.2. Informative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997,
 <http://www.rfc-editor.org/info/rfc2119>.

19.3. URIs

 [1] http://www.iana.org/assignments/websocket/websocket.xml

 [2] pattern-based-registration.md

 [3] pattern-based-registration.md

 [4] pattern-based-registration.md

 [5] http://en.wikipedia.org/wiki/PBKDF2

 [6] http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1

 [7] http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2

https://datatracker.ietf.org/doc/html/rfc3629
http://www.rfc-editor.org/info/rfc3629
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc3986
http://www.rfc-editor.org/info/rfc3986
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc6455
http://www.rfc-editor.org/info/rfc6455
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
http://www.rfc-editor.org/info/rfc2119
http://www.iana.org/assignments/websocket/websocket.xml
http://en.wikipedia.org/wiki/PBKDF2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec5.html#sec5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec2.html#sec2.2

Oberstein & Goedde Expires April 13, 2016 [Page 135]

Internet-Draft WAMP October 2015

 [8] http://en.wikipedia.org/wiki/Record_separator#Field_separators

 [9] https://github.com/oberstet/permessage-priority/blob/master/
draft-oberstein-hybi-permessage-priority.txt

Authors' Addresses

 Tobias G. Oberstein
 Tavendo GmbH

 Email: tobias.oberstein@tavendo.de

 Alexander Goedde
 Tavendo GmbH

 Email: alexander.goedde@tavendo.de

http://en.wikipedia.org/wiki/Record_separator#Field_separators
https://github.com/oberstet/permessage-priority/blob/master/draft-oberstein-hybi-permessage-priority.txt
https://github.com/oberstet/permessage-priority/blob/master/draft-oberstein-hybi-permessage-priority.txt

Oberstein & Goedde Expires April 13, 2016 [Page 136]

