
Multi-Protocol Label Switching WG Yoshihiro Ohba
Internet-Draft Yasuhiro Katsube
Expiration Date: January 1999 Toshiba

 Eric Rosen
 Cisco Systems

 Paul Doolan
 Ennovate Networks

 July 1998

MPLS Loop Prevention Mechanism

 <draft-ohba-mpls-loop-prevention-01.txt>

Status of this Memo

 This document is an Internet-Draft. Internet-Drafts are working
 documents of the Internet Engineering Task Force (IETF), its areas,
 and its working groups. Note that other groups may also distribute
 working documents as Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as
 reference material or to cite them other than as "work in progress."

 To learn the current status of any Internet-Draft, please check the
 "1id-abstracts.txt" listing contained in the Internet-Drafts Shadow
 Directories on ftp.is.co.za (Africa), nic.nordu.net (Europe),
 munnari.oz.au (Pacific Rim), ftp.ietf.org (US East Coast), or
 ftp.isi.edu (US West Coast).

Abstract

 This paper presents a simple mechanism, based on 'threads', which
 can be used to prevent MPLS from setting up label switched path
 (LSPs) which have loops. The mechanism is compatible with, but does
 not require, VC merge. The mechanism can be used with either the
 ingress-initiated ordered control or the egress-initiated ordered
 control. The amount of information that must be passed in a
 protocol message is tightly bounded (i.e., no path-vector is used).
 When a node needs to change its next hop, a distributed procedure is
 executed, but only nodes which are downstream of the change are
 involved.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

Ohba, et al. [Page 1]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

Table of contents

1 Introduction .. 2
2 Definitions ... 3
3 Thread mechanism 4
3.1 Thread ... 4
3.2 Loop prevention algorithm 5
3.3 Why this works 6
3.4 Using old path while looping on new path 7
3.5 How to deal with egress-initiated ordered control ... 7

 3.6 How to realize load splitting from the ingress node . 8
4 Modification to LDP specification 8
4.1 LDP objects ... 8
4.2 Advertisement class messages 10
5 Examples .. 12
5.1 First example 12
5.2 Second example 16
6 Comparison with path-vector/diffusion method 16
7 Security considerations 17
8 Intellectual property considerations 17
9 References .. 17

1. Introduction

 This paper presents a simple mechanism, based on "threads", which
 can be used to prevent MPLS from setting up label switched paths
 (LSPs) which have loops. The thread mechanism is a generalization
 of [1].

 When an LSR finds that it has a new next hop for a particular FEC,
 it creates a thread and extends it downstream. Each such thread is
 assigned a unique "color", such that no two threads in the network
 can have the same color.

 Only a single thread for an LSP is ever extended to a particular
 next hop as long as the thread length does not change. The only
 state information that needs to be associated with a particular next
 hop for a particular LSP is the thread color and length.

 The procedures for determining just how far downstream a thread must
 be extended are given in section 3.

 If there is a loop, then some thread will arrive back at an LSR
 through which it has already passed. This is easily detected, since
 each thread has a unique color.

Section 3 provides procedures for determining that there is no loop.
 When this is determined, the threads are "rewound" back to the point
 of creation. As they are rewound, labels get assigned. Thus labels

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 are NOT assigned until loop freedom is guaranteed.

 While a thread is extended, the LSRs through which it passes must
 remember its color and length, but when the thread has been rewound,

Ohba, et al. [Page 2]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 they need only remember its length.

 The thread mechanism works if some, all, or none of the LSRs in the
 LSP support VC-merge. It can also be used with either the
 ingress-initiated ordered control or the egress-initiated ordered
 control [2,3].

 The state information which must be carried in protocol messages,
 and which must be maintained internally in state tables, is of fixed
 size, independent of the length of the LSP. Thus the thread
 mechanism is more scalable than alternatives which require that
 path-vectors be carried.

 To set up a new LSP after a routing change, the thread mechanism
 requires communication only between nodes which are downstream of
 the point of change. There is no need to communicate with nodes
 that are upstream of the point of change. Thus the thread mechanism
 is more robust than alternatives which require that a diffusion
 computation be performed.

 The thread mechanism contains a number of significant improvements
 when compared to the mechanism described in the previous version of
 this internet draft. In particular:

 o The thread mechanism allows a node whose next hop changes to
 continue using the old LSP while setting up the new LSP (or
 while waiting for the L3 routing to stabilize, so that a new
 loop-free LSP can be set up)

 o When a loop is detected, path setup is delayed, but it is
 automatically resumed when the L3 routing stabilizes and the
 loop disappears. No retry timers are needed.

 o "Color" only has to be remembered while a path is being set up.
 Once it is set up, the "color" (though not the length) can be
 forgotten.

 In this paper, we assume unicast LSPs. The loop prevention for
 multicast LSPs is for further study.

2. Definitions

 An LSP for a particular Forwarding Equivalence Class (FEC) [4] can
 be thought of as a tree whose root is the egress LSR for that FEC.
 With respect to a given node in the tree, we can speak of its
 "downstream link" as the link which is closest to the root; the
 node's other edges are "upstream links".

 The term "link", as used here, refers to a particular relationship

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 on the tree, rather than to a particular physical relationship. In
 the remainder of this section, when we will speak of the upstream
 and downstream links of a node, we are speaking with reference to a
 single LSP tree for a single FEC.

Ohba, et al. [Page 3]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 In the case of non-VC-merging, multiple links of the same FEC
 between the neighboring nodes must be identified by identifiers that
 are locally assigned by the upstream node of the links.

 A leaf node is a node which has no upstream links.

 A "trigger node" is any node which (a) acquires a new next hop
 (i.e., either changes its next hop, or gets a next hop when it
 previously had none) for a particular FEC, and (b) needs to have an
 LSP for that FEC.

 An LSP length at a node is represented by a hop count from the
 furthest leaf node to that node. The LSP length at a leaf node is
 zero.

 In the remainder of the paper, we assume the "downstream-on-demand"
 is used as the label allocation method between neighboring nodes,
 although the thread mechanism is applicable to the upstream
 allocation method.

3. Thread mechanism

3.1. Thread

 A thread is an object used for representing a loop-prevention
 process which extends downstream. The downstream end of a thread is
 referred to as the "thread head".

 A thread has a color that is assigned at the node that creates the
 thread. The color is globally unique in the FEC.

 A thread is always associated with a particular LSP (for a
 particular FEC). The "length" of a thread is the number of hops
 from the thread head to the node which is furthest upstream of it on
 the LSP. An "unknown" length which is greater than any other known
 length is used in a certain situation (see section 3.2).

 A thread has a TTL which is decremented by one (except for a special
 "infinity" value, see section 4) as the thread is extended without
 changing its color.

 For a given LSP, at a given LSR, there can be one "incoming thread"
 for each upstream neighbor, and one "outgoing thread" to the
 downstream neighbor. That is, one of the incoming threads is
 extended downstream. If a node is the creator of a thread, the
 thread becomes a "virtual incoming thread" whose upstream neighbor
 is the node itself. A non-virtual incoming thread is referred to as
 an "actual incoming thread".

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 When a thread is extended, it retains its color, but its length
 becomes the maximum incoming thread length plus 1.

Ohba, et al. [Page 4]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 If a thread head of a given color reaches a node which already has a
 thread of that color, then a loop has been detected.

 When a node changes the color of its outgoing thread, it notifies
 its downstream neighbor by means of LDP messages. The downstream
 neighbor must process these messages in order.

3.2. Loop prevention algorithm

 The ingress-initiated ordered control is assumed here, however, the
 algorithm can be adapted to egress-initiated ordered control (see

section 3.4).

 When a trigger node requests a label assignment to its downstream
 neighbor, it creates a thread and extends it downstream.

 The thread is given an initial length corresponding to the number of
 hops between the trigger node and the furthest upstream leaf. It is
 given a color which consists of the trigger node's IP address,
 prepended to an event identifier which is assigned by the trigger
 node. The trigger node will never reuse an event identifier until
 sufficient time has passed so that we can be sure that no other node
 in the network has any memory of the corresponding color.

 A colored thread is extended downstream until one of the following
 events occurs:

 (i) the thread head reaches an egress node;

 (ii) the thread head reaches a node where there is already an
 ESTABLISHED LSP for the thread, with a KNOWN length which is no
 less than the thread length;

 (iii) the thread head reaches a node which already has an actual or
 a virtual incoming thread of that color;

 (iv) the thread TTL becomes zero;

 (v) the thread head reaches a node where the maximum incoming thread
 length is not updated and there is another actual incoming
 thread.

 o In the case of (i) or (ii), the thread is assured to reach the
 egress node without forming a loop. Therefore the thread is
 "rewound". When a thread is rewound, each node takes the
 following actions. For each upstream link, it assigns a label
 to the LSP and distributes that label LSP upstream, if needed.
 It resets all incoming and outgoing thread colors to
 "transparent". It sets the longest length among actual incoming

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 threads to the LSP length. If the outgoing thread length is
 "unknown" and the obtained LSP length becomes known, it notifies
 downstream of the LSP length (by using a "transparent" thread).

Ohba, et al. [Page 5]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 When the thread is rewound back to the trigger node, the LSP
 setup completes.

 o In the case of (iii) and (iv), the thread is neither extended
 nor rewound. It is blocked at the node. In the case of (iii),
 the following actions are taken. If the node is not the creator
 of the thread, it creates a new thread with "unknown" length and
 extends it downstream. Otherwise, if it is not a leaf node and
 there is no other actual incoming thread, it withdraws the
 outgoing thread (this will cause a thread reconstruction, see

section 3.3).

 o In the case of (v), the received thread is "merged" into the
 outgoing thread and no message is sent to the downstream
 neighbor.

 When a trigger node is attempting to set up a new LSP, it also tells
 its old next hop that it is withdrawing the thread that goes through
 it to the old next hop. This will cause the old next hop to
 withdraw one of its incoming threads.

 When an incoming thread is withdrawn, if there is no actual incoming
 thread, the outgoing thread is also withdrawn unless the node
 becomes a new leaf node. Otherwise, if it is the one currently
 being extended, a new thread is created and extended.

 A transparent thread is extended when a node notifies the downstream
 neighbor on an established LSP of an LSP length update or a thread
 withdrawal without releasing the LSP. No rewinding is needed for
 transparent threads.

 A virtual incoming thread is removed when the corresponding outgoing
 thread is replaced or withdrawn.

3.3. Why this works

 The above procedures ensure that once a looping thread is detected,
 path setup along the LSRs in that thread is effectively stalled
 until the L3 routing changes so as to remove the loop.

 How can we be sure that the any L3 loop will be detected by these
 procedures when a thread length is NOT "unknown"?

 Consider a sequence of LSRs <R1, ..., Rn>, such that there is a loop
 traversing the LSRs in the sequence. (I.e., packets from R1 go to
 R2, then to R3, etc., then to Rn, and then from Rn to R1.)

 Remember that after a routing change, a path cannot be set up (i.e.,
 labels cannot be assigned) until the thread resulting from the

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 routing change is rewound, and the act of rewinding the thread
 causes the thread lengths to be set consistently along the path.

 Suppose that the thread length of the link between R1 and R2 is k.

Ohba, et al. [Page 6]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 Then by the above procedures, the length of the link between Rn and
 R1 must be k+n-1. But the above procedures also ensure that if a
 node has an incoming thread of length j, its outgoing thread must be
 at least of length j+1. Hence, if we assume that the loop is not
 detected by the above procedure, the thread length of the link
 between R1 and R2 must be at least k+n. From this we may derive the
 absurd conclusion that n=0, and we may therefore conclude that there
 is no such sequence of LSRs.

 When a thread of "unknown" length gets into an L3 loop, however,
 there is a situation in which the thread is merged into another
 thread of "unknown" length. In this case, the L3 loop would not be
 explicitly detected, but the thread is effectively stalled in the
 loop until the L3 routing changes so as to remove the loop.

 Inversely, how can we be sure that no loop detection occurs when
 there is no loop?

 Since every new path setup or release attempt that changes an LSP
 length causes the use of a new color, condition (iii) cannot obtain
 unless there actually is an L3 routing loop.

 Next, why thread reconstructions are needed?

 When a thread loop is detected, imagine a thread tree whose root is
 the thread head. If there is a leaf which is not an LSP leaf in
 that tree, then the thread will not disappear even after all LSP
 leaf node withdraw their threads. The thread reconstruction is
 performed to change the location of the thread head to the proper
 node where any leaf of the thread tree is an LSP leaf node.

 In the above procedure, multiple thread updates may happen if
 several leaf nodes start extending threads at the same time. How
 can we prevent multiple threads from looping unlimitedly?

 In the procedure, when a node detects a thread loop by condition
 (iii), it creates a new thread of "unknown" length. All the looping
 threads which later arrive at the node would be merged into this
 thread. Such a thread of "unknown" length behaves like a thread
 absorber. Furthermore, the thread TTL mechanism can eliminate any
 kind of thread looping.

3.4. Using old path while looping on new path

 When a route changes, one might want to continue to use the old path
 if the new route is looping. This is archived simply by holding the
 label assigned to the downstream link on the old path until the
 thread head on the new route returns. This is an implementation
 choice.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

3.5. How to deal with egress-initiated ordered control

Ohba, et al. [Page 7]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 The thread mechanism can be also adapted to the egress-initiated
 ordered control by originating a thread when a node newly receives
 an advertisement message [5] from the downstream node.

 Note that a node which has no upstream link for the LSP yet behaves
 as a leaf. In the case where the tree is being initially built up
 (e.g., the egress node has just come up), each node in turn will
 behave as a leaf for a short period of time.

3.6. How to realize load splitting from the ingress node

 The load splitting from the ingress node can be easily realized by
 assigning a different colored thread to each downstream link.

4. Modification to LDP specification

 A new advertisement class message, Update is added to the current
 specification [5]. In addition, two new objects, Thread object and
 Request ID object are defined.

 When a thread of a particular LSP is extended on a downstream link,
 if a label is not still allocated for that link, a Request message
 is used for carrying the thread as well as for requesting a label,
 otherwise, an Update message is used for extending the thread on the
 downstream link where a label already exists.

 When a node wants to withdraw an outgoing thread as well as
 the downstream link, a Release message is used.

 When a Mapping message is returned to an upstream node in response
 to a Request message, it is treated as an indication of thread
 rewinding (i.e., acknowledgments for loop-prevention check).

 For an Update message, an ACK message is returned and treated as an
 indication of thread rewinding, except for an Update containing a
 special "transparent" thread. (See section 4.1.2.)

4.1. LDP objects

4.1.1. Request ID object

 The object type of Request ID object is TBA.

 +-----------------------+-------+--------------------------+----------+
 | OBJECT | Type | Subtype(s) | Length |
 +-----------------------+-------+--------------------------+----------+
 | Request ID | TBA | 0x01 Default | 4 |

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 +-------------------------------+--------------------------+----------+

 The Request ID object contains the information for identifying
 multiple LSPs of the same SMD.

Ohba, et al. [Page 8]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 SubType = 0x01 Default

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Request ID |
 +-+

 Request ID
 This four-octet quantity contains a request-id which is
 locally assigned by an upstream neighbor of a link.

4.1.2. Thread object

 The object type of Loop Prevention object is TBA.

 +-----------------------+-------+--------------------------+----------+
 | OBJECT | Type | Subtype(s) | Length |
 +-----------------------+-------+--------------------------+----------+
 | Thread | TBA | 0x01 Default | 12 |
 +-------------------------------+--------------------------+----------+

 The Thread object contains the information required for the thread
 mechanism.

 SubType = 0x01 Default

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | |
 | Color |
 | |
 +-+
 | Length | TTL | Reserved |
 +-+

 Color
 This eight-octet quantity contains a color of the thread. The
 first four-octet is the thread creator's IP address. The last
 four-octet is the local-id which is unique within the thread
 creator's IP address.

 If a node does not require a loop prevention check but only
 requires an LSP length update, the special color "transparent"
 is defined by setting all zero's to the Color field. No
 acknowledgment is needed for transparent threads.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 Length
 This one octet quantity contains a thread length which is
 represented by a hop count from the furthest leaf node to the
 thread head. The value 0xff is assigned for "unknown" thread

Ohba, et al. [Page 9]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 length.

 TTL (Time To Live)
 This one octet quantity contains a thread TTL which is
 decremented by one (except for TTL="infinity") when a thread is
 extended without changing its color. When the TTL becomes zero,
 the extending procedure must be stopped. The value 0xff is
 assigned for "infinity" which is never decremented.

4.2 Advertisement class messages

4.2.1. Request message

 Mandatory Objects
 At least one of each mandatory object with associated object headers.

 +-----------------------+----------+
 | MANDATORY OBJECT | Type |
 +-----------------------+----------+
 | SMD | 0x02 |
 +-----------------------+----------+
 | Class of Service | 0x04 |
 +-----------------------+----------+

 Optional Objects
 Zero or more optional objects with associated object headers.

 +-----------------------+----------+
 | OPTIONAL OBJECT | Type |
 +-----------------------+----------+
 | Request ID | TBA |
 +-----------------------+----------+
 | Thread | TBA |
 +-----------------------+----------+

4.2.2. Mapping message

 Mandatory Objects
 At least one of each mandatory object with associated object headers.

 +-----------------------+----------+
 | MANDATORY OBJECT | Type |
 +-----------------------+----------+
 | SMD | 0x02 |
 +-----------------------+----------+
 | Label | 0x03 |
 +-----------------------+----------+

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 Optional Objects
 Zero or more optional objects with associated object headers.

Ohba, et al. [Page 10]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 +-----------------------+----------+
 | OPTIONAL OBJECT | Type |
 +-----------------------+----------+
 | Class of Service | 0x04 |
 +-----------------------+----------+
 | Hop Count | 0x06 |
 +-----------------------+----------+
 | MTU | 0x07 |
 +-----------------------+----------+
 | Stack | 0x08 |
 +-----------------------+----------+
 | Request ID | TBA |
 +-----------------------+----------+

4.2.3. Update message

 The message type of Update message is TBA.

 Mandatory Objects
 At least one of each mandatory object with associated object headers.

 +-----------------------+----------+
 | MANDATORY OBJECT | Type |
 +-----------------------+----------+
 | SMD | 0x02 |
 +-----------------------+----------+
 | Class of Service | 0x04 |
 +-----------------------+----------+
 | Thread | TBA |
 +-----------------------+----------+

 Optional Objects
 Zero or more optional objects with associated object headers.

 +-----------------------+----------+
 | OPTIONAL OBJECT | Type |
 +-----------------------+----------+
 | Request ID | TBA |
 +-----------------------+----------+

4.2.4. Release message

 Mandatory Objects
 At least one of each mandatory object with associated object headers.

 +-----------------------+----------+
 | MANDATORY OBJECT | Type |

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 +-----------------------+----------+
 | SMD | 0x02 |
 +-----------------------+----------+

Ohba, et al. [Page 11]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 Optional Objects
 Zero or more optional objects with associated object headers.

 +-----------------------+----------+
 | OPTIONAL OBJECT | Type |
 +-----------------------+----------+
 | Label | 0x03 |
 +-----------------------+----------+
 | Request ID | TBA |
 +-----------------------+----------+

4.2.5. Ack/Nak message

 Mandatory Objects
 At least one of each mandatory object with associated object headers.

 +-----------------------+----------+
 | MANDATORY OBJECT | Type |
 +-----------------------+----------+
 | SMD | 0x02 |
 +-----------------------+----------+
 | Error | 0x01 |
 +-----------------------+----------+

 Optional Objects

 Zero or more optional objects with associated object headers.

 +-----------------------+----------+
 | OPTIONAL OBJECT | Type |
 +-----------------------+----------+
 | Label | 0x03 |
 +-----------------------+----------+
 | Request ID | TBA |
 +-----------------------+----------+

5. Examples

 In the following examples, we assume that the ingress-initiated
 ordered control is employed, that all the LSPs are with regard to
 the same FEC, and that all nodes are VC-merge capable.

5.1. First example

 Consider an MPLS network shown in Fig. 1 in which an L3 loop exists.
 Each directed link represents the current next hop of the FEC at
 each node. Now leaf nodes R1 and R6 initiate creation of an LSP.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

Ohba, et al. [Page 12]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 R11 -------- R10 <-------------------- R9
 | | ^
 | | |
 v v |
 R1 -------> R2 --------> R3 --------> R4 ---------- R5
 (leaf) ^
 |
 |
 R6 -------> R7 --------> R8
 (leaf)

 Fig. 1 Example MPLS network (1)

 Assume that R1 and R6 sends Request messages at the same time, and
 that the initial thread TTL is 254 (255 represents "infinity").
 First we show an example of how to prevent LSP loops before thread
 TTL becomes zero.

 The Request message from R1 contains a thread of (red,1,254), where
 a thread is identified by (color,length,TTL). The Request message
 from R6 contains a thread of (blue,1,254).

 Assume that R3 receives the Request originated from R1 before the
 Request originated from R6. Then R3 forwards the Request with the
 thread of (red,3,252) and then the Request with (blue,4,251) in this
 order.

 When R2 receives the Request from R10 with the thread of
 (red,6,249), it detects a loop of the red thread. In this case, R2
 creates a new purple thread of "unknown" length and extends it
 downstream by sending a Request with (purple,?,254) to R3, where "?"
 represents "unknown".

 After that, R2 receives another Request for the same LSP from R10
 with (blue,7,248). The blue thread is merged into the purple thread
 since the purple thread length (="unknown") is longer than the blue
 thread length (=7). R2 sends nothing to R3.

 On the other hand, the purple thread goes round and R2 detects
 the loop of its own purple thread.

 In this case, neither a thread is rewound nor a Mapping is returned.
 The current state of the network is shown in Fig. 2. Note that
 thread TTL information is not shown here.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

Ohba, et al. [Page 13]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 Bl(L): blue thread with length L
 Re(L): red thread with length L
 Pu(L): purple thread with length L
 *: position of thread head

 Pu(?)
 R11 -------- R10 <------------------- R9
 | | ^
 | | Pu*(?) | Pu(?)
 v v |
 R1 -------> R2 -------> R3 --------> R4 --------- R5
 (leaf) Re(1) Pu(?) ^ Pu(?)
 | Bl(3)
 |
 R6 -------> R7 -------> R8
 (leaf) Bl(1) Bl(2)

 Fig. 2 The network state

 Then R10 changes its next hop from R2 to R11.

 Since R10 has a purple thread on the old downstream link, it first
 sends a Release message to the old next hop R2 for removing the
 purple thread. Next, it creates a new green thread for which the
 purple thread length(="unknown") is used, and sends a Request with
 (green,?,254) to R11.

 When R2 receives the Release from R10, the upstream link between R10
 and R2 is removed.

 On the other hand, the green thread goes round to R10 without
 being merged.

 When R10 receives the green thread, it sends a Release message to
 R11 to withdraw the green thread, since it is the creator of the
 green thread and there is no other actual incoming thread.

 When R1 removes the green thread, it creates a new orange thread and
 resends a Request with (orange,0,254) to R2. The orange thread goes
 round to R1, replacing the green thread on the path. Finally, R1
 detects the loop of its own orange thread.

 The state of the network is now shown in Fig. 3.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

Ohba, et al. [Page 14]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 Or(L): orange thread with length L
 Bl(L): blue thread with length L
 *: position of thread head

 Or(7) Or(6)
 R11 <------- R10 <------------------- R9
 | | ^
 | Or*(8) | | Or(5)
 v | |
 R1 -------> R2 -------> R3 --------> R4 --------- R5
 (leaf) Or(1) Or(2) ^ Or(4)
 | Bl(3)
 |
 R6 -------> R7 -------> R8
 (leaf) Bl(1) Bl(2)

 Fig. 3 The network state

 Then R4 changes its next hop from R9 to R5.

 Since R4 has the orange thread, it first sends a Release message to
 the old next hop R9 to withdraw the orange thread on the old route.
 Next, it creates a yellow thread of length 4, and sends a Request
 with (yellow,5,254) to R5.

 Since R5 is the egress node, the received thread is assured to be
 loop-free, and R5 returns a Mapping message with a label. R5 sets
 the LSP length to 5.

 The thread rewiding procedure is performed at each node, as the
 Mapping is returned upstream hop-by-hop.

 Finally, when each of R1 and R6 receives a Mapping message, a merged
 LSP ((R1->R2),(R6->R7->R8))->R3->R4->R5) is established and all the
 colored threads disappear from the network.

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

Ohba, et al. [Page 15]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

5.2. Second example

 +----- R6----> R7-----+
 | |
 | v
 R1---->R2 R4----->R5
 | ^
 | |
 +--------->R3---------+

 Fig. 4. Example MPLS network (2)

 Assume that in Fig. 4, there is an established LSP
 R1->R2->R3->R4->R5, and the next hop changes at R2 from R3 to R6.
 R2 sends a Request to R6 with (red,2,254). When the Request with
 (red,4,252) reaches R4, it sends an Update message to R5 with
 (red,5,251) since the received thread length (=4) is longer than the
 current LSP length (=3).

 When R5 receives the Update, it updates the LSP length to 5 and
 returns an ACK for the Update. When R4 receives the ACK for the
 Update, it returns an Mapping to R7.

 When R2 receives the Mapping on the new route, it sends a Release to
 R3. When R4 receives the Release, it does not sends an Update to R5
 since the LSP length does not change. Now an established LSP
 R1->R2->R6->R7->R4->R5 is obtained.

 Then, the next hop changes again at R2 from R6 to R3.

 R1 sends a Request with (blue,2,254) to R3. R3 forwards the Request
 with (blue,3,253) to R4.

 When R4 receives the Request, it immediately returns a Mapping to R3
 since the received thread length (=3) is not longer than the current
 LSP length (=4).

 When R2 receives the Mapping on the new route, it sends a Release to
 R6. The Release reaches R4, triggering an Update message with a
 transparent thread (0,4,255) to R5, since the LSP length at R4
 decreases from 4 to 3. R5 updates the LSP length to 4 without
 returning an ACK.

6. Comparison with path-vector/diffusion method

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

 o Whereas the size of the path-vector increases with the length of
 the LSP, the sizes of the threads are constant. Thus the size
 of messages used by the thread algorithm are unaffected by the
 network size or topology. In addition, the thread merging

Ohba, et al. [Page 16]

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

 capability reduces the number of outstanding messages. These
 lead to improved scalability.

 o In the thread algorithm, a node which is changing its next hop
 for a particular LSP must interact only with nodes that are
 between it and the LSP egress on the new path. In the
 path-vector algorithm, however, it is necessary for the node to
 initiate a diffusion computation that involves nodes which do
 not lie between it and the LSP egress.

 This characteristic makes the thread algorithm more robust. If
 a diffusion computation is used, misbehaving nodes which aren't
 even in the path can delay the path setup. In the thread
 algorithm, the only nodes which can delay the path setup are
 those nodes which are actually in the path.

 o The thread algorithm is well suited for use with both the
 ingress-initiated ordered control and the egress-initiated
 ordered control. The path-vector/diffusion algorithm, however,
 is tightly coupled with the egress-initiated ordered control.

 o The thread algorithm is retry-free, achieving quick path
 (re)configuration. The diffusion algorithm tends to delay the
 path reconfiguration time, since a node at the route change
 point must to consult all its upstream nodes.

 o In the thread algorithm, the node can continue to use the old
 path if there is an L3 loop on the new path, as in the
 path-vector algorithm.

7. Security considerations

 Security considerations are not discussed in this document.

8. Intellectual property considerations

 Toshiba and/or Cisco may seek patent or other intellectual property
 protection for some of the technologies disclosed in this document.
 If any standards arising from this document are or become protected
 by one or more patents assigned to Toshiba and/or Cisco, Toshiba
 and/or Cisco intend to disclose those patents and license them on
 reasonable and non-discriminatory terms.

9. References

[1] Y. Ohba, et al., "Flow Attribute Notification Protocol Version 2
 (FANPv2) Ingress Control Mode," Internet Draft,

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt

draft-ohba-csr-fanpv2-icmode-00.txt, Dec. 1997.

[2] B. Davie, et al., "Use of Label Switching With ATM," Internet Draft,
draft-davie-mpls-atm-01.txt, July 1998.

Ohba, et al. [Page 17]

https://datatracker.ietf.org/doc/html/draft-ohba-csr-fanpv2-icmode-00.txt
https://datatracker.ietf.org/doc/html/draft-davie-mpls-atm-01.txt

Internet-Draft draft-ohba-mpls-loop-prevention-01.txt July 1998

[3] E. Rosen, et al., "A Proposed Architecture for MPLS,"
 Internet Draft, draft-ietf-mpls-arch-01.txt, July 1998.

[4] R. Callon, et al., "A Framework for Multiprotocol Label
 Switching," Internet Draft, draft-ietf-mpls-framework-02.txt,
 Nov. 1997.

[5] L. Andersson, et al., "Label Distribution Protocol," Internet Draft,
draft-mpls-ldp-spec-00.txt, March 1998.

Authors' Addresses

 Yoshihiro Ohba
 R&D Center, Toshiba Corp.
 1, Komukai-Toshiba-cho, Saiwai-ku
 Kawasaki, 210, Japan
 Email: ohba@csl.rdc.toshiba.co.jp

 Yasuhiro Katsube
 R&D Center, Toshiba Corp.
 1, Komukai-Toshiba-cho, Saiwai-ku
 Kawasaki, 210, Japan
 Email: katsube@isl.rdc.toshiba.co.jp

 Eric Rosen
 Cisco Systems, Inc.
 250 Apollo Drive
 Chelmsford, MA, 01824
 Email: erosen@cisco.com

 Paul Doolan
 Ennovate Networks
 330 Codman Hill Road
 Boxborough, MA
 Email: pdoolan@ennovatenetworks.com

https://datatracker.ietf.org/doc/html/draft-ohba-mpls-loop-prevention-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-arch-01.txt
https://datatracker.ietf.org/doc/html/draft-ietf-mpls-framework-02.txt
https://datatracker.ietf.org/doc/html/draft-mpls-ldp-spec-00.txt

Ohba, et al. [Page 18]

