
Internet Engineering Task Force Y. Oiwa
Internet-Draft H. Watanabe
Intended status: Standards Track H. Takagi
Expires: August 11, 2008 RCIS, AIST
 H. Suzuki
 Yahoo! Japan
 February 8, 2008

Mutual Authentication Protocol for HTTP
draft-oiwa-http-mutualauth-02

Status of this Memo

 By submitting this Internet-Draft, each author represents that any
 applicable patent or other IPR claims of which he or she is aware
 have been or will be disclosed, and any of which he or she becomes
 aware will be disclosed, in accordance with Section 6 of BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt.

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 This Internet-Draft will expire on August 11, 2008.

Copyright Notice

 Copyright (C) The IETF Trust (2008).

Abstract

 This document specifies the "Mutual authentication protocol for
 Hyper-Text Transport Protocol". This protocol provides true mutual
 authentication between HTTP clients and servers using simple
 password-based authentication. Unlike Basic and Digest HTTP access
 authentication protocol, the protocol ensures that server knows the

Oiwa, et al. Expires August 11, 2008 [Page 1]

https://datatracker.ietf.org/doc/html/bcp79#section-6
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 user's entity (encrypted password) upon successful authentication.
 This prevents common phishing attacks: phishing attackers cannot
 convince users that the user has been authenticated to the genuine
 website. Furthermore, even when a user has been authenticated
 against an illegitimate server, the server cannot gain any bit of
 information about user's passwords. The protocol is designed as an
 extension to the HTTP protocol, and the protocol design intends to
 replace existing authentication mechanism such as Basic/Digest access
 authentications and form-based authentications.

Oiwa, et al. Expires August 11, 2008 [Page 2]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

Table of Contents

1. Introduction . 4
1.1. Requirements Language 5

2. Protocol Overview . 5
3. Message Syntax . 6
3.1. Tokens and Extensive-tokens 7
3.2. Numbers . 7
3.3. Strings . 8

4. Messages . 8
4.1. 401-B0 . 9
4.2. 401-B0-stale . 10
4.3. req-A1 . 10
4.4. 401-B1 . 11
4.5. req-A3 . 12
4.6. 200-B4 . 13

5. Decision procedure for the client 13
6. Decision procedure for the server 18
7. Authentication Algorithms 19
7.1. Common functions . 19
7.2. Functions for discrete-logarithm settings 21
7.3. Functions for elliptic-curve settings 22

8. Validation Methods . 23
9. Session Management . 24
10. Extension 1: Optional Mutual Authentication 25
11. Methods to extend this protocol 26
12. IANA Considerations . 26
13. Security Considerations 26
13.1. General Assumptions 27
13.2. Implementation Considerations 27
13.3. Usage Considerations 28

14. Notice on intellectual properties 28
15. Acknowledgement . 29
16. References . 29
16.1. Normative References 29
16.2. Informative References 30

Appendix A. Group parameters for discrete-logarithm based
 algorithms . 30

Appendix B. Derived numerical values 33
Appendix C. Draft Remarks from the Authors 34
Appendix D. Draft Change Log 34
D.1. Changes in revision 02 34

 Authors' Addresses . 35
 Intellectual Property and Copyright Statements 36

Oiwa, et al. Expires August 11, 2008 [Page 3]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

1. Introduction

 This document specifies the "Mutual authentication protocol for
 Hyper-Text Transport Protocol". This protocol provides true mutual
 authentication between HTTP clients and servers using simple
 password-based authentication. Unlike Basic and Digest HTTP access
 authentication protocol [RFC2617], the protocol ensures that server
 knows the user's entity (encrypted password) upon successful
 authentication. This prevents common phishing attacks: phishing
 attackers cannot convince users that the user has been authenticated
 to the genuine website. Furthermore, even when a user has been
 authenticated against an illegitimate server, the server cannot gain
 any bit of information about user's passwords.

 Recently, phishing attacks are getting more and more sophisticated.
 Phishers not only steal user's password directly, but imitate
 successful authentication to steal user's sensitive information,
 check the password validity by forwarding the password to the
 legitimate server, or employ a man-in-the-middle attack to hijack
 user's login session. Existing countermeasures such as one-time
 passwords cannot completely solve these problems.

 The protocol prevents such attacks by providing users a way to
 discriminate between true and fake web servers using their own
 passwords. Even when a user inputs his/her password to a fake
 website, using this authentication method, any information about the
 password does not leak to the phisher, and the user certainly notices
 that the mutual authentication has failed. Phishers cannot make such
 authentication attempt succeed, even if they forward received data
 from a user to the legitimate server or vice versa. Users can safely
 input sensitive data to the web forms after confirming that the
 mutual authentication has succeeded.

 To achieve this goal, this protocol uses a mechanism in ISO/IEC
 11770-4 [ISO.11770-4.2006], a kind of PAKE (Password-Authenticated
 Key Exchange) authentication algorithms as a basis. The use of PAKE
 mechanism allows users to use familiar ID/password based accesses,
 without fear of leaking any password information to the communication
 peer. The protocol, as a whole, is designed as a natural extension
 to the HTTP protocol [RFC2616].

 The design also considers to replace current form-based Web
 authentication, which is very vulnerable against phishing attacks.
 To this purpose, several extensions to current HTTP authentication
 mechanism [RFC2617] are introduced.

https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617

Oiwa, et al. Expires August 11, 2008 [Page 4]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in [RFC2119].

2. Protocol Overview

 The following sequence is a typical sequence for the first access to
 the resource.

 o If the server (S) has received a request for mutual-authentication
 protected resources from the Client (C) (which is not a req-A1 nor
 a req-A3 message), it sends a 401-B0 message to C.

 When C has received a 401-B0 message, C SHOULD check validity of
 the message. If succeed, C processes the body of the message, and
 enables the password entry field.

 o If the user has input the username and password as a response to
 the 401-B0 message, C creates a value s_A, calculates the value
 w_A, and construct and send a req-A1 message.

 o If S has received an req-A1 message, S should check validity of
 w_A, record the received w_A value, and then look up the username
 from the user table. if the user is found, S prepares a new
 session id (sid), record it into a session table, and then
 construct s_B, calculate w_B, and then send an 401-B1 message.

 If there is no matching user found, the server SHOULD construct a
 fake w_B value, and let the protocol going on by sending an 401-B1
 message.

 o When C has received an 401-B1 message as a response for a req-A1
 message, C should check validity of w_B, and compute z and o_A,
 and send an req-A3 message.

 If C receives any messages other than 401-B1, C MUST NOT process
 the message body and treat it as a fatal communication error
 condition. This case includes the reception of HTTP OK (200-
 status) message.

 o If S has received an req-A3 message, S should look up the received
 sid from the session table. If no matching sid message is
 received, or if S has not received the corresponding req-A1
 message beforehand, S SHOULD send an 401-B0-stale message.

https://datatracker.ietf.org/doc/html/rfc2119

Oiwa, et al. Expires August 11, 2008 [Page 5]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 Otherwise, S should computes o_A and check its value. If the
 validation has failed, the server SHOULD send an 401-B0 message.

 If the validation has succeeded, the server SHOULD calculate o_B,
 and send a 200-B4 message.

 o When C has received an 401-B0 message, it means the authentication
 has been failed, possibly due to that the wrong password has been
 given. C MAY ignore the body of the 401-B0 message in this case.

 When C has received an 200-B4 message, C MUST first compute the
 value of o_B and validate the value o_B sent from the server. If
 it has not verified successfully, C MUST ignore the body of the
 message, and treat it as a fatal communication error condition.
 If it has succeed, C will process the body of the message.

 If C receives any messages other than 401-B0 or valid 200-B4, C
 MUST NOT process the message body and other headers and treat it
 as a fatal communication error condition. This case includes the
 reception of usual HTTP OK (200-status) messages.

 For the second or later request to the server, if the client knows
 that the resource is likely to require the authentication, the client
 MAY omit first unauthenticated request and send req-A1 message
 immediately. In this case, the first (and only the first) response
 from the server MAY be a normal, unauthenticated message, and client
 MAY accept such messages.

 Furthermore, if client owns a valid session ID (sid), the client MAY
 send a req-A3 message using existing sid. In such cases, the server
 MAY have thrown out the corresponding sessions, then the server
 SHOULD send a 401-B0-stale message as a response to req-A3 message,
 and C SHOULD retry from constructing req-A1 message.

 For more detail, see Section 5.

3. Message Syntax

 The Mutual authentication protocol uses four headers:
 WWW-Authenticate (in responses with status code 401),
 Optional-WWW-Authenticate (in responses with positive status codes),
 Authorization (in requests), and Authentication-info (in positive
 responses). These three headers share the common syntax described in
 Figure 1. The syntax is denoted in the augmented BNF syntax defined
 in [RFC4234]. The syntax is a subset of the one described in
 [RFC2617].

https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc2617

Oiwa, et al. Expires August 11, 2008 [Page 6]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 header = header-name ":" [spaces] "Mutual" spaces fields
 header-name = "WWW-Authenticate" / "Optional-WWW-Authenticate"
 / "Authorization" / "Authentication-info"
 spaces = 1*(" " / %x09 / %x0D.0A (" " / %x09)) ; LWSP
 fields = field *([spaces] "," spaces field)
 field = key "=" value
 key = extensive-token
 extensive-token = token / extension-token
 extension-token = token "@" token
 token = 1*(%x30-39 / %x41-5A / %x61-7A / "." / "-" / "_")
 value = extensive-token / integer / hex-integer
 / hex-fixed-number
 / base64-fixed-number / string
 integer = "0" / (%x31-39 *%x30-39) ; no leading zeros
 hex-integer = "0"
 / ((%x31-39 / %x41-46 / %x61-66) ; no leading zeros
 *(%x30-39 / %x41-46 / %x61-66))
 hex-fixed-number = 1*(%x30-39 / %x41-46 / %x61-66)
 base64-fixed-number = string
 string = %x22 *(%x20-21 / %x23-5B / %x5D-FF
 / %x5C.22 / "\\" / "\,") %x22

 Figure 1: the BNF syntax for the headers used in the protocol

3.1. Tokens and Extensive-tokens

 The tokens MUST be interpreted case-insensitive, and SHOULD be sent
 in the same case as shown in the specification. When these are used
 as (partial) inputs to any hash or other mathematical functions, it
 MUST be used in lower-case. All hex-fixed-number or hex-integer
 numbers are also case-insensitive, and SHOULD be sent in lower-case.

 Extensive-tokens are used where the set of acceptable tokens are
 extensible. Any non-standard extensions of this protocol MUST use
 the extension-tokens of format "<token>@<domain-name>", where domain-
 name is the valid registered (sub-)domain name on the Internet owned
 by the party who defines extensions.

3.2. Numbers

 The syntax definitions of integer and hex-integer only allow
 representations which do not contain extra leading 0s.

 The numbers represented as a hex-fixed-number MUST have even
 characters (i.e. multiple of eight bits). When these are generated
 from cryptographic values, those SHOULD have the natural length: if
 these are generated from a hash function, these lengths SHOULD
 correspond to the hash size; if these are representing elements of a

Oiwa, et al. Expires August 11, 2008 [Page 7]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 mathematical group, its lengths SHOULD be the shortest which can
 represent all elements in the group. See Appendix B for information
 about the length of the fields used in this specification. Other
 values such as session-id are represented in any (even) length
 determined by the side who generates it first, and the same length
 SHALL be used throughout the whole communications by both peers.

 The numbers represented as a base64-fixed-number SHALL be generated
 as follows: first, the number is converted to a big-endian octet-
 string representation. The length of the representation is
 determined in the same way as above. Then, the string is encoded by
 the Base 64 encoding [RFC3548], and then enclosed by two double-
 quotations.

3.3. Strings

 All strings outside ASCII or equivalent character sets SHOULD be
 encoded using UTF-8 encoding [RFC3629] of the ISO 10646-1 character
 set [ISO.10646-1.1993]. Both peers SHOULD reject any invalid UTF-8
 sequences which causes decoding ambiguities (e.g. containing <"> in
 the second or later byte of the UTF-8 encoded characters). To encode
 character strings, these will first be encoded according to UTF-8
 without leading BOM, then all occurrences of characters <"> and "\"
 will be escaped by prepending "\", and two <">s will be put around
 the string. If the contents of the strings are comma-separated
 values, the commas in the values are also quoted by "\".

 If strings are representing a domain name or URI which contains non-
 ASCII characters, the host parts SHOULD be encoded using puny-code
 defined in [RFC3492] instead of UTF-8, and SHOULD use lower-case
 ASCII characters.

 For Base64-fixed-numbers, which use the string syntax, see the
 previous section.

4. Messages

 In this section, formats and requirements of the headers for each
 message are presented. The allowed type for values for each header
 field is shown in parenthesis after the key names. The type
 "algorithm-determined" means that the acceptable value type for the
 field is one of the types defined in Section 3, and is determined by
 the value of the "algorithm" field.

 Note: The term "optional" here means that omitting the field is
 allowed and has specific meanings in communications (i.e. it is not
 generally "OPTIONAL" defined in [RFC2119]).

https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc3492
https://datatracker.ietf.org/doc/html/rfc2119

Oiwa, et al. Expires August 11, 2008 [Page 8]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

4.1. 401-B0

 Every 401-B0 message SHALL be a valid HTTP 401 (Authentication
 Required) message containing one (and only one: hereafter not
 explicitly noticed) "WWW-Authenticate" header of the following
 format.

 WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx,
 realm="xxxx", stale=0

 The header SHALL contain the fields with the following keys:

 algorithm: (extensive-token) specifies the authentication
 algorithm to be used. The value MUST be one of the
 tokens described in Section 7, or the tokens specified
 in other supplemental specification documentations.

 validation: (extensive-token) specifies the method of host
 validation. The value MUST be one of the tokens
 described in Section 8, or the tokens specified in
 other supplemental specification documentations.

 realm: (string) is a UTF-8 encoded name of the authentication
 domain inside the server.

 pwd-hash: (optional, extensive-token) specifies the hash
 algorithm (referred to by ph) used for additionally
 hashing the password. The valid tokens are

 * none: ph(p) = p

 * md5: ph(p) = MD5(p)

 * digest-md5: ph(p) = MD5(username | ":" | realm |
 ":" | p), the same value as MD5(A1) for "MD5"
 algorithm in [RFC2617].

 * sha1: ph(p) = SHA1(p)

 If omitted, the value "none" is assumed. The use of
 "none" is recommended.

 auth-domain: (optional, string) MUST currently be one of the
 following strings.

 * the host part of the requested URI,

https://datatracker.ietf.org/doc/html/rfc2617

Oiwa, et al. Expires August 11, 2008 [Page 9]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 * the string in format "scheme://host:port", where
 scheme, host and port are the URI parts of the
 requested URI. The scheme and host are in lower-
 case, and the port is in a shortest decimal
 representation. Even if the request-URI does not
 have a port part, the string will include the one.

 If the value is omitted, it is assumed to be the host
 part of the requested URI. The triple of auth-domain,
 algorithm, and realm determines the "authentication
 realm" which defines the area where the same user-name
 and passwords are applicable.

 stale: (token) MUST be "0".

 Any additional fields SHOULD NOT be contained in the header, except
 those explicitly specified in supplement specifications of the
 "authentication algorithm".

 The algorithm will determine the types and the values for w_A, w_B,
 o_A and o_B.

4.2. 401-B0-stale

 A 401-B0-stale message is a variant of 401-B0 message, which means
 that the client has sent a request message which is not for any
 active session.

 WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx,
 realm="xxxx", stale=1

 The header MUST contain the same fields as in 401-B0, except that
 stale field holds the integer 1.

4.3. req-A1

 Every req-A1 message SHALL be a valid HTTP request message containing
 a "Authorization" header of the following format.

 Authorization: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx",
 user="xxxx", wa=xxxx

 The header SHALL contain the fields with the following keys:

Oiwa, et al. Expires August 11, 2008 [Page 10]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 algorithm, validation, auth-domain, realm: MUST be the same value as
 it is received from S.

 user: (string) is the UTF-8 encoded name of the user.

 wa: (algorithm-determined) is the value of w_A specified
 by the used algorithm.

4.4. 401-B1

 Every 401-B1 message SHALL be a valid HTTP 401 (Authentication
 Required) message containing a "WWW-Authenticate" header of the
 following format.

 WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx,
 realm="xxxx", sid=xxxx, wb=xxxx, nc-max=x, nc-window=x, time=x,
 path="xxxx"

 The header SHALL contain the fields with the following keys:

 algorithm, validation, auth-domain, realm: MUST be the same value as
 it is received from C.

 sid: (hex-fixed-number) MUST be a session id, which is a
 random integer. The sid SHOULD have uniqueness of at
 least 80 bits or the square of the maximal estimated
 transactions concurrently available in the session
 table, whichever is larger. Sids are local to each
 authentication realm concerned: the same sids for
 different authentication realms SHOULD be treated as
 independent ones.

 wb: (algorithm-determined) is the value of w_B specified
 by the algorithm.

 nc-max: (hex-integer) is the maximal value of nonce counts
 which S accepts.

 nc-window: (hex-integer) the number of available nonce slots
 which S will accept. The value of nc-window is
 RECOMMENDED to be thirty-two ("20" in hex-integer) or
 more.

 time: (integer) represents the suggested time (in seconds)
 which C can reuse the session represented by sid. It
 is RECOMMENDED to be at least 60. The value of this
 field is not directly linked to the duration that S
 keeps track of the session represented by sid.

Oiwa, et al. Expires August 11, 2008 [Page 11]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 path: (optional, string) specifies for which path in the URI
 space the same authentication is expected to apply.
 The value is in the same format as it is specified in
 [RFC2617] for the Digest authentications, and clients
 are RECOMMENDED to recognize it. The all path
 elements contained in the field MUST be inside the
 specified auth-domain: if not, client SHOULD ignore
 such elements.

4.5. req-A3

 Every req-A3 message SHALL be a valid HTTP request message containing
 a "Authorization" header of the following format.

 Authorization: Mutual algorithm=xxxx, validation=xxxx, realm="xxxx",
 sid=xxxx, nc=x, oa=xxxx

 The fields contained in the header is as follows:

 algorithm, validation, auth-domain, realm: MUST be the same value as
 it is received from S for the session.

 sid: (hex-fixed-number) MUST be one of the sid values which
 has been received from S.

 nc: (hex-integer) is a nonce value which is unique among
 the requests sharing the same sid. The value of nc
 SHOULD satisfy the following properties:

 * It is not larger than the nc-max value which has
 been sent from S in the session represented by the
 sid.

 * C have not sent the same value in the same session.

 * It is not smaller than (largest-nc - nc-window),
 where largest-nc is the maximal value of nc which
 has previously been sent in the session, and nc-
 window is the value of the nc-window field which
 has been sent from S in the session.

 oa: (algorithm-determined) is the value of o_A specified
 by the algorithm.

https://datatracker.ietf.org/doc/html/rfc2617

Oiwa, et al. Expires August 11, 2008 [Page 12]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

4.6. 200-B4

 Every 200-B1 message SHALL be a valid HTTP message which is not 401
 (Authentication Required) type, containing an "Authentication-Info"
 header of the following format.

 Authentication-Info: Mutual sid=xxxx, ob=xxxx

 The fields contained in the header is as follows:

 sid: (hex-fixed-number) MUST be the value received from C.

 ob: (algorithm-determined) is the value of o_B specified
 by the algorithm.

 logout-timeout: (optional, integer) is a number of seconds after
 which the client should re-validate the user's
 password for the current authentication realm. As a
 special case, the value 0 means that the client SHOULD
 automatically forget the user-inputed password to the
 current authentication realm and revert to the
 unauthenticated state (i.e.~server-initiated logout).
 This does not, however, mean that the long-term
 memories for the passwords (such as password reminders
 and auto fill-ins) should be removed. If a new value
 of timeout is received for the same authentication
 realm, it overrides the previous timeout.

5. Decision procedure for the client

 To securely implement the protocol, the user client must be careful
 to accepting authenticated responses from the server.

 Clients SHOULD implement the decision procedure equivalent to the one
 shown below. (Unless implementers understand what is required for
 the security, they should not alter this.) The labels on the steps
 are for informational purpose only.

 Step 1 (step_new_request):
 If the client software needs to get a new Web resource, check
 whether the resource is expected to be inside some authentication
 realm for which the user has already authenticated. If yes, go
 to Step 2. Otherwise, go to Step 5.

Oiwa, et al. Expires August 11, 2008 [Page 13]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 Step 2:
 Check whether there is an available sid for the authentication
 realm you expects. If there is one, go to Step 3. Otherwise, go
 to Step 4.

 Step 3 (step_send_a3_1):
 Send a req-A3 request.

 * If you receive a 401-B0 message with a different
 authentication realm than expected, go to Step 6.

 * If you receive a 401-B0-stale message, go to Step 9.

 * If you receive a 401-B0 message, go to Step 13.

 * If you receive a valid 200-B4 message, go to Step 14.

 * If you receive a normal response (without Mutual-specific
 headers), go to Step 11.

 Step 4 (step_send_a1_1):
 Send a req-A1 request.

 * If you receive a 401-B0 message with a different
 authentication realm than expected, go to Step 6.

 * If you receive a 401-B0-stale message, go to Step 9.

 * If you receive a 401-B1 message, go to Step 10.

 * If you receive a normal response (without Mutual-specific
 headers), go to Step 10.

 Step 5 (step_send_normal_1):
 Send a request without any authentication headers.

 * If you receive a 401-B0 message, go to Step 6.

 * If you receive a normal response (without Mutual-specific
 headers), go to Step 11.

 Step 6 (step_rcvd_b0):
 Check whether you know the user's password for the requested
 authentication realm. If yes, go to Step 7. Otherwise, go to
 Step 12.

Oiwa, et al. Expires August 11, 2008 [Page 14]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 Step 7:
 Check whether there is an available sid for the authentication
 realm you expects. If there is one, go to Step 8. Otherwise, go
 to Step 9.

 Step 8 (step_send_a3):
 Send a req-A3 request.

 * If you receive a 401-B0 message with a different
 authentication realm than expected, go to Step 6.

 * If you receive a 401-B0-stale message, go to Step 9.

 * If you receive a 401-B0 message, go to Step 13.

 * If you receive a valid 200-B4 message, go to Step 14.

 Step 9 (step_send_a1):
 Send a req-A1 request.

 * If you receive a 401-B1 message, go to Step 10.

 Step 10 (step_rcvd_b1):
 Send a req-A3 request.

 * If you receive a 401-B0 message, go to Step 13.

 * If you receive a valid 200-B4 message, go to Step 14.

 Step 11 (step_rcvd_normal):
 This case means that the resource requested is out of the
 authenticated area. The client will be in "UNAUTHENTICATED"
 status.

 Step 12 (step_rcvd_b0_unknown):
 This case means that the resource requested requires Mutual
 authentication, and the user is not authenticated yet. The
 client will be in "AUTH_REQUESTED" status, is RECOMMENDED to
 process the content sent from the server and ask user a username
 and password. If the user has input those, go to Step 9.

 Step 13 (step_rcvd_b0_failed):
 This case means that in some reason the authentication failed:
 possibly the password or the username is invalid for the
 authenticated resource. Forget the password for the
 authentication realm and go to Step 12.

Oiwa, et al. Expires August 11, 2008 [Page 15]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 Step 14 (step_rcvd_b4):
 This case means that the mutual authentication has been
 succeeded. The client will be in "AUTH_SUCCEEDED" status.

 All other kind of responses than shown in above procedure SHOULD be
 interpreted as fatal communication error, and in such cases user
 clients MUST NOT process any data (contents and other content-related
 headers) sent from the server.

 The client software SHOULD show the three client status to the end-
 user.

 Figure 2 shows the full client-side state diagram.

Oiwa, et al. Expires August 11, 2008 [Page 16]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 =========== -(11)------------
 NEW REQUEST (UNAUTHENTICATED)
 =========== -----------------
 | ^
 | |normal
 v |response
 +(1)-------------------+ NO +(5)----------+
 | The requested URI |--------------------------->| send normal |
 | known to be auth'ed? | | request |
 +----------------------+ +-------------+
 |YES 401-B0, 200-Opt-B0 |401-B0
 | with different realm |200-Opt-B0
 | -----------------------------------. |
 | / v v
 | | -(12)------------ NO +(6)--------+
 | | (AUTH_REQUESTED)<------| user/pass |
 | | ----------------- | known? |
 | | +-----------+
 | | |YES
 v | v
 +(2)--------+ | +(7)--------+
 | session | | | session | NO
 NO /| available?| | | available?|\
 / +-----------+ | +-----------+ |
 / |YES | |YES |
	/				
v /	401- v				
+(3)--------+	B0 --(13)---------- 401-B0 +(8)--------+				
	send	--+----->/ AUTH_REQUESTED \<-------	send		
/	req-A3		\forget user/pass/	req-A3	
 \/ +-----------+ / ---------------- /+-----------+ |
 /\ \ \/ ^ 401-B0 | |401-B0- |
 | -------. \/\ 401-B0-stale | | |stale /
 | | /\ -----------------+--------------+----. | /
 | v / \ | | v v v
 | +(4)--------+ | 401-B1 +(10)-------+ 401-B1 | +(9)--------+
 | | send |-|--------->| send |<-------+-| send |
 | --| req-A1 | | | req-A3 | | | req-A1 |
 |/ +-----------+ | +-----------+ | +-----------+
 | |200-B4 | 200-B4| ^
 |normal | |200-B4 / |
 |response | v / =================
 v \ -(14)--------- / USER/PASS INPUTED
 -(11)------------ ------->(AUTH-SUCCEED)<-- =================
 (UNAUTHENTICATED) --------------

 Figure 2: State diagram for clients

Oiwa, et al. Expires August 11, 2008 [Page 17]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

6. Decision procedure for the server

 Servers SHOULD respond to the client requests according to the
 following procedure:

 o When the server receives a normal request:

 * If the requested resource is not protected by Mutual
 Authentication, send a normal response.

 * If the resource is protected by Mutual Authentication, send a
 401-B0 response.

 * If the resource is protected by Mutual Authentication with
 Optional Mutual Authentication extension (Section 10), send a
 200-Optional-B0 response.

 o When the server receives a req-A1 request:

 * If the requested resource is not protected by Mutual
 Authentication, send a normal response.

 * If the authentication realm specified in the req-A1 request is
 non-expected one, send a 401-B0 (or 200-Optional-B0) response.

 * If the server cannot validate field wa, send a 401-B0 response.

 * If the received user name is invalid, send a fake 401-B1
 response.

 * Otherwise, send a 401-B1 response.

 o When the server receives a req-A3 request:

 * If the requested resource is not protected by Mutual
 Authentication, send a normal response.

 * If the authentication realm specified in the req-A3 request is
 non-expected one, send a 401-B0 (or 200-Optional-B0) response.

 * If the received sid is invalid, inactive or unknown, send a
 401-B0-stale response.

 * If the receive oa is invalid, send a 401-B0 response.

 * If the receive oa is correct, send a 200-B4 response.

Oiwa, et al. Expires August 11, 2008 [Page 18]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

7. Authentication Algorithms

 This document specifies only one family of the authentication
 algorithm. The family consists of four authentication algorithms,
 which only differ in underlying mathematical groups and security
 parameters. The algorithms do not add any additional fields. The
 tokens for algorithms are

 o "iso11770-4-ec-p256" for the 256-bit prime-field elliptic-curve
 setting.

 o "iso11770-4-ec-p521" for the 521-bit prime-field elliptic-curve
 setting.

 o "iso11770-4-dl-2048" for the 2048-bit discrete-logarithm setting.

 o "iso11770-4-dl-4096" for the 4096-bit discrete-logarithm setting.

 For the elliptic-curve settings, the underlying fields and the curves
 used for elliptic-curve cryptography are the prime field and the
 Curve P-256 and P-521, respectively, specified in the appendix of
 FIPS PUB 186-2 [FIPS.186-2.2000] specification. The hash functions H
 are SHA-256 for P-256 curve and SHA-512 for P-521 curve,
 respectively, defined in FIPS PUB 180-2 [FIPS.180-2.2002]. The
 representation of fields wa, wb, oa, and ob is hex-fixed-number.

 For discrete-logarithm settings, the underlying groups are 2048-bit
 and 4096-bit MODP groups defined in [RFC3526] respectively. See

Appendix A for the exact specification of the group and associated
 parameters. The hash functions H are SHA-256 for the 2048-bit field
 and SHA-512 for the 4096-bit field, respectively. The representation
 of fields wa, wb, oa, and ob is base64-fixed-number.

 The clients SHOULD support at least "iso11770-4-dl-2048" algorithm,
 and are advised to support all of the above four algorithms whenever
 possible. The server software implementations SHOULD support at
 least "iso11770-4-dl-2048" algorithm, unless it is known that users
 will not use it.

 This algorithm uses Key Agreement Mechanism 3 (KAM3) defined in
Section 6.3 of ISO/IEC-11770-4 [ISO.11770-4.2006] as a basis.

7.1. Common functions

 The password-based string pi used by this authentication is derived
 in the following manner:

 pi = H(VS(algorithm) | VS(auth-domain) | VS(realm) | VS(username) |

https://datatracker.ietf.org/doc/html/rfc3526

Oiwa, et al. Expires August 11, 2008 [Page 19]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 VS(ph(password)).

 The values of algorithm, realm and auth-domain are taken from the
 values contained in the 401-B0 message. When pi is used in the
 context of an octet string, it SHALL have the natural length derived
 from the size of the output of function H (e.g. 32 octets for SHA-
 256). The function ph is defined by the value of the pwd-hash field
 given in a 401-B0 message.

 The function VI encodes natural numbers into octet strings in the
 following manner: integers are represented in big-endian radix-128
 string, where each digit is represented by a octet 0x80-0xff except
 the last digit represented by 0x00-0x7f. The first octet MUST NOT be
 0x80. For example, VI(i) = octet(i) for i < 128, and VI(i) =
 octet(0x80 | (i >> 7)) | octet(i & 127) for 128 <= i < 16384. This
 encoding is the same as the one used in the length field in the ASN.1
 encoding [ITU.X690.1994].

 The function VS encodes variable-length octet string into decodable
 octet string, as in the following manner:

 VS(s) = VI(length(s)) | s

 where length(s) is a number of octets (not characters) in s.

 The function OCTETS converts an integer to corresponding radix-256
 big-endian octet string having its natural length: See Section 3.2
 for the definition of the "natural length". Note that this is
 different from the function GE2OS_x in [ISO.11770-4.2006], which
 takes the shortest representation.

 The equations for J, w_A, T, z, and w_B are specified differently for
 the discrete-logarithm setting and the elliptic-curve setting based
 on [ISO.11770-4.2006]. These equations are defined later in this
 section.

 The values o_A and o_B are derived by the following equation. Note
 that these equations are different from ones specified in
 [ISO.11770-4.2006].

 o_A = H(octet(04) | OCTETS(w_A) | OCTETS(w_B) | OCTETS(z) | VI(nc) |
 VS(v))

 o_B = H(octet(03) | OCTETS(w_A) | OCTETS(w_B) | OCTETS(z) | VI(nc) |
 VS(v))

Oiwa, et al. Expires August 11, 2008 [Page 20]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

7.2. Functions for discrete-logarithm settings

 In this section, the equation (x / y mod z) denotes an natural number
 w less than z which satisfies (w * y) mod z = x mod z.

 For the discrete-logarithm, we refer some of the domain parameters by
 the following symbols:

 o q: for "the prime" of the group.

 o g: for "the generator" associated with the group.

 o r: for the order of the subgroup generated by g.

 The function J is defined as

 J(pi) = g^(pi) mod q,

 where g and q are domain parameters of the underlying field.

 The value of w_A is derived as

 w_A = g^(s_A) mod q,

 where s_A is a random integer within range [1, r-1] and r is the size
 of the subgroup generated by g. In addition, s_A MUST be larger than
 log(q)/log(g) (so that g^(s_A) > q). The value of w_A SHALL satisfy
 1 < w_A < q-1. The server MUST check this condition upon reception.

 The value of w_B is derived from J(pi) and w_A as:

 w_B = (J(pi) * w_A^(H(octet(1) | OCTETS(w_A))))^s_B mod q,

 where s_B is a random number within range [1, r-1]. The value of w_B
 MUST satisfy 1 < w_B < q-1. If this condition is not hold, the
 server MUST retry with another value of s_B. The client MUST check
 this condition upon reception.

 The value z in the client side is derived by the following equation:

 z = w_B^((s_A + H(octet(2) | OCTETS(w_A) | OCTETS(w_B))) / (s_A *
 H(octet(1) | w_A) + pi) mod r) mod q.

 The value z in the server side is derived by the following equation:

 z = (w_A * g^(H(octet(2) | OCTETS(w_A) | OCTETS(w_B))))^s_B mod q.

Oiwa, et al. Expires August 11, 2008 [Page 21]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

7.3. Functions for elliptic-curve settings

 For the elliptic-curve setting, we refer some of the domain
 parameters by the following symbols:

 o q: for the prime used to define the field,

 o G: for the defined point called the generator,

 o r: for the order of the subfield generated by G.

 The function P(p) converts a curve point p to an integer representing
 the point p, by computing x * 2 + (y mod 2), where (x, y) are the
 coordinates of the point p. P'(z) is the inverse of function P, that
 is, it converts an integer z to a point p which satisfies P(p) = z.
 If such p is exist, it is uniquely defined. Otherwise, z does not
 represent a valid curve point. The operation [x] * p denotes an
 integer-multiplication of point p: it calculates p + p + ... (x
 times) ... + p. See literatures on elliptic-curve cryptography for
 the exact algorithms for those. 0_E represents the infinity point.
 The equation (x / y mod z) denotes an natural number w less than z
 which satisfies (w * y) mod z = x mod z.

 the function J is defined as

 J(pi) = [pi] * G.

 The value of w_A is derived as

 w_A = P(W_A), where W_A = [s_A] x G.

 where s_A is a random number within range [1, r-1]. The value of w_A
 MUST represent a valid curve point, and W_A SHALL NOT be 0_E. The
 server MUST check this condition upon reception.

 The value of w_B is derived from J(pi) and W_A = P'(w_A) as:

 w_B = P(W_B), where W_B = [s_B] * (J(pi) + [H(octet(1) |
 OCTETS(w_A))] * W_A).

 where s_B is a random number within range [1, r-1]. The value of w_B
 MUST represent a valid curve point and satisfy [4] * P'(w_B) <> 0_E.
 If this condition is not hold, the server MUST retry with another
 value of s_B. The client MUST check this condition upon reception.

 The value z in the client side is derived by the following equation:

 z = P([(s_A + H(octet(2) | OCTETS(w_A) | OCTETS(w_B))) / (s_A *

Oiwa, et al. Expires August 11, 2008 [Page 22]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 H(octet(1) | OCTETS(w_A)) + pi) mod r] * W_B), where W_B = P'(w_B).

 The value z in the server side is derived by the following equation:

 z = P([s_B] * (W_A + [H(octet(2) | OCTETS(w_A) | OCTETS(w_B))] * G)),
 where W_A = P'(w_A).

8. Validation Methods

 The "validation method" specifies a method to "relate" the mutual
 authentication processed by this protocol with other authentications
 already performed in the underlying layers and to prevent man-in-the-
 middle attacks. It decides the value of v which is an input to
 authentication protocols.

 The valid tokens for the validation field and corresponding values of
 v are as follows:

 host: hostname validation: v will be the ASCII string in the
 following format: "scheme://host:port", where scheme,
 host and port are the URI parts correspond to the
 currently accessing resource. The scheme and host are
 lower-case, and the port is in a shortest decimal
 representation. Even if the request-URI does not have
 a port part, v will include the one.

 tls-cert: TLS certificate validation: v will be the octet string
 of the hash value of the public key certificate used
 in underlying TLS [RFC4346] (or SSL) connection. The
 hash value is defined as the value of the
 "tbsCertificate" stream hashed by the hash algorithm
 corresponding to the signing algorithm specified in
 the "signatureAlgorithm" field of the X.509
 certificate as defined in [RFC3280]. This value is
 equal to the verified signature value stored in the
 "signatureValue" field, once certificate signature has
 been verified successfully.

 tls-key: TLS shared-key validation: v will be the octet string
 of the shared master secret negotiated in underlying
 TLS (or SSL) connection.

 If the HTTP protocol is used on unencrypted channel, the validation
 type MUST be "host". If HTTP/TLS [RFC2818] (https) protocol is used
 with server certificates, the validation type MUST be either "tls-
 cert" or "tls-key". If HTTP/TLS protocol is used with anonymous
 Diffie-Hellman key exchange, the validation type MUST be "tls-key"

https://datatracker.ietf.org/doc/html/rfc4346
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc2818

Oiwa, et al. Expires August 11, 2008 [Page 23]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 (but see the note below).

 The client MUST validate this field upon reception of 401-B0
 messages.

 However, when the protocol is used on web browsers with any scripting
 capabilities, the anonymous Diffie-Hellman family of TLS (or SSL)
 cipher-suite MUST NOT be used even if "tls-key" validated Mutual
 authentication has been employed, and the certificate shown in TLS
 (or SSL) negotiation MUST be verified using PKI. For other systems,
 if the "tls-key" validation is used on TLS (or SSL) protocol without
 certificate verification using PKI, those systems MUST ensure that
 all transactions with authenticated peer servers MUST use and be
 validated by the Mutual authentication protocol, regardless of the
 existence of the 401-B0 responses.

 The protocol defines two variants for validation on TLS connections.
 The method "tls-key" method is the more secure, so it is recommended
 to use tls-key when applicable. However, there are some situations
 where tls-cert is more preferable.

 o When TLS accelerating proxies are used. In this case, it is
 difficult for the authenticating server to acquire the TLS key
 information which are used between the client and the proxy. It
 is not the case for client-side "tunneling" proxies using CONNECT
 method extension of HTTP.

 o When a black-box implementation of the TLS protocol is used on
 either peer.

9. Session Management

 By the first 4 messages (first request, 401-B0, req-A1 and 401-B1), a
 session represented by a sid is generated. This session can be used
 for 1 or more requests for resources protected by the same realm in
 the same server. Note that the session management is only an inside
 detail of the protocol and usually not visible to normal users. If a
 session expires, the client and server will automatically reestablish
 another session without telling it to the users.

 The server SHOULD accept at least one req-A3 request for each
 session, given that the request reaches the server in a time window
 specified by the timeout field in the 401-B1 message, and that there
 are no emergent reasons (such as flooding attacks) to forget the
 sessions. After that, the server MAY discard any session at any time
 and MAY send 401-B0-stale messages for any req-A3 requests.

Oiwa, et al. Expires August 11, 2008 [Page 24]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 The client MAY send more than one requests using a single session
 specified by the sid. However, for all such requests, the values of
 the nonce-counter (nc field) MUST be different from each other. The
 server MUST check for duplication of the received nonces, and if any
 duplication is detected, the server MUST discard the session and
 respond by a 401-B0-stale message.

 In addition, for each sessions, if the client has already sent a
 request with nonce value x, it SHOULD NOT send requests with a nonce
 value not larger than (x - nc-window). The server MAY reject any
 requests with nonces violating this rule with 401-B0-stale responses.
 This restriction enables servers to implement duplicated nonce
 detection in a constant memory.

 Values of nonces and nonce-related values MUST always be treated as
 natural numbers within infinite range. Implementations using fixed-
 width integers or fixed-precision floating numbers MUST handle
 integer overflow correctly and carefully. Such implementations are
 RECOMMENDED to accept any larger values which cannot be represented
 in the fixed-width integer representations, as long as other limits
 such as internal header-length restrictions are not involved. The
 protocol is designed carefully so that both clients and servers can
 implement the protocol only with fixed-width integers, by rounding
 any overflowed values to the maximum possible value.

10. Extension 1: Optional Mutual Authentication

 In several Web applications, users can access the same contents both
 as a guest user and as a authenticated users. In usual Web
 applications, it is implemented using Cookies and custom form-based
 authentications. The extension described in this section provides a
 replacement for those authentication systems. The support for this
 extension is RECOMMENDED.

 Servers MAY send HTTP successful responses (response code 200, 206
 and others) containing the Optional-WWW-Authenticate header, when it
 is allowed to send 401-B0 responses and the requests do not contain
 Authentication-Info: headers. Such responses are hereafter called
 200-Optional-B0 responses.

 HTTP/1.1 200 OK
 Optional-WWW-Authenticate: Mutual algorithm=xxxx, validation=xxxx,
 realm="xxxx", stale=0

 The fields contained in the Optional-WWW-Authenticate header is the
 same as the 401-B0 message described in Section 4.1. The client
 software supporting the mutual authentication protocol receiving a

Oiwa, et al. Expires August 11, 2008 [Page 25]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 200-Optional-B0 message will process the contents of the message and
 enables an authentication input field.

 When the user input the username and password, the client resends the
 request with req-A1 header. The server MUST respond with a 401-B1
 message. In terms of the state management in Section 5, 200-
 Optional-B0 responses are treated as if it is 401-B0 response: these
 messages SHOULD NOT be sent as a response to req-A1 and req-A3
 messages, unless the authentication realm sent from the client or
 indicated by sid is different from the one which the server expects.

 Servers requesting optional mutual authentication SHOULD send the
 path field in 401-B1 messages with an appropriate value. Client
 software supporting optional mutual authentication MUST recognize the
 field, and MUST send either req-A1 or req-A3 request for the URI
 space inside the specified paths, instead of unauthenticated
 requests.

11. Methods to extend this protocol

 If a non-standard extension to the this protocol is implemented, it
 MUST use the extension-tokens defined in Section 3 to avoid conflicts
 with this protocol and other extensions.

 Authentication algorithms other than those defined in this document
 MAY use other representations for keys "wa", "wb", "oa" and "ob",
 replace those keys, and/or add fields to the messages containing
 those fields by supplemental specifications. If those specifications
 use keys other than shown above, it is RECOMMENDED to use extension-
 tokens to avoid any key-name conflict with the future extension of
 this protocol.

12. IANA Considerations

 The tokens used for authentication-algorithm, pwd-hash, and
 validation fields MUST be allocated by IANA. To acquire registered
 token, IESG Approval outlined in [RFC2434] is required. Extension-
 tokens MAY be freely used for any non-standard, private and/or
 experimental uses for those fields provided that the domain part in
 the token is appropriately used.

13. Security Considerations

https://datatracker.ietf.org/doc/html/rfc2434

Oiwa, et al. Expires August 11, 2008 [Page 26]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

13.1. General Assumptions

 o The protocol is secure against passive eavesdropping and replay
 attacks. However, the protocol relies on transport security
 including DNS security for active attacks. HTTP/TLS SHOULD be
 used where transport security is not assured and data secrecy is
 important.

 o When used with HTTP/TLS, the protocol gives true protection
 against active man-in-the-middle attacks for each HTTP request/
 response pair, even when the server certificate is not used or is
 unreliable. However, in such cases, JavaScript or similar
 scripting facilities can be used to affect Mutually-authenticated
 contents from those not protected by this authentication
 mechanism. This is why this memo requires that valid TLS server
 certificates MUST be presented (Section 8).

13.2. Implementation Considerations

 o To securely implement the protocol, the Authentication-Info
 headers in the 200-B4 messages MUST always be validated by the
 client. If the validation is failed, the client MUST NOT process
 any content sent with the message, including the body part. Non-
 compliance to this will enable phishing attacks.

 o The authentication status on the client-side SHOULD be visible to
 the users of the client. In addition, the method for asking
 user's name and passwords SHOULD be carefully designed so that (1)
 the user can easily distinguish request of this authentication
 methods from other existing authentication methods such as Basic
 and Digest methods, and (2) the Web contents cannot imitate the
 user-interfaces of this protocol.

 An informational memo regarding user-interface considerations and
 recommendations for implementing this protocol will be separately
 published.

 o For HTTP/TLS communications, when a web form is submitted from
 Mutually-authenticated pages with the validation methods of "tls-
 cert" to a URI which is protected by the same realm (so indicated
 by the path field), if server certificate has been changed since
 the pages has been received, the peer is RECOMMENDED to be
 revalidated using a req-A1 message with an "Expect: 100-continue"
 header. The same applies when the page is received with the
 validation methods of "tls-key", and when the TLS session has been
 expired.

Oiwa, et al. Expires August 11, 2008 [Page 27]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 o Server-side storages of user passwords are advised to have the
 values encrypted by one-way function J(pi), instead of the real
 passwords, those hashed by ph, or pi.

13.3. Usage Considerations

 o The user-names inputted by user may be sent automatically to any
 servers sharing the same auth-domain. This means that when host-
 type auth-domain is used for authentication in HTTPS site, and
 when an HTTP server on the same host requests Mutual
 authentication with the same realm, the client will send the user-
 name in a clear text. If user-names have to kept secret against
 eavesdropping, the server must use full-scheme-type auth-domain
 parameter. On the contrary, passwords are not exposed to
 eavesdroppers even on HTTP requests.

 o "Pwd_hash" field is only provided for backward compatibility for
 password databases, and using "none" function is the most secure
 and RECOMMENDED. If values other than "none" is used, you must
 ensure that the hash values of the passwords were not exposed to
 the public. Note that hashed password databases for plain-text
 authentications are usually not considered secret.

 o If the server provides several ways of storing server-side
 password database, it is advised to store the values encrypted by
 one-way function J(pi), instead of the real passwords, those
 hashed by ph, or pi.

14. Notice on intellectual properties

 The National Institute of Advanced Industrial Science and Technology
 (AIST) and Yahoo! Japan, Inc. has jointly submitted a patent
 application about the protocol proposed in this documentation to the
 Patent Office of Japan. The patent is intended to be open to any
 implementors of this protocol and its variants under non-exclusive
 royalty-free manner once the protocol is accepted as an Internet
 standard. For the detail of the patent application, contact the
 author of this document.

 The elliptic-curve based authentication algorithms might involve
 several existing patents of third-parties. The authors of the
 document take no position regarding the validity or scope of such
 patents, and other patents as well.

Oiwa, et al. Expires August 11, 2008 [Page 28]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

15. Acknowledgement

 We gratefully acknowledge Lepidum, Co. Ltd. for support on design
 and trial implementation of this protocol.

16. References

16.1. Normative References

 [FIPS.180-2.2002]
 National Institute of Standards and Technology, "Secure
 Hash Standard", FIPS PUB 180-2, August 2002, <http://

csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf>.

 [FIPS.186-2.2000]
 National Institute of Standards and Technology, "Digital
 Signature Standard (DSS)", FIPS PUB 186-2, January 2000, <

http://csrc.nist.gov/publications/fips/fips186-2/
fips186-2-change1.pdf>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC2434] Narten, T. and H. Alvestrand, "Guidelines for Writing an
 IANA Considerations Section in RFCs", BCP 26, RFC 2434,
 October 1998.

 [RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

 [RFC3526] Kivinen, T. and M. Kojo, "More Modular Exponential (MODP)
 Diffie-Hellman groups for Internet Key Exchange (IKE)",

RFC 3526, May 2003.

 [RFC3548] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 3548, July 2003.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, November 2003.

 [RFC4234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", RFC 4234, October 2005.

 [RFC4346] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.1", RFC 4346, April 2006.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1
http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp26
https://datatracker.ietf.org/doc/html/rfc2434
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3526
https://datatracker.ietf.org/doc/html/rfc3548
https://datatracker.ietf.org/doc/html/rfc3629
https://datatracker.ietf.org/doc/html/rfc4234
https://datatracker.ietf.org/doc/html/rfc4346

Oiwa, et al. Expires August 11, 2008 [Page 29]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

16.2. Informative References

 [I-D.altman-tls-channel-bindings]
 Altman, J. and N. Williams, "Unique Channel Bindings for
 TLS", draft-altman-tls-channel-bindings-03 (work in
 progress), November 2007.

 [ISO.10646-1.1993]
 International Organization for Standardization,
 "Information Technology - Universal Multiple-octet coded
 Character Set (UCS) - Part 1: Architecture and Basic
 Multilingual Plane", ISO Standard 10646-1, May 1993.

 [ISO.11770-4.2006]
 International Organization for Standardization,
 "Information technology - Security techniques - Key
 management - Part 4: Mechanisms based on weak secrets",
 ISO Standard 11770-4, May 2006.

 [ITU.X690.1994]
 International Telecommunications Union, "Information
 Technology - ASN.1 encoding rules: Specification of Basic
 Encoding Rules (BER), Canonical Encoding Rules (CER) and
 Distinguished Encoding Rules (DER)", ITU-T Recommendation
 X.690, 1994.

 [RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,
 Masinter, L., Leach, P., and T. Berners-Lee, "Hypertext
 Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

 [RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S.,
 Leach, P., Luotonen, A., and L. Stewart, "HTTP
 Authentication: Basic and Digest Access Authentication",

RFC 2617, June 1999.

 [RFC3280] Housley, R., Polk, W., Ford, W., and D. Solo, "Internet
 X.509 Public Key Infrastructure Certificate and
 Certificate Revocation List (CRL) Profile", RFC 3280,
 April 2002.

 [RFC3492] Costello, A., "Punycode: A Bootstring encoding of Unicode
 for Internationalized Domain Names in Applications
 (IDNA)", RFC 3492, March 2003.

Appendix A. Group parameters for discrete-logarithm based algorithms

 The MODP group used for the iso11770-4-dl-2048 algorithm is defined

https://datatracker.ietf.org/doc/html/draft-altman-tls-channel-bindings-03
https://datatracker.ietf.org/doc/html/rfc2616
https://datatracker.ietf.org/doc/html/rfc2617
https://datatracker.ietf.org/doc/html/rfc3280
https://datatracker.ietf.org/doc/html/rfc3492

Oiwa, et al. Expires August 11, 2008 [Page 30]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 by the following parameters.

 The prime is:

 q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
 15728E5A 8AACAA68 FFFFFFFF FFFFFFFF.

 The generator is:

 g = 2.

 The size of the subgroup generated by g is:

 r = (q - 1) / 2 =
 0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
 94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
 F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
 F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
 F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
 E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
 C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
 B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
 F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
 EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
 0AB9472D 45565534 7FFFFFFF FFFFFFFF.

 The MODP group used for the iso11770-4-dl-4096 algorithm is defined
 by the following parameters.

 The prime is:

Oiwa, et al. Expires August 11, 2008 [Page 31]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 q = 0xFFFFFFFF FFFFFFFF C90FDAA2 2168C234 C4C6628B 80DC1CD1
 29024E08 8A67CC74 020BBEA6 3B139B22 514A0879 8E3404DD
 EF9519B3 CD3A431B 302B0A6D F25F1437 4FE1356D 6D51C245
 E485B576 625E7EC6 F44C42E9 A637ED6B 0BFF5CB6 F406B7ED
 EE386BFB 5A899FA5 AE9F2411 7C4B1FE6 49286651 ECE45B3D
 C2007CB8 A163BF05 98DA4836 1C55D39A 69163FA8 FD24CF5F
 83655D23 DCA3AD96 1C62F356 208552BB 9ED52907 7096966D
 670C354E 4ABC9804 F1746C08 CA18217C 32905E46 2E36CE3B
 E39E772C 180E8603 9B2783A2 EC07A28F B5C55DF0 6F4C52C9
 DE2BCBF6 95581718 3995497C EA956AE5 15D22618 98FA0510
 15728E5A 8AAAC42D AD33170D 04507A33 A85521AB DF1CBA64
 ECFB8504 58DBEF0A 8AEA7157 5D060C7D B3970F85 A6E1E4C7
 ABF5AE8C DB0933D7 1E8C94E0 4A25619D CEE3D226 1AD2EE6B
 F12FFA06 D98A0864 D8760273 3EC86A64 521F2B18 177B200C
 BBE11757 7A615D6C 770988C0 BAD946E2 08E24FA0 74E5AB31
 43DB5BFC E0FD108E 4B82D120 A9210801 1A723C12 A787E6D7
 88719A10 BDBA5B26 99C32718 6AF4E23C 1A946834 B6150BDA
 2583E9CA 2AD44CE8 DBBBC2DB 04DE8EF9 2E8EFC14 1FBECAA6
 287C5947 4E6BC05D 99B2964F A090C3A2 233BA186 515BE7ED
 1F612970 CEE2D7AF B81BDD76 2170481C D0069127 D5B05AA9
 93B4EA98 8D8FDDC1 86FFB7DC 90A6C08F 4DF435C9 34063199
 FFFFFFFF FFFFFFFF.

 The generator is:

 g = 2.

 The size of the subgroup generated by g is:

Oiwa, et al. Expires August 11, 2008 [Page 32]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 r = (q - 1) / 2 =
 0x7FFFFFFF FFFFFFFF E487ED51 10B4611A 62633145 C06E0E68
 94812704 4533E63A 0105DF53 1D89CD91 28A5043C C71A026E
 F7CA8CD9 E69D218D 98158536 F92F8A1B A7F09AB6 B6A8E122
 F242DABB 312F3F63 7A262174 D31BF6B5 85FFAE5B 7A035BF6
 F71C35FD AD44CFD2 D74F9208 BE258FF3 24943328 F6722D9E
 E1003E5C 50B1DF82 CC6D241B 0E2AE9CD 348B1FD4 7E9267AF
 C1B2AE91 EE51D6CB 0E3179AB 1042A95D CF6A9483 B84B4B36
 B3861AA7 255E4C02 78BA3604 650C10BE 19482F23 171B671D
 F1CF3B96 0C074301 CD93C1D1 7603D147 DAE2AEF8 37A62964
 EF15E5FB 4AAC0B8C 1CCAA4BE 754AB572 8AE9130C 4C7D0288
 0AB9472D 45556216 D6998B86 82283D19 D42A90D5 EF8E5D32
 767DC282 2C6DF785 457538AB AE83063E D9CB87C2 D370F263
 D5FAD746 6D8499EB 8F464A70 2512B0CE E771E913 0D697735
 F897FD03 6CC50432 6C3B0139 9F643532 290F958C 0BBD9006
 5DF08BAB BD30AEB6 3B84C460 5D6CA371 047127D0 3A72D598
 A1EDADFE 707E8847 25C16890 54908400 8D391E09 53C3F36B
 C438CD08 5EDD2D93 4CE1938C 357A711E 0D4A341A 5B0A85ED
 12C1F4E5 156A2674 6DDDE16D 826F477C 97477E0A 0FDF6553
 143E2CA3 A735E02E CCD94B27 D04861D1 119DD0C3 28ADF3F6
 8FB094B8 67716BD7 DC0DEEBB 10B8240E 68034893 EAD82D54
 C9DA754C 46C7EEE0 C37FDBEE 48536047 A6FA1AE4 9A0318CC
 FFFFFFFF FFFFFFFF.

Appendix B. Derived numerical values

 This section gives several numerical values for implementing this
 protocol, derived from the above specifications. The values shown in
 this section are for informative purpose only.

 +----------------+---------+---------+---------+---------+----------+
 | | dl-2048 | dl-4096 | ec-p256 | ec-p521 | |
 +----------------+---------+---------+---------+---------+----------+
Size of w_A	2048	4096	257	522	(bits)
etc.					
Size of H(...)	256	512	256	512	(bits)
length of	256	512	33	66	(octets)
OCTETS(w_A)					
etc.					
length of wa,	346 *	686 *	66	132	(octets)
wb field					
values.					
length of oa,	46 *	90 *	64	128	(octets)
ob field					
values.					

Oiwa, et al. Expires August 11, 2008 [Page 33]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

 | minimum | 2048 | 4096 | 1 | 1 | |
 | allowed s_A | | | | | |
 +----------------+---------+---------+---------+---------+----------+

 (The numbers marked with * include enclosing quotation marks.)

Appendix C. Draft Remarks from the Authors

 The following items are currently under consideration for future
 revisions by the authors.

 o Allow wildcard domain specifications (e.g. "*.example.com") for
 auth-domain parameters (Section 4.1).

 o Whether to allow host validation for HTTP/TLS (Section 8).

 o Hashing functions for "tls-cert" verification: whether to use the
 certificate-specified one or algorithm-specified one (Section 8).
 Note that existing implementations of TLS should be considered to
 determine this.

 o Whether to use "TLS channel binding"
 [I-D.altman-tls-channel-bindings] for "tls-key" verification
 (Section 8). The same as above.

Appendix D. Draft Change Log

D.1. Changes in revision 02

 o Auth-realm is extended to allow full-scheme type.

 o A decision diagram for clients and decision procedures for servers
 are added.

 o 401-B1 and req-A3 messages is changed to have authentication realm
 information.

 o Bugs on equations for o_A and o_B is fixed.

 o Detailed equations for the whole algorithm is included.

 o Elliptic-curve algorithms are updated.

 o Several clarifications and other minor updates.

Oiwa, et al. Expires August 11, 2008 [Page 34]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

Authors' Addresses

 Yutaka Oiwa
 National Institute of Advanced Industrial Science and Technology
 Research Center for Information Security
 Akihabara Daibiru #1102
 1-18-13 Sotokanda
 Chiyoda-ku, Tokyo
 JP

 Phone: +81 3-5298-4722
 Email: mutual-auth-contact@m.aist.go.jp

 Hajime Watanabe
 National Institute of Advanced Industrial Science and Technology

 Hiromitsu Takagi
 National Institute of Advanced Industrial Science and Technology

 Hirofumi Suzuki
 Yahoo! Japan, Inc.
 Roppongi Hills Mori Tower
 6-10-1 Roppongi
 Minato-ku, Tokyo
 JP

 Phone: +81 3-6440-6290

Oiwa, et al. Expires August 11, 2008 [Page 35]

Internet-Draft Mutual Authentication Protocol for HTTP February 2008

Full Copyright Statement

 Copyright (C) The IETF Trust (2008).

 This document is subject to the rights, licenses and restrictions
 contained in BCP 78, and except as set forth therein, the authors
 retain all their rights.

 This document and the information contained herein are provided on an
 "AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
 OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY, THE IETF TRUST AND
 THE INTERNET ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS
 OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
 THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
 WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

 The IETF takes no position regarding the validity or scope of any
 Intellectual Property Rights or other rights that might be claimed to
 pertain to the implementation or use of the technology described in
 this document or the extent to which any license under such rights
 might or might not be available; nor does it represent that it has
 made any independent effort to identify any such rights. Information
 on the procedures with respect to rights in RFC documents can be
 found in BCP 78 and BCP 79.

 Copies of IPR disclosures made to the IETF Secretariat and any
 assurances of licenses to be made available, or the result of an
 attempt made to obtain a general license or permission for the use of
 such proprietary rights by implementers or users of this
 specification can be obtained from the IETF on-line IPR repository at

http://www.ietf.org/ipr.

 The IETF invites any interested party to bring to its attention any
 copyrights, patents or patent applications, or other proprietary
 rights that may cover technology that may be required to implement
 this standard. Please address the information to the IETF at
 ietf-ipr@ietf.org.

Acknowledgment

 Funding for the RFC Editor function is provided by the IETF
 Administrative Support Activity (IASA).

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://www.ietf.org/ipr

Oiwa, et al. Expires August 11, 2008 [Page 36]

