Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

Internet Calendar Access Protocol (ICAP)
Status of this Memo

This document is an Internet-Draft. Internet-Drafts are
working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Note that other
groups may also distribute working documents as Internet-
Drafts.

Internet-Drafts are draft documents valid for a maximum of six
months and may be updated, replaced, or obsoleted by other

documents at any time. It is inappropriate to use Internet-Drafts as
reference material or to cite them other than as "work in progress."

To view the entire list of current Internet-Drafts, please check
the "lid-abstracts.txt" listing contained in the Internet-Drafts
Shadow Directories on ftp.is.co.za (Africa), ftp.nordu.net
(Northern Europe), ftp.nis.garr.it (Southern Europe), munnari.oz.au
(Pacific Rim), ftp.ietf.org (US East Coast), or ftp.isi.edu

(US West Coast).

Abstract

This Internet Calendar Access Protocol (ICAP) allows a client to
access, manipulate and store Calendar information on a server. ICAP
employs the iCalendar format [ICAL] for interchange of calendaring
information.

ICAP includes operations for creating Calendar stores on a server,
opening them and retrieving information about them. When a

Calendar Store has been opened, it can be bounded by start and end
times so that the client can act on a smaller subset of Calendar
information for more efficient operation. ICAP allows users to store
new Calendar Objects into their own Calendar store and Calendar
stores owned by other users with a single operation.

ICAP supports searching iCalendar objects within a Calendar Store.
Searches can be based on any iCalendar property and filtered by
iCalendar Component type.

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

O'Leary, Pete 1

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

Table of Contents

STATUS OF THIS MEMO.ttt ittt sttt s ettt e e e annns 1
ABST RACT . 4 it s s i i e e e e 1
TABLE OF CONTENTS . . ottt ittt ittt s sttt s sttt s e st ees 2
1. PROTOCOL OVERVIEW. . . i ittt ittt ittt e sttt a e sttt et e e nnns 4
1.1. CONVENTIONS USED IN THIS DOCUMENT.ttt i ettt e e nnnns 4
d1.2. LINK LEVEL. ...ttt ettt ettt et et s e e e e e e e 4
1.3. COMMANDS AND RESPONSES.ttt ittt it e s s i e s it as 5
1.3.1. Client Protocol Sender and Server Protocol Receiver.......... 5
1.3.2. Server Protocol Sender and Client Protocol Receiver.......... 6
.4, DATA FORMAT S . . i ittt it ittt et ettt ettt e st s e e e e e s 7
T 1 11 7
1.4, 2. NUMD BT .ttt s e e e e e e e 7
1.4.3 S 1 o o T T 7
1.4.4. Parenthesized Lists. ...ttt it it it ittt ey 8
T P | 0 8
T G R B - o = 8
1.4.7. Periods Of Tame. ...ttt e e ettt e et 8
1.5 RESPONSE WHEN NO COMMAND IN PROGRESS............. . s 9
1.6 AUTOLOGOUT TIMER. ...ttt ittt sttt s st a e e et e e 10
1.7 MULTIPLE COMMANDS IN PROGRESS. it iii et 10
1.8. CALENDAR STORE. ..t ittt ittt ittt ettt et e e e e e e et e e 10
1.9. CALENDAR OBJECTS AND COMPONENTS.ttt ittt e s sttt ennn 10
1.10. UNIQUE IDENTIFIERS.ttt ittt e s e e 11
1.11. CALENDAR STORE NAMING. . v v ittt ittt ettt e s e i et e e 11
1.12. DEFAULT CALENDAR. . .t ittt it i et s s et s s i s e e e as 12
1.13. ACCESS CONTROL . . vttt ittt et s ettt e sttt e s et st nns 13
1.104. SERVER STATES. . ..ttt it ettt s st na ettt enns 13
1.13.1. Non-Authenticated State.......... ittt 14
1.13.2. Authenticated State......... it i i i s 14
1.13.3. Selected State.t i e i e e e 14
1.13.4. Logout State...... .ot i i i e s 14
2. SCHEDULING OPERATIONS. . ittt ittt ittt e et e e e e e e s e it a e 14
2.1 OPERATIONS SUPPORTED BY ICAPttt ittt ii et st e e nns 14
2.1.1. Calendar BroWSINg. .. .uvu v vttt ittt ittt 14
2.1.2. Freetime SearCh.t i et et e e e e e 15
2.1.3 Creating, Deleting and Modifying Calendar Objects........... 15
2.1.4., Group Scheduling.ttt ittt e s 15

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

N

I\)I\)‘
I\JI\)

w W

2.

1.

OPERATIONS NOT SUPPORTED BY ICAP........ it

2.2.1. Meetlng I A o= s I 0 =
2.2.2. D1rectory SEIVICES . ittt ittt i e e e e
ICAP COMMANDS - ANY STATE. ..ttt ittt et s

CAPABILITY COMMAND. ... ittt it it s s s s s s s s e
NOOP COMMAND . . . it i i i i s s s s s s

LOGOUT COMMAND . & vttt it s i s st s s s e a s 17

X-(ATOM) EXPERIMENTAL COMMANDS. . . .\ttt iin it enn e eas

ICAP COMMANDS - NON-AUTHENTICATED STATE......... i iiiiiiiinnnnns
. AUTHENTICATE COMMAND.ttt i i s s s s s s s

LOGIN COMMAND . . & ittt ittt st s st st s s s s ey

\m‘b‘b\b‘w‘w‘w‘
N - o N

O'Leary, Pete 2

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above

(&)
[N

0 N O (01 |k (W IN

SELECT COMMAND . .« ot vttt ittt e et e e et ettt a e as
EXAMINE COMMAND . . & vttt it et e e e e st e st s i s it an i nnnns
CREATE COMMAND . . & vttt it it it e it e st st st e e et es
DELETE COMMAND . .« vt ittt ittt e e s e ittt st st s e e nane s
RENAME COMMAND . . ot ittt e e et it it et e et s st e s et neas
LIST COMMAND . . vttt ittt it e i s s e a e st et s e ns
LSUB COMMAND . v vttt it it i n et i e it et e it eas
SUBSCRIBE COMMAND . . v vttt ittt e s n i e s n it e st e s e n s nnns
UNSUBSCRIBE COMMAND. . . ittt ittt it it e e e s e i e i et e e e e e nens

. APPEND COMMAND . .t vttt st et e it n st st s st e e nns
ATTRIBUTES COMMAND . .« v vttt it et e st st ittt eas
FREEBUSY COMMAND . . . vttt ittt e s et sttt s e s e

ICAP COMMANDS - SELECTED STATE.ttt ittt e nnannenns

CLOSE COMMAND . vttt et i s ettt s i s i e et et et aa s e as

RANGE COMMAND . & vt vt ittt it et et st st sttt e es

CHECK COMMAND . v vttt ettt e s e s e s e ettt et s e e en e

EXPUNGE COMMAND . . & ittt ittt i s ettt s in s tn st st e n e aaaa e

FETCH COMMAND . . & vttt e it it et e i i i et et e st et

STORE COMMAND . . vt it ittt ettt e et s st s st s e e nn s

COPY COMMAND . & vttt it ettt e s ettt ettt et st a e a s

MOVE COMMAND . & ottt ettt et i s i s i e et st st et st s e ns

UID COMMAND . o vttt ittt e st st et e st st s e e e

10 SEARCH COMMAND . » « v vt ittt e it it e st e s st st st e s a s

SERVER RESPONSESottt it ittt sttt a st st a e a e as
SERVER RESPONSES - STATUS RESPONSES.¢iiiiiirnnnnnnnsan
OK RESPONS . it ittt it it it sttt e e e e e
NO RESPONSE . . ittt i et it s i e e s
BAD RESPONS . it ittt ittt st n i s st et e
PREAUTH RESPONSE . it ittt it i s it s e it st sttt eas

BYE RESPONSE. ittt it ittt it i e e s

SERVER RESPONSES - DATA RESPONSES.

.1. CAPABILITY RESPONSE . .t ittt tn ittt tn s tn st e e et ans s

9]
(o]

9]
=
[©)

a1
[
=

[
[N
l\)

o o

N =

[e]
w

(@]
IN

(&)
[

@ 0 N[O

‘M\M o

\I
[T
=

\‘
[N
N

\‘
=
w

\‘
=
N

\I
[N
&)

~
N

~
N

ICAP COMMANDS - AUTHENTICATED STATE....... .t iiiiiiiiiininnannns 20

DDA IDPIDIPDDDWIW[WI[WIW[WILW[WI[WINIINNMNINMDNINNININ
‘@ ‘00 ‘00 ‘\l ‘\l ‘\l ‘\l ‘@ ‘U‘l ‘N ‘I\) ‘H ‘I—\ ‘OO ‘CD ‘U'I ‘(.ﬂ ‘-b ‘00 ‘00 ‘l\) ‘GJ ‘OO ‘\l ‘\I ‘\l ‘U‘I ‘U‘I ‘07 ‘-b ‘00 ‘O

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

7.2.2. LIST RESPONSE .ttt ittt it te i s sttt a st st s s e i et 49
7.2.3. LSUB RESPONSE . 1t ittt ittt tn sttt st st st s e et 50
7.2.4, EXISTS RESPONSE . .t ittt it ittt ettt st ettt 50
7.2.5. RECENT RESPONSE . .t vttt ittt ittt ittt e et a e 51
7.2.6. EXPUNGE RESPONSE. .\ vt ittt it ittt st st s s e e e i 51
7.2.7. FETCH RESPONSE . & ittt ittt it s st et st st st st a s e e a e 52
7.2.8. FLAGS RESPONSE . ottt ittt ittt it et ittt e e s 52
7.2.9 SEARCH RESPONSE . vttt ittt i et sttt et st ettt eas 52
7.3 SERVER RESPONSES - COMMAND CONTINUATION REQUEST............. 53
8. FORMAL SYNTAX . 4ttt it ittt i e et et sttt st e 53
9. EXAMPLE SESSIONS. . ittt ittt it it ittt s it 53
10. OPEN ISSUES/WORK IN PROGRESS.'iiiiinninnrnrenansnnnnns 54
11. CHANGES FROM PREVIOUS DRAFT VERSION.i'iiinenrnnnnnnnenns 54
12, REFERENCES. . .\ttt ittt it it et sttt s e et 55
13. SECURITY CONSIDERATIONS. ... vttt ittt ittt s s e n s 55
A4, AUTHOR'S NOTES. .. ittt ittt it st st sttt st st e e 56
O'Leary, Pete 3

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

1. PROTOCOL OVERVIEW
1.1. Conventions Used in this Document

In examples, "C:" and "S:" indicate lines sent by the client and server
respectively.

The following terms are used in this document to signify the
requirements of this specification.

1) MUST, or the adjective REQUIRED, means that the definition is
an absolute requirement of the specification.

2) MUST NOT that the definition is an absolute prohibition of the
specification.

3) SHOULD means that there may exist valid reasons in particular
circumstances to ignore a particular item, but the full implications
MUST be understood and carefully weighed before choosing a

different course.

4) SHOULD NOT means that there may exist valid reasons in
particular circumstances when the particular behavior is acceptable
or even useful, but the full implications SHOULD be understood and
the case carefully weighed before implementing any behavior
described with this label.

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

5) MAY, or the adjective OPTIONAL, means that an item is truly
optional. One vendor may choose to include the item because a
particular marketplace requires it or because the vendor feels

that it enhances the product while another vendor may omit the same
item. An implementation which does not include a particular option
MUST be prepared to interoperate with another implementation

which does include the option.

"Can" is used instead of "may" when referring to a possible
circumstance or situation, as opposed to an optional facility of the
protocol.

"User" 1is used to refer to a human user, whereas '"client" refers to the
software being run by the user.

1.2. Link Level

The ICAP server assumes a reliable, stream oriented transport such
as that provided by TCP/IP. When ICAP is used with TCP the server
listens on TCP port 7668 (subject to change).

O'Leary, Pete 4

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

1.3. Commands and Responses

An ICAP session consists of the establishment of a client/server
connection, an initial greeting from the server, and client/server
interactions. These client/server interactions consist of a client
command, server data, and a server completion result response.

All interactions transmitted by client and server are in the form of
lines; that is, strings that end with a CRLF. The protocol receiver
of an ICAP client or server 1is either reading a line, or is reading a
sequence of octets with a known count followed by a line.

The ICAP server states a greeting similar to the following:

S: * OK ICAP Server ready.

The greeting is an untagged response from the server which includes

a list of the server's capabilities followed by an optional human-
readable message. See below for the description of untagged

responses. If the ICAP server supports multiple capabilities (see
below) they must be presented using a parenthesized list. It is
mandatory that the capability ICAP be presented and that it be first in

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

the list of capabilities. If the capability ICAP is not presented, the
client cannot proceed and must close the connection immediately.

The server must present an OK response if it is ready to accept a
client connection. If the server is not ready to accept such a connect,
it must present a BYE response.

More examples of valid connection responses:

S: * OK (ICAP X-PigLatin) Server ready.
* OK ICAP It's a wonderful day today!
S: * BYE Connection refused. Please try again later.

(%2}

1.3.1. Client Protocol Sender and Server Protocol Receiver

The client command begins an operation. Each client command is
prefixed with a identifier (typically a short alphanumeric string, e.g.
AGOO1, AOOO2, etc.) called a "tag". A different tag is generated by
the client for each command.

There are two cases in which a line from the client does not represent

a complete command. In one case, a command argument is quoted

with an octet count (see the description of literal in String under Data
Formats); in the other case, the command arguments require server
feedback (see the AUTHENTICATE command). In some of these

cases, the server sends a command continuation request response if it

is ready for the octets (if appropriate) and the remainder of the
command. This response is prefixed with the token "+".

Note: If, instead, the server detected an error in the command, it
sends a BAD completion response with tag matching the command

O'Leary, Pete 5

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

(as described below) to reject the command and prevent the client
from sending any more of the command.

It is also possible for the server to send a completion or intermediate
response for some other command (if multiple commands are in

progress), or untagged data. In either case, the command

continuation request is still pending; the client takes the appropriate
action for the response, and reads another response from the server.

The protocol receiver of an ICAP server reads a command line from
the client, parses the command and its arguments, and transmits
server data and a server command completion result response.

1.3.2. Server Protocol Sender and Client Protocol Receiver

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

Data transmitted by the server to the client come in four forms:
command continuation requests, command completion results,
intermediate responses, and untagged responses.

A command completion request is prefixed with the token "+".

A command completion result response indicates the success or

failure of the operation. It is tagged with the same tag as the client
command which began the operation. Thus, if more than one

command is in progress, the tag in a server completion response
identifies the command to which the response applies. There are

three possible server completion responses: OK (indicating success),

NO (indicating failure), or BAD (indicating protocol error such as
unrecognized command or command syntax error).

An intermediate response returns data which can only be interpreted
within the context of a command in progress. It is tagged with the
same tag as the client command which began the operation. Thus, if
more than one command is in progress, the tag in an intermediate
response identifies the command to which the response applies. A
tagged response other than "OK", "NO", or "BAD" is an intermediate
response.

An untagged response returns data or status messages which may be
interpreted outside the context of a command in progress. It is
prefixed with the token "*". Untagged data may be sent as a result of
a client command, or may be sent unilaterally by the server. There is
no syntactic difference between untagged data that resulted from a
specific command and untagged data that were sent unilaterally.

The protocol receiver of an ICAP client reads a response line from

the server. It then takes action on the response based upon the first
token of the response, which may be a tag, a "*", or a "+" as
described above.

A client MUST be prepared to accept any server response at all
O'Leary, Pete 6

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

times. This includes untagged data that it may not have requested.

Due to the obviously time-critical nature of applications which may use ICAP,
an

ICAP server implementation should attempt to keep

connected clients "current" by sending updates to the client when a

selected Calendar Store is updated.

This topic is discussed in greater detail in the Server Responses

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

section.
1.4. Data Formats

ICAP uses textual commands and responses. Data in ICAP can be in
one of several forms: atom, number, string, parenthesized list, dates
or NIL.

1.4.1. Atom
An atom consists of one or more non-special characters.
1.4.2. Number

A number consists of one or more digit characters, and represents a
numeric value.

1.4.3. String

A string is in one of two forms: literal and quoted string. The literal
form is the general form of string. The quoted string form is an
alternative that avoids the overhead of processing a literal at the cost
of restrictions of what may be in a quoted string.

A literal is a sequence of zero or more octets (including CR and LF),
prefix-quoted with an octet count in the form of an open brace ("{"),
the number of octets, close brace ("}"), and CRLF. 1In the case of
literals transmitted from server to client, the CRLF is immediately
followed by the octet data. In the case of literals transmitted from
client to server, the client must wait to receive a command
continuation request (described later in this document) before
sending the octet data (and the remainder of the command).

A quoted string is a sequence of zero to 1024 7-bit characters,
excluding CR and LF, with double quote (<">) characters at each
end.

The empty string is respresented as either "" (a quoted string with
zero characters between double quotes), as {0} followed by CRLF (a
synchronizing literal with an octet count of 0), or as {0+} followed
by a CRLF (a non-synchronizing literal with an octet count of 0).

Note: Even if the octet count is 0, a client transmitting a literal must
wait to receive a command continuation request.

O'Leary, Pete 7

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

1.4.4. Parenthesized Lists

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

Data structures are represented as a "parenthesized list"; a sequence
of data items, delimited by space, and bounded at each end by
parentheses. A parenthesized list can contain other parenthesized
lists, using multiple levels of parentheses to indicate nesting.

The empty list is represented as () -- a parenthesized list with no
members.

1.4.5. NIL

The special atom "NIL" represents the non-existence of a particular
data item that is represented as a string or parenthesized list, as
distinct from the empty string "" or the empty parenthesized list ().

1.4.6. Dates

All dates given in this document are in a compact form of the ISO
8601 date and time format [ISO-TIME]: YYYYMMDD 'T'

HHMMSS. Hours are always given using the 24 hour clock. A "Z"

may be appended to indicate UTC or "Zulu" time (that's GMT to

most people). The TZID property parameter MUST NOT be applied

to dates whose time values are specified in UTC. The use of local

time in a DATE-TIME or TIME value without the TZID property

parameter is to be interpreted as a local time value, in the time zone
of the selected calendar. Clients can check the time zone of the
selected calendar by using the ATTRIBUTES command (see below.)

Note: ICAP servers do not support ISO 8601's week of the year
notation. Before storing in an ICAP server, these dates must be

converted to the above format.

Examples of valid dates:

DTSTART:19980927T0700 'Sept. 27, 1998
in the local time zone

DTSTART:19980927T1300Z 'Sept. 27, 1998

in UTC time

DTSTART; TZID=America-NYC:20000101TE000 'New Year's Eve in New York City

The form of date and time with UTC offset MUST NOT be used. For
example, the following is not valid for a date-time value:

DTSTART:19980119T230000-08 'Invalid time
format

1.4.7. Periods of Time

A PERIOD value type is used to identify values that contain a
precise period of time. The description of this data type has been

O'Leary, Pete 8

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

borrowed from the iCalendar [ICAL] document. A PERIOD is
defined by the following notation:

period = period-explicit / period-start

period-explicit = date-time "/" date-time

; [ISO 8601] complete representation basic format for a period of
time consisting of a start and end.

; The start MUST be before the end.

period-start = date-time "/" duration

; [ISO 8601] complete representation basic format for a period of
time consisting of a start and

; positive duration of time.

If the property permits, multiple "period" values can be using a
COMMA character (US-ASCII decimal 44) separator character.

There are two forms of a period of time. A period of time identified
by its start and its end. This format is expressed as the [ISO 8601]
complete representation, basic format for "DATE-TIME" start of the
period, followed by a SOLIDUS character (US-ASCII decimal 47),
followed by the "DATE-TIME" of the end of the period. The start of
the period MUST be before the end of the period. A period of time
can also be defined by a start time and a positive duration. The
format is expressed as the [ISO 8601] complete representation, basic
format for the "DATE-TIME" start of the period, followed by a
SOLIDUS character (US-ASCII decimal 47), followed by the [ISO

8601] basic format for "DURATION" of the period.

Examples of valid periods of time:

The period starting at 18:00:00 UTC, on January 1, 1999 and ending
at 07:00:00 UTC on January 2, 1999 would be:

19990101T180000Z/19970102T070000Z

The period start at 18:00:00 on January 1, 1999 and lasting 5 hours
and 30 minutes would be:

19990101T180000Z/PT5H30M

No additional content value encoding (i.e., BACKSLASH character
encoding) is defined for this value type.

1.5. Response when no Command in Progress

Server implementations are permitted to send an untagged response

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

while there is no command in progress. Server implementations that
send such responses MUST deal with flow control considerations.
Specifically, they must either (1) verify that the size of the data does

O'Leary, Pete 9

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

not exceed the underlying transport's available window size, or (2)
use non-blocking writes.

1.6. Autologout Timer

If a server has an inactivity autologout timer, that timer MUST be of
at least 10 minutes' duration. The receipt of ANY command from

the client during that interval should suffice to reset the autologout
timer.

1.7. Multiple Commands in Progress

The client is not required to wait for the completion result response
of a command before sending another command, subject to flow

control constraints on the underlying data stream. Similarly, a server
is not required to process a command to completion before beginning
processing of the next command, unless an ambiguity would result
because of a command that would affect the results of other

commands. If there is such an ambiguity, the server executes

commands to completion in the order given by the client.

1.8. Calendar Store

The primary purpose of the ICAP protocol is to allow access to, and
the modification of, Calendar Stores. A Calendar Store is defined as
one set of Calendar Objects that are organized chronologically and
given a name. A Calendar Object is one discrete item that may be
posted to a calendar. In ICAP, Calendar Objects are represented in
iCalendar [ICAL] format and can consist of one or more Calendar
Components as described in the iCalendar specification.

Objects within a Calendar Store MUST meet one of the two
following requirements:

? Every Date-Time property of every Object within the Calendar

Store MUST contain a UTC value or a UTC relative value. All

Objects within the Calendar Store MUST be sorted by UTC

using the per-Component rules specified in section 1.9 below.

If all Objects within a Calendar Store are contained within the same
time zone and their time values can all be converted to UTC

using the same TIMEZONE component, then TIMEZONE

components and UTC relative information can be omitted from

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

individual Objects within the Calendar Store. All Objects within
the Calendar Store MUST be sorted by using the per-
Component rules specified in section 1.9 below.

1.9. Calendar Objects and Components

iCalendar Objects as specified in [ICAL] consist of a sequence of
calendar properties and one or more calendar Components. An ICAP
implementation MUST support all valid iCalendar Objects and their
Components, with the following qualifiers:

O'Leary, Pete 10

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

? Calendar Properties, as identified in section 5.4.7 of [ICAL] can
be omitted from any Object in a Calendar Store if those
Properties are common to all Objects in that Calendar Store. In
this case, those Calendar Properties common to every Object in
the Calendar Store MUST be returned via the ATTRIBUTES

command. If the Calendar Properties for Objects in a Calendar
Store can vary from Object to Object, every Object contained
within a Calendar Store MUST contain Calendar Properties
appropriate to that Object.

? FREEBUSY Components MUST be returned only via the

FREEBUSY command.

? Event, To-Do and Journal Components can be intermixed within
the same Calendar Store. Event components are sorted according
to their DTSTART value. To-Do components are sorted

according to their DTSTART value. Journal Components are

sorted according to their DTSTART value.

? An Object within a Calendar Store can contain at most ONE
Event, To-Do or Journal Component.

1.10. Unique Identifiers

Each ICAP server, Calendar store and Calendar Object must have a
unique identifier ("unique ID" or "UID") associated with it. This
unique ID must persist across sessions. Unique ID's in ICAP consist
of alphanumeric characters only, are exactly 16 characters in length
and are case sensitive. Nothing about the structure of the unique ID
must be assumed: they are not guaranteed to represent numeric
values, ascending in value, etc.

A Calendar store UID need only be unique within the current server
and is referred to hereafter as the Calendar Store ID (CSID). A
Calendar Object UID need only be unique within its Calendar store
and is referred to as the Calendar Object ID (COID).

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

The exact method for ensuring that UID's are unique is
implementation dependent.

Note that the iCalendar specification [ICAL] defines an attribute
called "UID" for calendar Objects which must be globally unique.
This value can be created by concatenating the server's host name
then the CSID and COID.

1.11. Calendar Store Naming

Calendar names can be any string of alphanumeric characters and the
characters "_" (underscore), "." (period), "-" (hyphen) and "'"
(apostrophe). Calendar names can contain spaces, in which case the
whole name must be delimited by double quote characters (see
below). Calendar names are case sensitive and must be distinct from

all other Calendar stores.
O'Leary, Pete 11
Internet-Draft

6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

Calendar names can be hierarchical: the hierarchy is read from left
(highest level in the hierarchy) to right and delimited by the "/"
(forward slash) character. If a hierarchical name is quoted, the entire
name must be quoted. An ICAP implementation is NOT required to

support hierarchical naming.
Examples of valid names:

"Pete's Calendar"

Product_Calendar

Project1l

SpinalTapPerformanceSchedule

Projects/Pete/ICAP

"Projects/Pete 0'Leary/ICAP Specification Schedule"

Calendar names can contain a user's name delimited by angle braces

"<" and ">". Empty angle braces "<>" are meant to refer to the
currently authenticated user. This specification refers to "users" and
"user names", although these concepts can apply to things other than
human beings. For instance, a "user" with their own Calendar store

may actually be a resource such as a conference room which exists
outside of the Calendar server itself.

The important distinction between user names and store names is that
user names very often have meaning outside the implementation of

the current server. For instance, a user name may be an SMTP mail
address or a Distinguished Name that may be looked up using a

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

directory service like LDAP. An ICAP implementation must not
assume anything about the structure of a user name.

A user's name by itself, used as a Calendar Store name, must
represent the default Calendar Store (see below) for that user. The
user's name must also be the root by which other Calendar Stores the
user has created can be found (see the LIST command below). A

user name must always be at the leftmost position in the hierarchy of
a Calendar Store name. It is invalid to have a Calendar name with
more than one user name in it.

See the description of the SELECT and LIST commands below for
more discussion about user names and their use.

Valid names with user/resource names:

<Pete>

<Pete>/Project_Schedule

<Large_Conference_Room>

"<Palo Alto/Research Building/Large Conference Room>"

O'Leary, Pete 12

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

Invalid names:

Users/<Pete>
<Pete>/<Paul>
"Palo Alto/Research Building/<Large Conference Room>"

1.12. Default Calendar

Every user local to a calendar server should have a "default

calendar". This is the Calendar store that is most likely to contain up-
to-the-minute information about a person's calendar. The exact
definition of this concept is implementation-dependent. The default
calendar, which can be selected using only the user's name, can be

used by clients to look up free and busy time information for that

user.

1.13. Access Control

ICAP servers should allow for different levels of access control on
user's Calendar stores. The exact definition of this access control is
implementation dependent. A good default choice would be to allow
read-only access to a user's default calendar store via the EXAMINE

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

command to allow for free and busy time searches.

The server should give a NO response any time a client requests an
operation which is not permitted by access control.

For example, a server that allows anonymous read-only browsing of
Calendar stores may enforce the following rules:

1. The client is only shown user's default Calendars when
performing a LIST command.

2. The client is only allowed to select Calendar stores via the
EXAMINE command.

3. The STORE command always returns a NO response and allows

no updates of the Calendar store. In this case, the server could
return a response to the client indicating where to send a meeting
invitation via e-mail to request a meeting with the desired user.
4. The FETCH command will return a NO response if the user
requests anything more than the flags and summary information

of a Calendar Object. This would allow the anonymous user to
browse the Calendar of another user in a company which had an
"open calendar" policy for all users.

5. Optionally, for a higher level of security, the server may return a
NO response for an attempted FETCH and allow only the use of

the FREEBUSY command. The FREEBUSY command does not

return any specific information about the Objects of a user's
calendar.

1.14. Server States

O'Leary, Pete 13

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

An ICAP server is in one of four states. Most commands are valid in
only certain states. It is a protocol error for the client to attempt a
command while the command is in an inappropriate state. In this

case, a server will respond with a BAD or NO (depending upon

server implementation) command completion result.

When a command is valid in more than one server state, the
description below will list the "valid States" for that command.

1.13.1. Non-Authenticated State

In non-authenticated state, the user must supply authentication
credentials before most commands will be permitted. This state is
entered when a connection starts.

1.13.2. Authenticated State

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

In authenticated state, the user is authenticated and most commands
will be permitted. This state is entered when acceptable
authentication credentials have been provided.

1.13.3. Selected State

In selected state, the user has chosen a particular calendar store (or
calendar stores) and can perform operations on them.

1.13.4. Logout State

In logout state, the session is being terminated, and the server will
close the connection. This state can be entered as a result of a client
request or by unilateral server decision.

2. Scheduling Operations

This section discusses different scheduling operations and how ICAP
enables those operations. This section also presents scheduling
operations which ICAP does not enable and gives a short discussion
of why.

2.1 Operations Supported by ICAP

For illustration purposes, the following is an incomplete list of the
scheduling operations that ICAP is intended to support:

2.1.1. Calendar Browsing

ICAP supports the ability to open and browse Calendar Stores via the
SELECT and FETCH commands. A client may obtain a list of

Calendar Stores available using the LIST command. A user can

browse a Calendar that belongs the them or to another user, subject
to access control restrictions. The SELECT command actually allows

O'Leary, Pete 14

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

multiple users' Calendars to be viewed simultaneously.
2.1.2. Freetime Search

ICAP supports the ability to obtain free and busy information about a
user in two ways:

1. The user's default Calendar Store can be browsed as described above.

2. The FREEBUSY command can be used to obtain a "snapshot"
of users' scehdule during a given period of time.

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

2.1.3. Creating, Deleting and Modifying Calendar Objects

A user can create, delete and modify Objects either in their own
Calendar Stores or, subject to access control restrictions, in another
user's Calendar store.

The APPEND command is used to create new Calendar Objects in
any accessible Calendar Store. The STORE command is used to
modify or mark for deletion Calendar Objects in the currently
selected Calendar store.

2.1.4. Group Scheduling

ICAP supports the so-called "direct-book" mechanism of creating
group meetings by allowing a user to actually place a shared
Calendar Object into the Calendar Stores of multiple users. This is
not the only way that group scheduling can be performed (see below
under "Meeting Invitations").

An ICAP implementation may choose not to support direct-book
group scheduling by enforcing access control on users' Calendar
Stores.

2.2. Operations Not Supported By ICAP

The following is partially complete list of the scheduling operations
that ICAP is NOT intended to support:

2.2.1. Meeting Invitations

ICAP contains no mechanisms for sending so-called "meeting
invitations" to Calendar users. Meeting invitations are one means by
which group scheduling can be accomplished. This operations may

be accomplished by sending iCalendar objects encapsulated as

MIME [REC 1521] content in an SMTP [RFEC 821] mail message, as
described in the iTIP documents [ITIP].

ICAP contains no mechanisms for allowing access to meeting
invitations that have been received by a user. This should be
accomplished via message access protocols like IMAP4 [RFC 1730].

O'Leary, Pete 15

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

2.2.2. Directory Services

ICAP contains no mechanisms for locating a user or obtaining
personal information about a user. This operation should be

https://datatracker.ietf.org/doc/html/rfc1521
https://datatracker.ietf.org/doc/html/rfc821
https://datatracker.ietf.org/doc/html/rfc1730
https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

accomplished via LDAP [RFC 1731].

3. ICAP Commands - Any State

3.1. CAPABILITY Command

Arguments: None.

Data: Mandatory untagged response: CAPABILITY

Result: OK - Command completed
NO - Command failed
BAD - Improperly formed command, invalid arguments

The CAPABILITY command requests a listing of capabilities that

the server supports. The server MUST send a single untagged
CAPABILITY response with "ICAP" as one of the listed capabilities
before the (tagged) OK response. This listing of capabilities is not
dependent upon connection state or user. It

is therefore not necessary to issue a CAPABILITY command more

than once in a session.

A capability name which begins with "AUTH=" indicates that the
server supports that particular authentication mechanism. See [RFC
1731] for a discussion of authentication mechanisms that can be used
with ICAP. All authentication names are, by definition, part of this
specification. For example, the authorization capability for an
experimental "blurdybloop" authenticator would be "AUTH=X-
BLURDYBLOOP" and not "X-AUTH=BLURDYBLOOP" or "X-
AUTH=X-BLURDYBLOOP". Other capability names refer to

extensions, revisions, or amendments to this specification. See the
documentation of the CAPABILITY response additional

information. No capabilities are enabled without explicit client
action to invoke the capability. See the section entitled "X-(Atom)
Experimental Commands" for information about the form of site or
implementation-specific capabilities.

Examples:

C: a001 CAPABILITY
S: * CAPABILITY ICAP
S: a001 OK CAPABILITY completed

C: a001 CAPABILITY
* CAPABILITY ICAP X-Vegomatic AUTH=X-Secret-Decoder-Rings
S: a001 OK CAPABILITY completed

(9]

O'Leary, Pete 16

Internet-Draft
6/16/98

https://datatracker.ietf.org/doc/html/rfc1731

draft-oleary-icap-04.doc Expires 6 months from above date

C: a®01 CAPABILITY
S: * CAPABILITY ICAP AUTH=KERBEROS_V4
S: a0l OK CAPABILITY completed

3.2. NOOP Command

Arguments: None
Data: Optional untagged responses.

Result: OK - Command completed
BAD - Improperly formed command, arguments
supplied which are not allowed

An ICAP server must support this command. The NOOP command
always succeeds. It does nothing.

Since any command can return a status update as untagged data, the
NOOP command can be used as a periodic poll during a period of
inactivity. The NOOP command can also be used to reset any
inactivity autologout timer on the server. The ICAP server
implementation should attempt to ensure that the NOOP commands
completes in as little time as possible.

Examples:

C: A0GO1 NOOP

S: AOO1 OK NOOP Completed.
C: A0GO2 NOOP

S: * 42 EXISTS

S: * 1 RECENT

S: AGO2 OK NOOP Completed.

3.4. LOGOUT Command

Arguments: None
Data: None

Result: OK - Command completed.
NO - Command failed, this would indicate that
something is seriously wrong.
BAD - Improperly formed command, arguments
supplied which are not allowed

An ICAP server must support this command, closing all open
selected Calendars and disconnecting. If a NO response is returned
by this command, the server should return some human-readable
information describing why the Logout cannot occur and what the

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

user can do to correct the situation. The server must send an
O'Leary, Pete 17

Internet-Draft
6/16/98
draft-oleary-icap-04.doc Expires 6 months from above date

untagged BYE response before the connection is closed and the
command completes.

Example:

C: AGO1 LOGOUT
S: * BYE ICAP Server logging out.
S: AGO1 OK LOGOUT Completed.

3.5. X-(Atom) Experimental Commands

Arguments: implementation defined
Data: implementation defined
Result: OK - command completed

NO - failure
BAD - command unknown or arguments invalid

Any command prefixed with an "X-" is an experimental command.
Commands which are not part of this specification MUST use the
"X-" prefix.

Any added untagged responses issued by an experimental command

MUST also be prefixed with an X. Server implementations MUST

NOT send any such untagged responses, unless the client requested it
by issuing the associated experimental command.

Example:

C: a441 CAPABILITY

S: * CAPABILITY ICAP AUTH=KERBEROS_V4 X-PIG-LATIN
S: a441 OK CAPABILITY completed

C: A442 X-PIG-LATIN

S: * XPIG-LATIN ow-nay eaking-spay ig-pay atin-lay
S: A442 OK X-PIG-LATIN ompleted-cay

ICAP Commands - Non-Authenticated State

[

4.1. AUTHENTICATE Command

Arguments: Authentication mechanism name

Data: None.

https://datatracker.ietf.org/doc/html/draft-oleary-icap-04

Result: OK - Command completed, in Authenticated state
NO - Command failed, still in Non-Authenticated state
BAD - Improperly formed command, invalid arguments,
still Non-Authenticated.

The AUTHENTICATE command i