
Network Working Group B. Wiley
Internet-Draft Operator Foundation
Intended status: Informational D. Oliver
Expires: January 9, 2020 Guardian Project
 July 08, 2019

Enabling Network Traffic Obfuscation - Pluggable Transports
draft-oliver-pluggable-transports-00

Abstract

 Pluggable Transports (PTs) are a mechanism enabling the rapid
 development and deployment of network traffic obfuscation techniques
 used to circumvent surveillance and censorship. This specification
 does not define or limit the techniques themselves, but rather
 focuses on the startup, shutdown, and inter-process communication
 mechanisms required to make these technologies interoperable with
 applications.

 This document is based heavily on [PT2.1].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 9, 2020.

Copyright Notice

 Copyright (c) 2019 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents

Wiley & Oliver Expires January 9, 2020 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft Pluggable Transports July 2019

 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
2. Conventions and Definitions 3
3. Background . 3
4. Architecture Overview . 4
5. Specification . 6
5.1. Pluggable Transport Naming 6
5.2. Transports API Interface 6
5.2.1. Goals for interface design 6
5.2.2. Abstract Interfaces 7

6. Adapters . 8
6.1. API to IPC Adapter 8
6.2. PT 1.0 Compatibility 9
6.3. Cross-language Linking 9
6.3.1. Using the Dispatcher IPC Interface In-process 9

6.4. Anonymity Considerations 10
7. References . 10
7.1. Normative References 10
7.2. Informative References 10

 Acknowledgments . 12
 Authors' Addresses . 12

1. Introduction

 The increased interest in network traffic obfuscation technologies
 mirrors the increase in usage of Deep Packet Inspection (DPI) to
 actively monitor the content of application data in addition to that
 data's routing information. Deep Packet Inspection inspects each
 packet based on the header of its request and the data it carries.
 It can identify the type of protocol the connection is using even if
 it was encrypted. DPI is not a mechanism to decrypt what is inside
 packets but to identify the 'protocol' or the application it
 represents.

 Deep packet inspection has become the prime tool of censors and
 surveillance entities who block, log, and/or traffic-shape access to
 sites and services they deem undesirable.
 As deep packet inspection has become more routine, the sophistication
 of monitoring has increased to include active probing that
 fingerprints and classifies application protocols. Thus, even as
 conventional care in application design has improved (via encryption

Wiley & Oliver Expires January 9, 2020 [Page 2]

Internet-Draft Pluggable Transports July 2019

 and other protocol design features that encourage privacy), network
 traffic is still under attack.

 The techniques of network monitoring are changing and improving day
 by day. The development of traffic obfuscation techniques that foil
 these efforts is slowed by the lack of common agreement on how these
 techniques are invoked, made easily interoperable with applications,
 and deployed quickly. This specification addresses those issues.

 This specification describes a method for decoupling protocol-level
 obfuscation from an application's client/server code, in a manner
 that promotes rapid development of obfuscation/circumvention tools
 and promotes reuse across privacy tools such as VPNs and secure
 proxies.

 This decoupling is accomplished by utilizing helper code, either in-
 process through a language-specific API or in a separate sub-
 processes, that implements the necessary forward/reverse proxy
 services that handle the censorship circumvention, with a well
 defined and standardized configuration and management interface. Any
 application code that implements the interfaces as specified in this
 document will be able to use all specification-compliant Pluggable
 Transports.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Background

 We define an Internet censor as any network intermediary that seeks
 to block, divert or traffic-manage Internet network connections for
 the purpose of eliminating, frustrating and/or logging access to
 Internet resources that have been deemed (by the censor) to be
 undesirable (either on a temporary or permanent basis). A variety of
 techniques are commonly applied by Internet censors to block such
 traffic. These include:

 1. DNS Blocking

 2. IP Blocking

 3. Port Blocking

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Wiley & Oliver Expires January 9, 2020 [Page 3]

Internet-Draft Pluggable Transports July 2019

 These techniques are applicable to a connection's metadata (IP
 routing information) and do not require inspecting the connection's
 datastream.

 DPI, in contrast, actually looks at the connection's datastream -
 often, specifically, the initial data elements in the stream (or
 within blocks of the stream). These elements of the stream can
 contain clues as to the application-level protocol employed, even
 when the data itself is encrypted. Through observation over time,
 these clues ("fingerprints") can be learned by the censor and (along
 with the routing information) used to block or divert targeted
 traffic.

 A defense against this type of active probing is traffic obfuscation
 - disguising the application data itself in a manner that is less-
 easily fingerprinted. However, in early experiments it quickly
 became clear that repeated use of the same obfuscation technique
 would, itself, be learned. Methods were developed by which a single
 obfuscation technique could transform on its own TODO: cite FTE
 proxy, ScrambleSuit, Dust. This approach proved expensive in terms
 of computational load. Interest gathered in solving this problem and
 as more ideas arose so to did the need for a mechanism supporting
 rapid deploying of new obfuscation techniques.

 While intense work on network traffic obfuscation commenced initially
 and continues within the Tor Project (and across a wider set of
 external parties using Tor as a vehicle for research), vendors of
 other privacy-enhancing software (such as VPNs) quickly found their
 products also foiled by DPI. Thus, it becomes important to see
 transport pluggability as a mechanism implemented in a manner
 independent of a specific product or service. The notion of
 "Pluggable Transports" (PT) was born from these requirements.

4. Architecture Overview

 The PT Server software exposes a public proxy that accepts
 connections from PT Clients. The PT Client transforms the traffic
 before it hits the public Internet and the PT Server reverses this
 transformation before passing the traffic on to its next destination.
 The PT Server directly forwards this data to the Server App, but the
 Server App itself may itself be a proxy server and expect the
 forwarded traffic it receives to conform to a proxy communication
 protocol such as SOCKS or TURN. There is also an optional
 lightweight protocol to facilitate communicating connection metadata
 that would otherwise be lost such as the source IP address and port
 EXTORPORT.

Wiley & Oliver Expires January 9, 2020 [Page 4]

Internet-Draft Pluggable Transports July 2019

 When using an in-process, language-specific API ("Transport API
 Interface") to integrate PTs into an application on both client and
 server, the PT Client Library is integrated directly into the Client
 App and the PT Server Library is integrated directly into the Server
 App. The Client App and Server App communicate through socket-like
 APIs, with all communication between them going through the PT
 library, which only sends transformed traffic over the public
 Internet.

 +------------+ +---------------------------+
 | Client App +-- Socket-like API --+ PT Client (Library) +--+
 +------------+ +---------------------------+ |
 |
 Public Internet (Obfuscated/Transformed traffic) ==> |
 |
 +------------+ +-------------------------+ |
 | Server App +-- Socket-like API --+ PT Server (Library) +--+
 +------------+ +-------------------------+

 Figure 1. API Architecture Overview

 When using the transports as a separate process on both client and
 server, the Dispatcher IPC Interface is used. On the client device,
 the PT Client software exposes a local proxy to the client
 application, and transforms traffic before forwarding it to the PT
 Server. The PT Dispatcher can be configured to provide different
 proxy types, supporting proxying of both TCP and UDP traffic.

 +------------+ +---------------------------+
 | Client App +---- Local Proxy ----+ PT Client (Dispatcher) +--+
 +------------+ +---+-------------------+---+ |
 | PT Client Library | |
 +-------------------+ |
 |
 Public Internet (Transformed/Proxied traffic) =====> |
 |
 +------------+ +---------------------------+ |
 | Server App +---- Local Proxy ----+ PT Server (Dispatcher) +--+
 +------------+ +---+-------------------+---+
 |PT Server (Library)|
 +-------------------+

 Figure 2. IPC Architecture Overview

 A PT client-server setup may also mix and match interfaces, using
 Dispatcher IPC on one end of the connection and the Transport API on
 the other, as below (or vice-versa):

Wiley & Oliver Expires January 9, 2020 [Page 5]

Internet-Draft Pluggable Transports July 2019

 +------------+ +---------------------------+
 | Client App +---- Local Proxy ----+ PT Dispatcher Client +-+
 +------------+ +---+-------------------+---+ |
 |
 |
 +------------+ +--------------------------+ |
 | Server App +-- Socket-like API --+ PT Server (Library) +--+
 +------------+ +--------------------------+

 Figure 3. Mixed IPC and Transport API example

 Each invocation of a PT MUST be either a client OR a server.

 PT dispatchers MAY support any of the following proxy modes: PT 1.0
 with SOCKS4, PT 1.0 with SOCKS5, or any of the PT 2.1 modes:
 transparent TCP, transparent UDP, or STUN-aware UDP. Clients SHOULD
 prefer PT 2.1 over PT 1.0.

5. Specification

5.1. Pluggable Transport Naming

 Pluggable Transport names serve as unique identifiers, and every PT
 MUST have a unique name. PT names MUST be valid C identifiers, which
 means that PT names MUST begin with a letter or underscore, and the
 remaining characters MUST be ASCII letters, numbers or underscores.
 No length limit is imposed. PT names MUST therefore satisfy the
 regular expression [a-zA-Z_][a-zA-Z0-9_]*.

5.2. Transports API Interface

5.2.1. Goals for interface design

 The goal for the interface design is to achieve the following
 properties:

 - Transport implementers have to do the minimum amount of work in
 addition to implementing the core transform logic.

 - Transport users have to do the minimum amount of work to add PT
 support to code that uses standard networking primitives from the
 language or platform.

 - Transports require an explicit destination address to be
 specified. However, this can be either an explicit PT server
 destination with the Server App is already known implicitly, or an
 explicit Server App destination with the PT server destination
 already known implicity.

Wiley & Oliver Expires January 9, 2020 [Page 6]

Internet-Draft Pluggable Transports July 2019

 - Transports may or may not generate, send, receive, store, and/or
 update persistent or ephemeral state.

 - Transports that do not need persistence or negotiation can
 interact with the application through the simplest possible
 interface

 - Transports that do need persistence or negotiation can rely on the
 application to provide it through the specified interface, so the
 transport does not need to implement persistence or negotiation
 internally.

 - Applications should be able to use a PT Client implementation to
 establish several independent transport connections with different
 parameters, with a minimum of complexity and latency.

 - The interface in each language should be idiomatic and performant,
 including reproducing blocking behavior and interaction with
 nonblocking IO subsystems when possible.

5.2.2. Abstract Interfaces

 This section presents high-level pseudocode descriptions of the
 interfaces exposed by different types of transport components.
 Implementations for different languages should provide equivalent
 functionality, but should use the idioms for each language, mimicking
 the existing networking libraries.

5.2.2.1. Transport

 - Transport takes a transport configuration and provides a Client
 Factory and a Server Factory.

 - Transports may provide additional language-specific configuration
 methods.

 - The only way to obtain Client Factories and Server Factories is
 from the Transport.

 - The Server Factory of the Transport can fail if the Transport does
 not provide a server-side implementation. However, most
 transports provide both a client and server implementation.

 - The transport configuration is specific to each Transport. Using
 a Transport requires knowing the correct parameters to initialize
 that Transport.

Wiley & Oliver Expires January 9, 2020 [Page 7]

Internet-Draft Pluggable Transports July 2019

5.2.2.1.1. Client Factory

 - Client Factory takes the connection settings and produces
 a Connection to that server.

 - The connection settings are specific to each transport. Some
 transports will also require an argument indicating
 the destination endpoint. Producing a Connection may fail if the
 server is unreachable or if the transport configuration was
 incorrect.

5.2.2.1.2. Server Factory

 - Server Factory takes the address on which the PT server should
 listen for incoming client connections and produces a Listener for
 that address

5.2.2.1.3. Listener

 - Listener produces a stream of Connections

 - New Connections are available whenever an incoming network
 connection from the PT client has been established. The language-
 specific API can adopt either a blocking or non-blocking API for
 accepting new connections, depending on what is idiomatic for the
 language. 3.2.2.2. Connection

 - Connection provides an API similar to the environment's native
 socket type

 - Connection is what is used to read and write data over the
 transport connection

 - The transport-specific logic for obfuscating network traffic is
 implemented inside the Connection.

6. Adapters

 This section covers the various different ways that the Pluggable
 Transport interfaces (both API and IPC) can be adapted to different
 use cases.

6.1. API to IPC Adapter

 When an application and the transports it uses are written in the
 same language, either the Transports API or Dispatcher IPC can be
 used. When they are in different languages, they must communicate
 through the Dispatcher IPC interface. For maximum flexibility and to

Wiley & Oliver Expires January 9, 2020 [Page 8]

Internet-Draft Pluggable Transports July 2019

 minimize duplication of effort across languages, dispatcher can be
 implemented by wrapping transport implementations that implement the
 Transports API. For an example of this approach, see the
 Shapeshifter Dispatcher [PT2-DISPATCHER], which wraps transports
 implementing the Transports API in the Go language and provides a
 Dispatcher IPC interface to use them from other languages.

6.2. PT 1.0 Compatibility

 The only interface defined in the PT 1.0 specification is an IPC
 interface. No standard API is defined. Therefore, PT 1.0
 compatibility refers to compatibility between applications and
 transports where one side conforms to the PT 1.0 specification and
 the other conforms to the PT 2.1 specification. Fortunately, an
 adapter is not needed in this case as both the PT 1.0 and PT 2.1
 specifications allow for version negotiation. The
 TOR_PT_MANAGED_TRANSPORT_VER environment variable or -ptversion
 command line flag is used by the application to specify a list of
 supported versions, for instance "1.0,2.1". The PT provider responds
 with the VERSION command on stdout in order to specify which version
 is supported by the PT provider, for instance "VERSION 2.1". Since
 the application can specify a list of supported versions, the PT
 provider can respond dynamically, supporting PT 1.0 when required and
 automatically upgrading to a PT 2.1 implementation when that is an
 available option. It is up to applications whether they want to
 support PT 2.1 exclusively or maintain backwards compatibility with
 PT 1.0 implementations.

6.3. Cross-language Linking

 If two languages are compatible via cross-language linking, then a
 suitable adapter can be written that wraps the implementation of the
 Transports API in one language with an API for a compatible language.
 For example, on Android the Go implementation of the Transports API
 is wrapped in a Java API to create Java language bindings without the
 need for a native Java implementation or use of Dispatcher IPC.

6.3.1. Using the Dispatcher IPC Interface In-process

 When using a transport that exposes the Dispatcher IPC interface, it
 may be more convenient to run the transport in a separate thread but
 in the same process as the application. Packets can still be routed
 through the transport's SOCKS5 or TURN port on localhost. However,
 it may be inconvenient or impossible to use STDIN and STDOUT for
 communication between these two threads. Therefore, in some
 languages it may be appropriate to produce an "inter-thread
 interface" that reproduces the Dispatcher IPC interface's semantics,
 but replaces STDIN and STDOUT with language-native function-call and

Wiley & Oliver Expires January 9, 2020 [Page 9]

Internet-Draft Pluggable Transports July 2019

 event primitives. This is the approach used by OnionBrowser
 [ONION_BROWSER], the Tor implementation on iOS. This approach is
 used because Tor uses the Dispatcher IPC mechanism to talk to the
 transports instead of the Transports API. However, iOS does not
 allow for applications to have multiple processes. Therefore, an in-
 process Dispatcher IPC approach must be used instead of traditional
 separate process Dispatcher IPC. An alternative would be to use the
 Transports API directly instead of Dispatcher IPC.

6.4. Anonymity Considerations

 When designing and implementing a Pluggable Transport, care should be
 taken to preserve the privacy of clients and to avoid leaking
 personally identifying information. Examples of client related
 considerations are:

 - Not logging client IP addresses to disk.

 - Not leaking DNS addresses except when necessary.

 - Ensuring that "TOR_PT_PROXY"'s "fail closed" behavior is
 implemented correctly.

 Additionally, certain obfuscation mechanisms rely on information such
 as the server IP address and port being confidential, so clients also
 need to take care to preserve server side information confidential
 when applicable.

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [ONION_BROWSER]
 "Onion Browser", 2019,
 <https://github.com/OnionBrowser/OnionBrowser>.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://github.com/OnionBrowser/OnionBrowser

Wiley & Oliver Expires January 9, 2020 [Page 10]

Internet-Draft Pluggable Transports July 2019

 [PT2-DISPATCHER]
 Wiley, B., "Shapeshifter Dispatcher", 2018,
 <https://github.com/OperatorFoundation/

shapeshifter-dispatcher>.

 [PT2.1] Wiley, B., "Pluggable Transport Base Specification", 2018,
 <https://github.com/Pluggable-Transports/
 Pluggable-Transports-
 spec/blob/master/releases/PTSpecV2.1Draft1/Pluggable%20Tra
 nsport%20Specification%20v2.1%20-%20Base%20Specification%2
 0v2.1%2C%20Draft%201.pdf>.

https://github.com/OperatorFoundation/shapeshifter-dispatcher
https://github.com/OperatorFoundation/shapeshifter-dispatcher
https://github.com/Pluggable-Transports/

Wiley & Oliver Expires January 9, 2020 [Page 11]

Internet-Draft Pluggable Transports July 2019

Acknowledgments

 Many people contributed to the PT 2.1 specification. Major
 contributions were made by Dr. Brandon Wiley (Operator Foundation),
 Nick Mathewson (Tor), and Ben Schwartz (Jigsaw). Valuable feedback
 was provided by the attendees at the Pluggable Transport Implementers
 Meetings and the traffic-obf and tor-dev mailing lists. The PT 2.1
 specification expands upon the "Pluggable Transport Specification
 (Version 1)" document authored by Yawning Angel (Tor). Inspiration
 for the PT 2.1 Go API was also inspired by the obfs4proxy
 implementation of the PT 1.0 specification in Go, also developed by
 Yawning Angel (Tor).

Authors' Addresses

 Brandon Wiley
 Operator Foundation

 EMail: brandon@operatorfoundation.org
 URI: https://operatorfoundation.org

 David M. Oliver
 Guardian Project

 EMail: david@guardianproject.info
 URI: https://guardianproject.info

https://operatorfoundation.org
https://guardianproject.info

Wiley & Oliver Expires January 9, 2020 [Page 12]

