
Workgroup: Network Working Group

Internet-Draft: draft-omara-sframe-02

Published: 29 March 2021

Intended Status: Informational

Expires: 30 September 2021

Authors: E. Omara

Google

J. Uberti

Google

A. GOUAILLARD

CoSMo Software

S. Murillo

CoSMo Software

Secure Frame (SFrame)

Abstract

This document describes the Secure Frame (SFrame) end-to-end

encryption and authentication mechanism for media frames in a

multiparty conference call, in which central media servers (SFUs)

can access the media metadata needed to make forwarding decisions

without having access to the actual media. The proposed mechanism

differs from other approaches through its use of media frames as the

encryptable unit, instead of individual RTP packets, which makes it

more bandwidth efficient and also allows use with non-RTP

transports.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 30 September 2021.

Copyright Notice

Copyright (c) 2021 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

document must include Simplified BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Goals

4. SFrame

4.1. SFrame Format

4.2. SFrame Header

4.3. Encryption Schema

4.3.1. Key Selection

4.3.2. Key Derivation

4.3.3. Encryption

4.3.4. Decryption

4.3.5. Duplicate Frames

4.4. Ciphersuites

4.4.1. AES-CM with SHA2

5. Key Management

5.1. Sender Keys

5.2. MLS

6. Media Considerations

6.1. SFU

6.1.1. LastN and RTP stream reuse

6.1.2. Simulcast

6.1.3. SVC

6.2. Video Key Frames

6.3. Partial Decoding

7. Overhead

7.1. Audio

7.2. Video

7.3. SFrame vs PERC-lite

7.3.1. Audio

7.3.2. Video

8. Security Considerations

8.1. No Per-Sender Authentication

8.2. Key Management

8.3. Authentication tag length

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

1. Introduction

Modern multi-party video call systems use Selective Forwarding Unit

(SFU) servers to efficiently route RTP streams to call endpoints

based on factors such as available bandwidth, desired video size,

codec support, and other factors. In order for the SFU to work

properly though, it needs to be able to access RTP metadata and RTCP

feedback messages, which is not possible if all RTP/RTCP traffic is

end-to-end encrypted.

As such, two layers of encryptions and authentication are required:

Hop-by-hop (HBH) encryption of media, metadata, and feedback

messages between the the endpoints and SFU

End-to-end (E2E) encryption of media between the endpoints

While DTLS-SRTP can be used as an efficient HBH mechanism, it is

inherently point-to-point and therefore not suitable for a SFU

context. In addition, given the various scenarios in which video

calling occurs, minimizing the bandwidth overhead of end-to-end

encryption is also an important goal.

This document proposes a new end-to-end encryption mechanism known

as SFrame, specifically designed to work in group conference calls

with SFUs.

Figure 1: SRTP packet format

¶

¶

1.

¶

2. ¶

¶

¶

 +-------------------------------+-------------------------------+^+

 |V=2|P|X| CC |M| PT | sequence number | |

 +-------------------------------+-------------------------------+ |

 | timestamp | |

 +---+ |

 | synchronization source (SSRC) identifier | |

 |=+=| |

 | contributing source (CSRC) identifiers | |

 | | |

 +---+ |

 | RTP extension(s) (OPTIONAL) | |

+^---------------------+--+ |

| | payload header | | |

| +--------------------+ payload ... | |

| | | |

+^+---+^+

| : authentication tag : |

| +---+ |

| |

++ Encrypted Portion Authenticated Portion +--+

SFU:

IV:

MAC:

E2EE:

HBH:

KMS:

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

Selective Forwarding Unit (AKA RTP Switch)

Initialization Vector

Message Authentication Code

End to End Encryption

Hop By Hop

Key Management System

3. Goals

SFrame is designed to be a suitable E2EE protection scheme for

conference call media in a broad range of scenarios, as outlined by

the following goals:

Provide an secure E2EE mechanism for audio and video in

conference calls that can be used with arbitrary SFU servers.

Decouple media encryption from key management to allow SFrame

to be used with an arbitrary KMS.

Minimize packet expansion to allow successful conferencing in

as many network conditions as possible.

Independence from the underlying transport, including use in

non-RTP transports, e.g., WebTransport.

When used with RTP and its associated error resilience

mechanisms, i.e., RTX and FEC, require no special handling for

RTX and FEC packets.

Minimize the changes needed in SFU servers.

Minimize the changes needed in endpoints.

Work with the most popular audio and video codecs used in

conferencing scenarios.

¶

¶

¶

¶

¶

¶

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

5.

¶

6. ¶

7. ¶

8.

¶

4. SFrame

We propose a frame level encryption mechanism that provides

effective end-to-end encryption, is simple to implement, has no

dependencies on RTP, and minimizes encryption bandwidth overhead.

Because SFrame encrypts the full frame, rather than individual

packets, bandwidth overhead is reduced by having a single IV and

authentication tag for each media frame.

Also, because media is encrypted prior to packetization, the

encrypted frame is packetized using a generic RTP packetizer instead

of codec-dependent packetization mechanisms. With this move to a

generic packetizer, media metadata is moved from codec-specific

mechanisms to a generic frame RTP header extension which, while

visible to the SFU, is authenticated end-to-end. This extension

includes metadata needed for SFU routing such as resolution, frame

beginning and end markers, etc.

The generic packetizer splits the E2E encrypted media frame into one

or more RTP packets and adds the SFrame header to the beginning of

the first packet and an auth tag to the end of the last packet.

¶

¶

¶

The E2EE keys used to encrypt the frame are exchanged out of band

using a secure E2EE channel.

 +---+

 | |

 | +----------+ +------------+ +-----------+ |

 | | | | SFrame | |Packetizer | | DTLS+SRTP

 | | Encoder +----->+ Enc +----->+ +-------------------------+

 ,+. | | | | | | | | +--+ +--+ +--+ |

 `|' | +----------+ +-----+------+ +-----------+ | | | | | | | |

 /|\ | ^ | | | | | | | |

 + | | | | | | | | | |

 / \ | | | +--+ +--+ +--+ |

Alice | +-----+------+ | Encrypted Packets |

 | |Key Manager | | |

 | +------------+ | |

 | || | |

 | || | |

 | || | |

 +---+ |

 || |

 || v

 +------------+ +-----+------+

 E2EE channel | Messaging | | Media |

 via the | Server | | Server |

 Messaging Server | | | |

 +------------+ +-----+------+

 || |

 || |

 +---+ |

 | || | |

 | || | |

 | || | |

 | +------------+ | |

 | |Key Manager | | |

 ,+. | +-----+------+ | Encrypted Packets |

 `|' | | | +--+ +--+ +--+ |

 /|\ | | | | | | | | | |

 + | v | | | | | | | |

 / \ | +----------+ +-----+------+ +-----------+ | | | | | | | |

 Bob | | | | SFrame | | De+ | | +--+ +--+ +--+ |

 | | Decoder +<-----+ Dec +<-----+Packetizer +<------------------------+

 | | | | | | | | DTLS+SRTP

 | +----------+ +------------+ +-----------+ |

 | |

 +---+

¶

¶

4.1. SFrame Format

4.2. SFrame Header

Since each endpoint can send multiple media layers, each frame will

have a unique frame counter that will be used to derive the

encryption IV. The frame counter must be unique and monotonically

increasing to avoid IV reuse.

As each sender will use their own key for encryption, so the SFrame

header will include the key id to allow the receiver to identify the

key that needs to be used for decrypting.

Both the frame counter and the key id are encoded in a variable

length format to decrease the overhead, so the first byte in the

Sframe header is fixed and contains the header metadata with the

following format:

Reserved (R): 1 bit This field MUST be set to zero on sending, and

MUST be ignored by receivers. Counter Length (LEN): 3 bits This

field indicates the length of the CTR fields in bytes. Extended Key

Id Flag (X): 1 bit Indicates if the key field contains the key id or

the key length. Key or Key Length: 3 bits This field contains the

 +------------+--+^+

 |S|LEN|X|KID | Frame Counter | |

+^+------------+--+ |

| | | |

| | | |

| | | |

| | | |

| | Encrypted Frame | |

| | | |

| | | |

| | | |

| | | |

+^+---+^+

| | Authentication Tag | |

| +---+ |

| |

| |

+----+Encrypted Portion Authenticated Portion+---+

¶

¶

¶

¶

 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+

|R|LEN |X| K |

+-+-+-+-+-+-+-+-+

SFrame header metadata

¶

key id (KID) if the X flag is set to 0, or the key length (KLEN) if

set to 1.

If X flag is 0 then the KID is in the range of 0-7 and the frame

counter (CTR) is found in the next LEN bytes:

Key id (KID): 3 bits The key id (0-7). Frame counter (CTR):

(Variable length) Frame counter value up to 8 bytes long.

if X flag is 1 then KLEN is the length of the key (KID), that is

found after the SFrame header metadata byte. After the key id (KID),

the frame counter (CTR) will be found in the next LEN bytes:

Key length (KLEN): 3 bits The key length in bytes. Key id (KID):

(Variable length) The key id value up to 8 bytes long. Frame counter

(CTR): (Variable length) Frame counter value up to 8 bytes long.

4.3. Encryption Schema

SFrame encryption uses an AEAD encryption algorithm and hash

function defined by the ciphersuite in use (see Section 4.4). We

will refer to the following aspects of the AEAD algorithm below:

AEAD.Encrypt and AEAD.Decrypt - The encryption and decryption

functions for the AEAD. We follow the convention of RFC 5116

[RFC5116] and consider the authentication tag part of the

ciphertext produced by AEAD.Encrypt (as opposed to a separate

field as in SRTP [RFC3711]).

AEAD.Nk - The size of a key for the encryption algorithm, in

bytes

AEAD.Nn - The size of a nonce for the encryption algorithm, in

bytes

4.3.1. Key Selection

Each SFrame encryption or decryption operation is premised on a

single secret base_key, which is labeled with an integer KID value

signaled in the SFrame header.

¶

¶

 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+---------------------------------+

|R|LEN |0| KID | CTR... (length=LEN) |

+-+-+-+-+-+-+-+-+---------------------------------+

¶

¶

¶

 0 1 2 3 4 5 6 7

+-+-+-+-+-+-+-+-+---------------------------+---------------------------+

|R|LEN |1|KLEN | KID... (length=KLEN) | CTR... (length=LEN) |

+-+-+-+-+-+-+-+-+---------------------------+---------------------------+

¶

¶

¶

*

¶

*

¶

*

¶

¶

The sender and receivers need to agree on which key should be used

for a given KID. The process for provisioning keys and their KID

values is beyond the scope of this specification, but its security

properties will bound the assurances that SFrame provides. For

example, if SFrame is used to provide E2E security against

intermediary media nodes, then SFrame keys MUST be negotiated in a

way that does not make them accessible to these intermediaries.

For each known KID value, the client stores the corresponding

symmetric key base_key. For keys that can be used for encryption,

the client also stores the next counter value CTR to be used when

encrypting (initially 0).

When encrypting a frame, the application specifies which KID is to

be used, and the counter is incremented after successful encryption.

When decrypting, the base_key for decryption is selected from the

available keys using the KID value in the SFrame Header.

A given key MUST NOT be used for encryption by multiple senders.

Such reuse would result in multiple encrypted frames being generated

with the same (key, nonce) pair, which harms the protections

provided by many AEAD algorithms. Implementations SHOULD mark each

key as usable for encryption or decryption, never both.

Note that the set of available keys might change over the lifetime

of a real-time session. In such cases, the client will need to

manage key usage to avoid media loss due to a key being used to

encrypt before all receivers are able to use it to decrypt. For

example, an application may make decryption-only keys available

immediately, but delay the use of encryption-only keys until (a) all

receivers have acknowledged receipt of the new key or (b) a timeout

expires.

4.3.2. Key Derivation

SFrame encrytion and decryption use a key and salt derived from the

base_key associated to a KID. Given a base_key value, the key and

salt are derived using HKDF [RFC5869] as follows:

The hash function used for HKDF is determined by the ciphersuite in

use.

4.3.3. Encryption

After encoding the frame and before packetizing it, the necessary

media metadata will be moved out of the encoded frame buffer, to be

¶

¶

¶

¶

¶

¶

sframe_secret = HKDF-Extract(K, 'SFrame10')

sframe_key = HKDF-Expand(sframe_secret, 'key', AEAD.Nk)

sframe_salt = HKDF-Expand(sframe_secret, 'salt', AEAD.Nn)

¶

¶

used later in the RTP generic frame header extension. The encoded

frame, the metadata buffer and the frame counter are passed to

SFrame encryptor.

SFrame encryption uses the AEAD encryption algorithm for the

ciphersuite in use. The key for the encryption is the sframe_key

and the nonce is formed by XORing the sframe_salt with the current

counter, encoded as a big-endian integer of length AEAD.Nn.

The encryptor forms an SFrame header using the S, CTR, and KID

values provided. The encoded header is provided as AAD to the AEAD

encryption operation, with any frame metadata appended.

The encrypted payload is then passed to a generic RTP packetized to

construct the RTP packets and encrypt it using SRTP keys for the HBH

encryption to the media server.

¶

¶

¶

def encrypt(S, CTR, KID, frame_metadata, frame):

 sframe_key, sframe_salt = key_store[KID]

 frame_ctr = encode_big_endian(CTR, AEAD.Nn)

 frame_nonce = xor(sframe_salt, frame_ctr)

 header = encode_sframe_header(S, CTR, KID)

 frame_aad = header + frame_metadata

 encrypted_frame = AEAD.Encrypt(sframe_key, frame_nonce, frame_aad, frame)

 return header + encrypted_frame

¶

¶

Figure 2: Encryption flow

 +----------------+ +---------------+

 | frame metadata | | |

 +-------+--------+ | |

 | | frame |

 | | |

 | | |

 | +-------+-------+

 | |

header ----+------------------>| AAD

+-----+ |

| S | |

+-----+ |

| KID +--+--> sframe_key ----->| Key

| | | |

| | +--> sframe_salt -+ |

+-----+ | |

| CTR +--------------------+-->| Nonce

| | |

| | |

+-----+ |

 | AEAD.Encrypt

 | |

 | V

 | +-------+-------+

 | | |

 | | |

 | | encrypted |

 | | frame |

 | | |

 | | |

 | +-------+-------+

 | |

 | generic RTP packetize

 | |

 | v

 V

+---------------+ +---------------+ +---------------+

| SFrame header | | | | |

+---------------+ | | | |

| | | payload 2/N | | payload N/N |

| payload 1/N | | | | |

| | | | | |

+---------------+ +---------------+ +---------------+

4.3.4. Decryption

The receiving clients buffer all packets that belongs to the same

frame using the frame beginning and ending marks in the generic RTP

frame header extension, and once all packets are available, it

passes it to SFrame for decryption. The KID field in the SFrame

header is used to find the right key for the encrypted frame.

For frames that are failed to decrypt because there is key available

for the KID in the SFrame header, the client MAY buffer the frame

and retry decryption once a key with that KID is received.

4.3.5. Duplicate Frames

Unlike messaging application, in video calls, receiving a duplicate

frame doesn't necessary mean the client is under a replay attack,

there are other reasons that might cause this, for example the

sender might just be sending them in case of packet loss. SFrame

decryptors use the highest received frame counter to protect against

this. It allows only older frame pithing a short interval to support

out of order delivery.

4.4. Ciphersuites

Each SFrame session uses a single ciphersuite that specifies the

following primitives:

o A hash function used for key derivation and hashing signature

inputs

o An AEAD encryption algorithm [RFC5116] used for frame encryption,

optionally with a truncated authentication tag

o [Optional] A signature algorithm

This document defines the following ciphersuites:

¶

def decrypt(frame_metadata, sframe):

 header, encrypted_frame = split_header(sframe)

 S, CTR, KID = parse_header(header)

 sframe_key, sframe_salt = key_store[KID]

 frame_ctr = encode_big_endian(CTR, AEAD.Nn)

 frame_nonce = xor(sframe_salt, frame_ctr)

 frame_aad = header + frame_metadata

 return AEAD.Decrypt(sframe_key, frame_nonce, frame_aad, encrypted_frame)

¶

¶

¶

¶

¶

¶

¶

¶

Value Name Nk Nn Reference

0x0001 AES_CM_128_HMAC_SHA256_8 16 12 RFC XXXX

0x0002 AES_CM_128_HMAC_SHA256_4 16 12 RFC XXXX

0x0003 AES_GCM_128_SHA256 16 12 RFC XXXX

0x0004 AES_GCM_256_SHA512 32 12 RFC XXXX

Table 1

In the "AES_CM" suites, the length of the authentication tag is

indicated by the last value: "_8" indicates an eight-byte tag and

"_4" indicates a four-byte tag.

In a session that uses multiple media streams, different

ciphersuites might be configured for different media streams. For

example, in order to conserve bandwidth, a session might use a

ciphersuite with 80-bit tags for video frames and another

ciphersuite with 32-bit tags for audio frames.

4.4.1. AES-CM with SHA2

In order to allow very short tag sizes, we define a synthetic AEAD

function using the authenticated counter mode of AES together with

HMAC for authentication. We use an encrypt-then-MAC approach as in

SRTP [RFC3711].

Before encryption or decryption, encryption and authentication

subkeys are derived from the single AEAD key using HKDF. The subkeys

are derived as follows, where Nk represents the key size for the AES

block cipher in use and Nh represents the output size of the hash

function:

The AEAD encryption and decryption functions are then composed of

individual calls to the CM encrypt function and HMAC. The resulting

MAC value is truncated to a number of bytes tag_len fixed by the

ciphersuite.

¶

¶

¶

¶

def derive_subkeys(key):

 aead_secret = HKDF-Extract(K, 'SFrame10 AES CM AEAD')

 enc_key = HKDF-Expand(aead_secret, 'enc', Nk)

 auth_key = HKDF-Expand(aead_secret, 'auth', Nh)

¶

¶

5. Key Management

SFrame must be integrated with an E2E key management framework to

exchange and rotate the keys used for SFrame encryption and/or

signing. The key management framework provides the following

functions:

Provisioning KID/base_key mappings to participating clients

(optional) Provisioning clients with a list of trusted signing

keys

Updating the above data as clients join or leave

It is up to the application to define a rotation schedule for keys.

For example, one application might have an ephemeral group for every

call and keep rotating key when end points joins or leave the call,

while another application could have a persistent group that can be

used for multiple calls and simply derives ephemeral symmetric keys

for a specific call.

5.1. Sender Keys

If the participants in a call have a pre-existing E2E-secure

channel, they can use it to distribute SFrame keys. Each client

participating in a call generates a fresh encryption key and

optionally a signing key pair. The client then uses the E2E-secure

channel to send their encryption key and signing public key to the

other participants.

def compute_tag(nonce, aad, ct):

 aad_len = encode_big_endian(len(aad), 8)

 ct_len = encode_big_endian(len(ct), 8)

 auth_data = aad_len + ct_len + nonce + aad + ct

 tag = HMAC(auth_key, auth_data)

 return truncate(tag, tag_len)

def AEAD.Encrypt(key, nonce, aad, pt):

 ct = AES-CM.Encrypt(key, nonce, pt)

 tag = compute_tag(nonce, aad, ct)

 return ct + tag

def AEAD.Decrypt(key, nonce, aad, ct):

 inner_ct, tag = split_ct(ct, tag_len)

 candidate_tag = compute_tag(nonce, aad, inner_ct)

 if !constant_time_equal(tag, candidate_tag):

 raise Exception("Authentication Failure")

 return AES-CM.Decrypt(key, nonce, inner_ct)

¶

¶

* ¶

*

¶

* ¶

¶

¶

In this scheme, it is assumed that receivers have a signal outside

of SFrame for which client has sent a given frame, for example the

RTP SSRC. SFrame KID values are then used to distinguish generations

of the sender's key. At the beginning of a call, each sender

encrypts with KID=0. Thereafter, the sender can ratchet their key

forward for forward secrecy:

The sender signals such an update by incrementing their KID value. A

receiver who receives from a sender with a new KID computes the new

key as above. The old key may be kept for some time to allow for

out-of-order delivery, but should be deleted promptly.

If a new participant joins mid-call, they will need to receive from

each sender (a) the current sender key for that sender, (b) the

signing key for the sender, if used, and (c) the current KID value

for the sender. Evicting a participant requires each sender to send

a fresh sender key to all receivers.

5.2. MLS

The Messaging Layer Security (MLS) protocol provides group

authenticated key exchange [I-D.ietf-mls-architecture] [I-D.ietf-

mls-protocol]. In principle, it could be used to instantiate the

sender key scheme above, but it can also be used more efficiently

directly.

MLS creates a linear sequence of keys, each of which is shared among

the members of a group at a given point in time. When a member joins

or leaves the group, a new key is produced that is known only to the

augmented or reduced group. Each step in the lifetime of the group

is know as an "epoch", and each member of the group is assigned an

"index" that is constant for the time they are in the group.

In SFrame, we derive per-sender base_key values from the group

secret for an epoch, and use the KID field to signal the epoch and

sender index. First, we use the MLS exporter to compute a shared

SFrame secret for the epoch.

For compactness, do not send the whole epoch number. Instead, we

send only its low-order E bits. Note that E effectively defines a

re-ordering window, since no more than 2^E epoch can be active at a

¶

sender_key[i+1] = HKDF-Expand(

 HKDF-Extract(sender_key[i], 'SFrame10 ratchet'),

 '', AEAD.Nk)

¶

¶

¶

¶

¶

¶

sframe_epoch_secret = MLS-Exporter("SFrame 10 MLS", "", AEAD.Nk)

sender_base_key[index] = HKDF-Expand(sframe_epoch_secret,

 encode_big_endian(index, 4), AEAD.Nk)

¶

given time. Receivers MUST be prepared for the epoch counter to roll

over, removing an old epoch when a new epoch with the same E lower

bits is introduced. (Sender indices cannot be similarly compressed.)

Once an SFrame stack has been provisioned with the

sframe_epoch_secret for an epoch, it can compute the required KIDs

and sender_base_key values on demand, as it needs to encrypt/decrypt

for a given member.

MLS also provides an authenticated signing key pair for each

participant. When SFrame uses signatures, these are the keys used to

generate SFrame signatures.

6. Media Considerations

6.1. SFU

Selective Forwarding Units (SFUs) as described in https://

tools.ietf.org/html/rfc7667#section-3.7 receives the RTP streams

from each participant and selects which ones should be forwarded to

each of the other participants. There are several approaches about

how to do this stream selection but in general, in order to do so,

the SFU needs to access metadata associated to each frame and modify

¶

KID = (sender_index << E) + (epoch % (1 << E))¶

¶

 ...

 |

Epoch 17 +--+-- index=33 -> KID = 0x211

 | |

 | +-- index=51 -> KID = 0x331

 |

 |

Epoch 16 +--+-- index=2 --> KID = 0x20

 |

 |

Epoch 15 +--+-- index=3 --> KID = 0x3f

 | |

 | +-- index=5 --> KID = 0x5f

 |

 |

Epoch 14 +--+-- index=3 --> KID = 0x3e

 | |

 | +-- index=7 --> KID = 0x7e

 | |

 | +-- index=20 -> KID = 0x14e

 |

 ...

¶

¶

the RTP information of the incoming packets when they are

transmitted to the received participants.

This section describes how this normal SFU modes of operation

interacts with the E2EE provided by SFrame

6.1.1. LastN and RTP stream reuse

The SFU may choose to send only a certain number of streams based on

the voice activity of the participants. To reduce the number of SDP

O/A required to establish a new RTP stream, the SFU may decide to

reuse previously existing RTP sessions or even pre-allocate a

predefined number of RTP streams and choose in each moment in time

which participant media will be sending through it. This means that

in the same RTP stream (defined by either SSRC or MID) may carry

media from different streams of different participants. As different

keys are used by each participant for encoding their media, the

receiver will be able to verify which is the sender of the media

coming within the RTP stream at any given point if time, preventing

the SFU trying to impersonate any of the participants with another

participant's media. Note that in order to prevent impersonation by

a malicious participant (not the SFU) usage of the signature is

required. In case of video, the a new signature should be started

each time a key frame is sent to allow the receiver to identify the

source faster after a switch.

6.1.2. Simulcast

When using simulcast, the same input image will produce N different

encoded frames (one per simulcast layer) which would be processed

independently by the frame encryptor and assigned an unique counter

for each.

6.1.3. SVC

In both temporal and spatial scalability, the SFU may choose to drop

layers in order to match a certain bitrate or forward specific media

sizes or frames per second. In order to support it, the sender MUST

encode each spatial layer of a given picture in a different frame.

That is, an RTP frame may contain more than one SFrame encrypted

frame with an incrementing frame counter.

6.2. Video Key Frames

Forward and Post-Compromise Security requires that the e2ee keys are

updated anytime a participant joins/leave the call.

The key exchange happens async and on a different path than the SFU

signaling and media. So it may happen that when a new participant

joins the call and the SFU side requests a key frame, the sender

¶

¶

¶

¶

¶

¶

generates the e2ee encrypted frame with a key not known by the

receiver, so it will be discarded. When the sender updates his

sending key with the new key, it will send it in a non-key frame, so

the receiver will be able to decrypt it, but not decode it.

Receiver will re-request an key frame then, but due to sender and

sfu policies, that new key frame could take some time to be

generated.

If the sender sends a key frame when the new e2ee key is in use, the

time required for the new participant to display the video is

minimized.

6.3. Partial Decoding

Some codes support partial decoding, where it can decrypt individual

packets without waiting for the full frame to arrive, with SFrame

this won't be possible because the decoder will not access the

packets until the entire frame is arrived and decrypted.

7. Overhead

The encryption overhead will vary between audio and video streams,

because in audio each packet is considered a separate frame, so it

will always have extra MAC and IV, however a video frame usually

consists of multiple RTP packets. The number of bytes overhead per

frame is calculated as the following 1 + FrameCounter length + 4 The

constant 1 is the SFrame header byte and 4 bytes for the HBH

authentication tag for both audio and video packets.

7.1. Audio

Using three different audio frame durations 20ms (50 packets/s) 40ms

(25 packets/s) 100ms (10 packets/s) Up to 3 bytes frame counter (3.8

days of data for 20ms frame duration) and 4 bytes fixed MAC length.

Counter len Packets Overhead Overhead Overhead

bps@20ms bps@40ms bps@100ms

1 0-255 2400 1200 480

2 255 - 65K 2800 1400 560

3 65K - 16M 3200 1600 640

Table 2

7.2. Video

The per-stream overhead bits per second as calculated for the

following video encodings: 30fps@1000Kbps (4 packets per frame)

30fps@512Kbps (2 packets per frame) 15fps@200Kbps (2 packets per

¶

¶

¶

¶

¶

¶

frame) 7.5fps@30Kbps (1 packet per frame) Overhead bps = (Counter

length + 1 + 4) * 8 * fps

Counter len Frames Overhead Overhead Overhead

bps@30fps bps@15fps bps@7.5fps

1 0-255 1440 1440 720

2 256 - 65K 1680 1680 840

3 56K - 16M 1920 1920 960

4 16M - 4B 2160 2160 1080

Table 3

7.3. SFrame vs PERC-lite

[RFC8723] has significant overhead over SFrame because the overhead

is per packet, not per frame, and OHB (Original Header Block) which

duplicates any RTP header/extension field modified by the SFU. [I-

D.murillo-perc-lite] https://mailarchive.ietf.org/arch/msg/perc/

SB0qMHWz6EsDtz3yIEX0HWp5IEY/ is slightly better because it doesn't

use the OHB anymore, however it still does per packet encryption

using SRTP. Below the the overheard in [I-D.murillo-perc-lite]

implemented by Cosmos Software which uses extra 11 bytes per packet

to preserve the PT, SEQ_NUM, TIME_STAMP and SSRC fields in addition

to the extra MAC tag per packet.

OverheadPerPacket = 11 + MAC length Overhead bps = PacketPerSecond *

OverHeadPerPacket * 8

Similar to SFrame, we will assume the HBH authentication tag length

will always be 4 bytes for audio and video even though it is not the

case in this [I-D.murillo-perc-lite] implementation

7.3.1. Audio

Overhead bps@20ms Overhead bps@40ms Overhead bps@100ms

6000 3000 1200

Table 4

7.3.2. Video

Overhead bps@30fps Overhead bps@15fps Overhead bps@7.5fps

(4 packets per frame) (2 packets per frame) (1 packet per frame)

14400 7200 3600

Table 5

For a conference with a single incoming audio stream (@ 50 pps) and

4 incoming video streams (@200 Kbps), the savings in overhead is

34800 - 9600 = ~25 Kbps, or ~3%.

¶

¶

¶

¶

¶

https://mailarchive.ietf.org/arch/msg/perc/SB0qMHWz6EsDtz3yIEX0HWp5IEY/
https://mailarchive.ietf.org/arch/msg/perc/SB0qMHWz6EsDtz3yIEX0HWp5IEY/

[RFC2119]

[RFC5116]

[RFC5869]

[RFC8174]

8. Security Considerations

8.1. No Per-Sender Authentication

SFrame does not provide per-sender authentication of media data. Any

sender in a session can send media that will be associated with any

other sender. This is because SFrame uses symmetric encryption to

protect media data, so that any receiver also has the keys required

to encrypt packets for the sender.

8.2. Key Management

Key exchange mechanism is out of scope of this document, however

every client MUST change their keys when new clients joins or leaves

the call for "Forward Secrecy" and "Post Compromise Security".

8.3. Authentication tag length

The cipher suites defined in this draft use short authentication

tags for encryption, however it can easily support other ciphers

with full authentication tag if the short ones are proved insecure.

9. IANA Considerations

This document makes no requests of IANA.

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

McGrew, D., "An Interface and Algorithms for

Authenticated Encryption", RFC 5116, DOI 10.17487/

RFC5116, January 2008, <https://www.rfc-editor.org/info/

rfc5116>.

Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-

Expand Key Derivation Function (HKDF)", RFC 5869, DOI

10.17487/RFC5869, May 2010, <https://www.rfc-editor.org/

info/rfc5869>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc8174

[I-D.ietf-mls-architecture]

[I-D.ietf-mls-protocol]

[I-D.murillo-perc-lite]

[RFC3711]

[RFC8723]

Omara, E., Beurdouche, B., Rescorla, E., Inguva, S.,

Kwon, A., and A. Duric, "The Messaging Layer Security

(MLS) Architecture", Work in Progress, Internet-Draft,

draft-ietf-mls-architecture-05, 26 July 2020, <http://

www.ietf.org/internet-drafts/draft-ietf-mls-

architecture-05.txt>.

Barnes, R., Beurdouche, B., Millican, J., Omara, E.,

Cohn-Gordon, K., and R. Robert, "The Messaging Layer

Security (MLS) Protocol", Work in Progress, Internet-

Draft, draft-ietf-mls-protocol-11, 22 December 2020,

<http://www.ietf.org/internet-drafts/draft-ietf-mls-

protocol-11.txt>.

Murillo, S. and A. Gouaillard, "End to End

Media Encryption Procedures", Work in Progress, Internet-

Draft, draft-murillo-perc-lite-01, 12 May 2020, <http://

www.ietf.org/internet-drafts/draft-murillo-perc-

lite-01.txt>.

Baugher, M., McGrew, D., Naslund, M., Carrara, E., and K.

Norrman, "The Secure Real-time Transport Protocol

(SRTP)", RFC 3711, DOI 10.17487/RFC3711, March 2004,

<https://www.rfc-editor.org/info/rfc3711>.

Jennings, C., Jones, P., Barnes, R., and A.B. Roach,

"Double Encryption Procedures for the Secure Real-Time

Transport Protocol (SRTP)", RFC 8723, DOI 10.17487/

RFC8723, April 2020, <https://www.rfc-editor.org/info/

rfc8723>.

Authors' Addresses

Emad Omara

Google

Email: emadomara@google.com

Justin Uberti

Google

Email: juberti@google.com

Alexandre GOUAILLARD

CoSMo Software

Email: Alex.GOUAILLARD@cosmosoftware.io

http://www.ietf.org/internet-drafts/draft-ietf-mls-architecture-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-mls-architecture-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-mls-architecture-05.txt
http://www.ietf.org/internet-drafts/draft-ietf-mls-protocol-11.txt
http://www.ietf.org/internet-drafts/draft-ietf-mls-protocol-11.txt
http://www.ietf.org/internet-drafts/draft-murillo-perc-lite-01.txt
http://www.ietf.org/internet-drafts/draft-murillo-perc-lite-01.txt
http://www.ietf.org/internet-drafts/draft-murillo-perc-lite-01.txt
https://www.rfc-editor.org/info/rfc3711
https://www.rfc-editor.org/info/rfc8723
https://www.rfc-editor.org/info/rfc8723
mailto:emadomara@google.com
mailto:juberti@google.com
mailto:Alex.GOUAILLARD@cosmosoftware.io

Sergio Garcia Murillo

CoSMo Software

Email: sergio.garcia.murillo@cosmosoftware.io

mailto:sergio.garcia.murillo@cosmosoftware.io

	Secure Frame (SFrame)
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Goals
	4. SFrame
	4.1. SFrame Format
	4.2. SFrame Header
	4.3. Encryption Schema
	4.3.1. Key Selection
	4.3.2. Key Derivation
	4.3.3. Encryption
	4.3.4. Decryption
	4.3.5. Duplicate Frames

	4.4. Ciphersuites
	4.4.1. AES-CM with SHA2

	5. Key Management
	5.1. Sender Keys
	5.2. MLS

	6. Media Considerations
	6.1. SFU
	6.1.1. LastN and RTP stream reuse
	6.1.2. Simulcast
	6.1.3. SVC

	6.2. Video Key Frames
	6.3. Partial Decoding

	7. Overhead
	7.1. Audio
	7.2. Video
	7.3. SFrame vs PERC-lite
	7.3.1. Audio
	7.3.2. Video

	8. Security Considerations
	8.1. No Per-Sender Authentication
	8.2. Key Management
	8.3. Authentication tag length

	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Authors' Addresses

