
Dispatch K.O. Ono

Internet-Draft H.S. Schulzrinne

Intended status: Standards Track Columbia University

Expires: April 23, 2012 October 21, 2011

Referencing and Validating User Attributes

draft-ono-dispatch-attribute-validation-00.txt

Abstract

This document describes a mechanism for referencing and validating user

attributes in SIP communication. User attributes, such as an

organizational affiliation and role, are helpful for the recipients of

a communication request to decide whether or not to grant the sender

access to the recipient's resources, especially when the sender

identity is unknown to the recipients. This mechanism allows the sender

to claim her attributes to recipients using an attribute reference

identifier without needing to prove the sender identity. This document

defines a new SIP "Sender-References" header field to convey one or

more attribute reference identifiers. This mechanism satisfies all the

requirements for trait-based authorization defined in RFC 4484, except

that it provides only one assertion scheme.

Status of this Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task

Force (IETF). Note that other groups may also distribute working

documents as Internet-Drafts. The list of current Internet- Drafts is

at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months

and may be updated, replaced, or obsoleted by other documents at any

time. It is inappropriate to use Internet-Drafts as reference material

or to cite them other than as "work in progress."

This Internet-Draft will expire on April 23, 2012.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents (http://trustee.ietf.org/license-

info) in effect on the date of publication of this document. Please

review these documents carefully, as they describe your rights and

restrictions with respect to this document. Code Components extracted

from this document must include Simplified BSD License text as

described in Section 4.e of the Trust Legal Provisions and are provided

without warranty as described in the Simplified BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Architecture

3.1. Assumed Trust Relationships among AVS, Caller, and Callee

3.2. ARIDs are Loosely Associated with the Owner's Identity in

SIP

4. Requirements

4.1. Differences between Our Requirements and the Requirements

for Trait-Based Authorization

5. Procedures

5.1. Generating an ARID

5.2. Obtaining an ARID

5.3. Sending an ARID in a Communication Request

5.4. Validating an ARID to Retrieve User Attributes

6. Sender-References Header Field

7. Relationship to Existing Mechanisms

8. Security Considerations

8.1. Man in the Middle Attacks

8.2. Replay Attacks Using a Received ARID

8.3. Denial of Service Attacks on the AVS

8.4. Phishing Attacks on the AVS

9. IANA Considerations

10. References

10.1. Normative References

10.2. Informative References

Authors' Addresses

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

1. Introduction

Ascertaining a person's attributes is often useful to determine the

trustworthiness of the person when two people first meet each other.

These user attributes include, for example, an organizational

affiliation, a role in a professional society, age, holding

certificates or licenses, and being a customer of a bank, an employee,

or a student. If user attributes are available with a communication

request, these attributes can help the recipient determine how to

handle the communication request by estimating whether the

communication is important enough to be established.

A caller identifier (ID) authenticated by the SIP Identity mechanism

[RFC4474], when used alone, can be a helpful user attribute, but only

in limited cases. Only if a caller ID is in a SIP-URI [RFC3261] and is

authenticated by the domain of a trusted organization can the caller ID

be perceived as evidence that the caller belongs to the trusted

organization. However, if a caller ID in a SIP-URI belongs to an

untrusted domain regarding user admission policy, such as a free voice

over IP service provider, or if a caller ID does not contain any domain

name, such as a tel-URI [RFC3966], the caller ID does not indicate the

caller's trustworthiness to the callee who has never seen the caller ID

before. Thus, even if a caller has multiple contact addresses, the

caller needs to use a contact address issued by a trusted domain for

authorization purposes. To offer a flexible choice of which contact

address to use, our referencing mechanism introduces another piece of

information, an attribute reference ID (ARID), that enables a caller to

refer to her attributes without needing to rely on the caller ID. A

caller can use multiple ARIDs if the caller wants to prove multiple

attributes associated with different organizations. This referencing

mechanism, unlike the caller ID, allows a caller to use multiple ARIDs

to declare multiple user attributes in a single communication request.

If an authenticated caller ID does not provide sufficient information,

the callee can look up further user attributes through directory

services. However, a reference integrity problem arises when a

directory service does not allow queriers to look up user attributes by

the user's contact address. Additionally, when a directory service

allows queries by a user's contact address, but is offered by a third

party, not the issuer of contact addresses, the authenticity of the

information is unreliable. For example, DoctorFinder service offered by

the American Medical Association provides information about certified

medical doctors. When making a query, a querier cannot use the doctor's

phone number, but needs to use doctor's common name, street address or

specialty, which is available to the public. If a doctor makes a call

(or sends an email message) that includes such query information and a

reference to the DoctorFinder service, the callee (or the recipient) is

not convinced of the certainty. To solve this reference integrity

problem, our referencing mechanism allows an organization to generate a

short-lived ARID upon a caller request. This ARID is effective only for

a specific communication by limiting the lifetime and encoding

designated destinations, namely designated queriers. In addition, the

ARID can be used only for retrieving the attributes that the caller

selects to disclose to the specific queriers.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119].

3. Architecture

Figure 1 depicts an overview of the service architecture where an

attribute validation server (AVS) operates to reference and validate

user attributes for an organization. For each user, the AVS maintains

the username and credentials to authenticate the user for remote

access, in addition to other information such as a user number and role

which the organization assigns, the users's common name, affiliation,

street address, and electronic contact addresses. Note that the AVS

stores a user's contact addresses, but it neither guarantees that the

user owns the contact addresses nor can be reached by their addresses.

We provide an example for illustration. Alice, a user of services

provided by the organization, "example.org", is about to make a call to

Bob at "bob@example.com". Alice first requests an ARID from the AVS

using HTTP [RFC2616] over TLS [RFC5246]. When sending the request,

Alice authenticates the AVS using its X.509 Public Key Certificate

(PKC) [RFC5280] which is delivered in the TLS handshake and is signed

by a trusted Certificate Authority (CA). In turn, when generating an

ARID for Alice, the AVS authenticates her using any credentials

supported by the AVS, such as a password or a client's X.509 PKC. Upon

successfully obtaining an ARID, Alice makes a call to Bob using SIP

[RFC3261] over TLS. The SIP INVITE request includes the ARID. When Bob

receives an ARID, he queries the validity of the ARID to the AVS using

HTTP over TLS. Bob authenticates the AVS using its X.509 PKC in the

same way that Alice does. Based on the query results, Bob determines

whether or not to answer the call from Alice and adjusts his

communication stance accordingly.

+------------------------+

| Attribute | Database

| Validation |==[username, credentials, attributes]

| Server (AVS) |

| |

| attributes.example.org |<------------\

+------------------------+ \ 3. Query

 ^ \ ARID's validity

 | \ via HTTP over TLS

 | 1. \

 | Request and obtain an ARID \

 | via HTTP over TLS \

 | \

+---------------+ +------------------+

| UAC | 2. | UAS |

| | Send or call with ARID | |

| Alice | via SIP over TLS | Bob |

| +12345678 |------------------------->| bob@example.com |

+---------------+ +------------------+

3.1. Assumed Trust Relationships among AVS, Caller, and Callee

We assume that the AVS and the caller, Alice, trust each other

regarding the attribute validation service for an organization,

"example.org." They share Alice's username and credentials for remote

access, and her attributes. Alice trusts the AVS to properly maintain

her attributes and to disclose the attributes she selects only to

queriers whom she specifies. In turn, the AVS trusts Alice as a user in

the organization and trusts her attributes which it knows first-hand,

such as "Alice is an IEEE student member." However, the AVS does not

know the authenticity of her attributes that are not issued by the

organization, such as her common name, affiliation, and contact

addresses.

We also assume that Bob knows "example.org" as the domain name of an

organization that has a user admission policy he trusts, whether or not

he belongs to the organization. Bob also trusts the AVS to properly

perform its attribute validation service.

Alice finds Bob worth making a call and disclosing her attributes to

establish a communication with him. In turn, Bob does not have

sufficient information about Alice's trustworthiness based solely on

her identity in a SIP communication request.

3.2. ARIDs are Loosely Associated with the Owner's Identity in SIP

An ARID generated upon Alice's request can be used only to retrieve her

attributes, but the ARID is not tightly linked with her identity used

in a SIP communication request, namely the caller ID in a call. When

Bob receives an ARID in a SIP communication request where the message

integrity is protected by TLS, the callee can perceive the ARID to be

associated with the caller ID. Bob can loosely link an ARID with the

owner's identity only because of the fact that these two pieces of

information are sent in the same message. Other than the presence of

these two pieces of information in the same message, there is no

linkage between the ARID and the caller ID. Bob does not need to

provide Alice's caller ID to validate a received ARID. The user

attributes Bob retrieves upon the success of the validation do not

contain the owner's contact address. This loose linkage is a natural

consequence of the general fact that user attributes and the user

identifier in a communication are often issued separately by different

organizations or services.

This loose linkage, however, makes it difficult for Bob to detect

impersonation using a stolen ARID. Bob cannot detect this impersonation

by providing the AVS with the owner's caller ID or by being presented

the caller ID in user attributes. When issuing an ARID, the AVS cannot

easily authenticate her caller ID since the caller ID is issued by a

different administrative domain. Additionally, Bob cannot always

authenticate the caller ID. The cases where no authentication of the

caller ID is available include where a caller ID is in a SIP-URI issued

by the domain which does not deploy the SIP Identity mechanism, where a

caller ID is in a tel-URI which is sent without any other

authentication mechanisms, such as a digital signature in S/MIME

[RFC5751], and where a caller ID is anonymized. Thus, although

tightening this linkage can protect from impersonation attacks, it

makes the service deployment more difficult and limits the caller's

choice of caller IDs.

To mitigate the vulnerability to impersonation attacks using a stolen

ARID without tying an ARID to an authenticated caller ID, a

countermeasure is devised for each vulnerable target. To prevent a man

in the middle from eavesdropping on an ARID, all the connection links

to convey an ARID need to be protected with TLS. To detect that an ARID

was stolen from the owner, the recipients, or intermediaries, such as a

SIP proxy server, an ARID can be used to retrieve user attributes only

a limited number of times, for a limited time period, and by limited

queriers. Yet even with these protections, this mechanism cannot

prevent the owner of an ARID from giving her own ARID to others. To

keep this mechanism simple, we do not include any additional mechanisms

that discourage the owner from giving her own ARID. As a result, this

mechanism allows the owner of an ARID to informally delegate her

attributes to others without proving the chain of authorizing

delegation. However, a legitimate recipient cannot impersonate Alice's

attributes by forwarding a received ARID.

4. Requirements

This section first identifies the requirements of a mechanism for

referencing and validating attributes, and then identifies differences

between these requirements and the requirements for Trait-Based

Authorization (TBA) for SIP [RFC4484].

Our requirements are:

We intentionally omit the following requirements:

4.1. Differences between Our Requirements and the Requirements for

Trait-Based Authorization

Our requirements described above are similar to the TBA requirements

for SIP, but two differences exist. First, we do not require support

for optional assertion schemes other than an ARID defined in Section 5

while the TBA includes the following requirement:

Our mechanism currently does not support other assertion schemes, such

as SAML [SAML] or X.509 Attribute Certificates (AC) [RFC5755], as

mentioned above. Such mechanisms that protect assertion integrity by

signing using the issuer's private key requires that recipients verify

the integrity using the issuer's public key in the application layer.

The recipients also need to authenticate the issuer of an assertion. On

the other hand, our mechanism relies on transport layer security,

namely TLS, to protect message integrity and authenticate the issuer of

an ARID. Although our mechanism does not separately protect the

integrity of user attributes or the linkage between user attributes and

their owner, our mechanism instead protects the integrity of a whole

message including these attributes. As long as intermediaries such as

an HTTP and SIP proxy servers can be trusted to properly transfer

messages for this attribute referencing service, this security with TLS

is simpler, and strong enough against message tampering and server

impersonation.

The second difference is that our requirements include an additional

requirement for protecting user's privacy described in REQ-8. Although

an authorization service or AVS needs to limit designated queriers to

the designated destinations of a SIP request, the authorization service

has to know neither user's communication history nor plans containing

routable contact addresses to do so even for a short term during the

lifetime of an assertion or ARID. Our mechanism hashes contact

addresses to prevent this unnecessary disclosure of the private

information of a user.

5. Procedures

Figure 2 illustrates message exchanges among a UAC, the UAS and the AVS

for the following procedures:

Before explaining each procedure, we describe how the AVS typically

generates an ARID.

Alice Bob

UAC AVS UAS

| | |

| F1. HTTP POST | |

|---------------------->| |

| F2. 200 OK with ARID | |

|<----------------------| |

| | |

| F3. SIP INVITE with ARID |

|--->|

| | |

| | F4. HTTP GET with ARID |

| |<-----------------------|

| | F5. 200 OK |

| |----------------------->|

| F6. 200 OK |

|<---|

| F7. ACK |

|--->|

| |

Note: SIP messages to/from SIP proxy servers are omitted since they are

not affected by this mechanism.

5.1. Generating an ARID

An ARID is a string of URL [RFC3986] characters generated by an AVS

upon a user's request. When a single AVS offers this attribute service

for multiple organizations, a subdomain or a path in the URL of the AVS

website is assigned to each organization as part of an ARID to meet the

requirement REQ-9.

We show two examples how an AVS generates an ARID. Note that the AVS

does not have to follow these generating mechanisms. The first example

is to hash a string of characters by SHA1 [SHA1]. The string of

characters is a user number concatenated with the timestamp, a nonce,

and hashed contact addresses of one or more desired queriers (REQ-4,8)

as shown below. Hashed contact addresses of one or more desired

queriers are sent from a user when the user requests an ARID, as

described in Section 5.2. The information other than these hashed

contact addresses is stored or generated on the AVS.

Another example is to encrypt a string of characters with a symmetric

key of the AVS using AES [AES]. The string of characters is a user

number concatenated with a disclosure mode, the expiry time, hashed

contact addresses of desired queriers. The disclosure mode is

determined what attributes a user discloses to desired queriers

(REQ-3). The expiry time of an ARID needs to be shortly after the time

Generating an ARID by encryption:

an ARID is generated, such as ten minutes later, to avoid replay

attacks (REQ-7).

An appropriate expiry time depends on the service type. For

synchronous communication services, such as a voice or video call

or real-time text chat, the lifetime needs to be short. For

asynchronous services, such as instant messaging, or email

communication, the lifetime needs to be longer, such as 24 hours.

m = user number || disclosure mode

|| expiry time || salt|| hashed querier's contact address

If two queriers, querier_1 and querier_2, are specified,

m = user_id || disclosure_mode || expiry time || salt || hashed

querier_1's contact address;hashed querier_2's contact address

ARID = URL path/Encrypt(m)

When selecting a method for generating an ARID, by hash or encryption,

they have the trade-off between the memory cost of storing ARIDs with

related data and the computational cost of decrypting ARIDs. When

generating an ARID by hash, the AVS needs to store the generated ARID

with associated data including the expiry time, the nonce, the hashed

contact addresses of desired queriers which the user sent, and the

disclosure mode which the user specified. On the other hand, when

generating an ARID by encryption, the AVS only needs to remember the

salt for decryption, but not any generated ARIDs. Instead, it requires

the computational cost of decryption.

5.2. Obtaining an ARID

To obtain an ARID which can be used for a communication with Bob, Alice

first needs to connect to the AVS using a SIP UA which supports this

mechanism. When connecting, the SIP UAC MUST authenticate the AVS using

its X.509 PKC sent in the TLS handshake. In turn, the AVS MUST

authenticate Alice using her username and credentials. For user

authentication, HTTP Basic or Digest authentication [RFC2617], a

client's PKC, or other mechanisms SHOULD be used. Upon successful user

authentication, the SIP UAC MUST send the AVS an HTTP POST request with

setting hashed Bob's contact address as a desired querier, and a

disclosure mode in a message body, as shown in the following example.

Each hashed contact address of a desired querier SHOULD be attached as

a JSON [RFC4627] object, or MAY be in XML [XML]. When a communication

request has multiple destinations, such as a conference call, multiple

"destination" fields SHOULD be included to contain multiple hashed

contact addresses of the desired queriers.

F1. HTTP POST sent from Alice to AVS:

Hashing the contact address of a desired querier is to limit acceptable

queriers without revealing communication history to the AVS (REQ-8).

*

The SIP UA supporting this mechanism MUST implement and use SHA1, and

MAY support any other hash algorithms. To prevent re-identification

based on hashed contact addresses collected on the AVS, the SIP UAC

MUST generate a salt, which is a random string of characters, and

concatenate it with a contact address as follows:

In the example above, the destination field,

"2cf6a1eda3b5205005d25a7d5dcf13bb200fc26a", is generated by

SHA1("dmvb1p03"||"sips:bob@example.com").

When the AVS successfully generates an ARID for Alice, the AVS responds

to her with a 200 OK response including the ARID and its expiry time in

the same data format used in the received HTTP request. The HTTP

messages MUST be sent over TLS to protect message confidentiality and

integrity. In the following example, the ARID is attached as a JSON

object. The "arid" field consists of the URL of the website for the

ARID validation, "https://attributes.example.org/", and the ARID,

"17750c5cbac9979171991d505d2e634e727d8d9b."

F2. 200 OK sent from AVS to Alice:

5.3. Sending an ARID in a Communication Request

When Alice makes a call to Bob with an ARID, she needs to specify the

ARID associated with the URL of the website for validating the ARID in

a SIP UA. The SIP UA MUST generate a new SIP header called "Sender-

Reference" including a URI, "type", "salt", and "hash_alg" parameters

to convey the ARID in the path of an HTTP URL, specify this service,

and the salt and the hash algorithm which were used for hashing the

querier's contact address described in Section 5.2, respectively. If

Alice wants to specify multiple ARIDs, this Sender-References header

field includes multiple set of an ARID and related parameters

concatenating a comma separator. The SIP UA then sends an SIP INVITE

request including the Sender-Reference as shown in the following

example. The INVITE request MUST be sent over TLS to protect message

confidentiality and integrity.

F3. SIP INVITE from Alice to Bob:

5.4. Validating an ARID to Retrieve User Attributes

When Bob, the recipient of one or more ARIDs, wants to retrieve the

caller attributes, the SIP UAS needs to test the validity of the ARIDs

on the corresponding AVSes. By prompting Bob or based on his

preconfigured information, the SIP UAS first needs to determine whether

or not he trusts each domain name of the AVS in the Sender-References

header in received SIP INVITE request. Only for trusted AVSes, the SIP

UAS looks up the received ARIDs on the corresponding AVSes to retrieve

the caller's attributes by using an HTTP GET request as shown in the

following example. HTTP messages MUST sent over TLS for security as

well as messages between the SIP UAC the AVS. Bob authenticates the AVS

using its X.509 PKC delivered in the TLS handshake.

For this validation, the SIP UAS MUST send the ARID found in the

Sender-References header field and a hashed querier's contact address

generated by the hash algorithm and salt also found in the Sender-

References header field. To generate a hashed querier's contact

address, the SIP UAS needs to know the original destination address by

extracting from the To header or by Bob's pre-configuration especially

when he enables call forwarding services. In the following example, the

hashed querier's contact address,

"2cf6a1eda3b5205005d25a7d5dcf13bb200fc26a", is generated by

SHA1("dmvb1p03"||"sips:bob@example.com"). This validation MAY be

invoked by a SIP inbound proxy on behalf of the UAS.

F4. HTTP GET from Bob to AVS:

If no AVSes are trusted by Bob, the SIP UAS MUST ignore the Sender-

Reference header field and stop any further validation process. If the

SIP UAS does not support a hash algorithm specified in the Sender-

References header field, or if the SIP UAS does not support the header

field, it SHOULD also ignore the header field and continue normal

processing of the received SIP request.

If the ARID is valid at the queried time and with the querier's contact

address, the AVS MUST respond to the querier with 200 OK in HTTP having

the attributes based on the disclosure mode which Alice specifies in

the message body, as shown in the following example. The attributes

SHOULD be attached as a JSON object or MAY be in XML. If the query is

done later than the expiry time, the AVS SHOULD respond with 408

Request Timeout in HTTP. If the querier is not included in the list of

desired queriers specified earlier by Alice, the AVS SHOULD respond

with 403 Forbidden in HTTP. If the ARID is invalid for other reasons,

the AVS MUST respond with 404 Not Found in HTTP.

F5. HTTP 200 OK from AVS to Bob:

If Bob receives a 200 OK in HTTP from the AVS, he is informed that the

ARID is valid and attached information is the caller's attributes, for

the example above, the caller is a student member in "example.org".

With any other responses, Bob knows nothing about the caller's

attributes. Based on this information, he determines whether or not to

answer the call and adjusts his communication stance accordingly.

6. Sender-References Header Field

The SIP "Sender-References" header field is newly defined to provide

the reference information about the sender or the caller. The field

consists of one or more sender-ref information. Each sender-ref

information consists of three parts: an absolute URI, sender-ref-type,

and avs-params. The absolute URI contains the URI of the AVS website

including an ARID in the path. The sender-ref-type indicates the

service type of using this header field. For this referencing service,

it MUST be "avs." The avs-params consists of two parameters: one is to

specify a salt and another is for a hash algorithm. Both parameters are

used for hashing a contact address to be presented for validation.

The syntax of the Sender-References header field in the ABNF [RFC5234]

is as follows:

This Sender-References header field is optionally set in any SIP

requests and responses.

7. Relationship to Existing Mechanisms

This section discusses why this referencing mechanism does not use

existing mechanisms that provide an attribute assertion or third-party

authentication, such as an X.509 Attribute Certificate (AC), a Security

Assertion Markup Language (SAML) assertion, Vouch by Reference

[RFC5518], OAuth [RFC5849] or Kerberos [RFC4120]. The following table

compares our mechanism using an AVS with these existing mechanisms in

terms of the trust model they assume, whether or not to need to bind

the assertion to the sender ID, and applicable services.

An X.509 Attribute Certificate (AC) provides a superset of features we

need for our equivalent trust model. However, an X.509 AC, unlike our

mechanism, requires the AC holder information, namely a user's

identity, to be bound to the user's attributes. This binding is

protected by being digitally signed with the AC issuer's private key.

However, the AC issuer does not always have the right to sign the

binding since the AC issuer cannot authenticate the user identity

issued by a different organization as described in Section 3.2.

Authenticating the user identity requires either the user's PKC or

other mechanisms, such as the SIP identity mechanism where the user

identity is a user identifier in SIP. These mechanisms are difficult to

deploy for each reason. Users' PKCs have not been widely deployed

because of difficulty in managing the pair of public and private keys

across multiple devices. The sender ID in SIP is usually issued by an

administrative domain different from the AC issuer. For these reasons,

we need a new mechanism to allow a looser linkage between the sender ID

and attributes.

Similar to an X.509 AC, a SAML assertion provides a superset of

features we need for our equivalent trust model. Unlike an X.509 AC, a

SAML assertion does not require the binding between user attributes and

the user identity. Including the user identity into a SAML assertion is

optional. To limit queriers, a SAML assertion can restrict its audience

by addressing the URIs of specific entities, but they are currently not

allowed to address by their hashed names. Thus, with a minor

modification in the form of the restricted audience, we can use an XML-

based SAML assertion to convey user attributes instead of a JSON object

described in Section 5.4. However, using a SAML assertion requires a

digital signature by its issuer, which is an application layer

protection against message tampering and server impersonation. As

discussed in Section 4.1, we prefer a simple transport layer protection

to an application layer one, namely protecting a whole message by TLS

rather than protecting part of a message by a digital signature.

Vouch by Reference (VBR) defines a simple mechanism that vouches a

specific type of content claimed by the sender's domain of an email

message. This mechanism uses a new email "VBR-Info" header and a DNS-

based server of a third party certification service. If the recipient

finds a trusted domain from the certification service providers set in

the VBR-info header in a received email message, he looks up an entry

of the sender domain on the DNS-based server of a trusted certification

service provider. Since VBR assumes the same trust model as ours, it is

possible to extend this VBR mechanism to vouch a user's attributes

instead of certifying a specific content type for the sender's domain.

However, VBR requires the authentication of the sender domain since the

server domain is used as a query key. Additionally, it is difficult for

a DNS-based server to restrict queriers for each record, mainly private

attributes. Consequently, we cannot apply VBR to referencing user

attributes.

OAuth is a third-party authentication model for Web services. OAuth

uses three tokens to delegate limited permissions of user's resource to

another entity called a Consumer. With the OAuth terminology, a caller

is a User, the callee is a Consumer, and the AVS is a Service Provider,

which is a third-party authenticator. In OAuth, unlike our trust model,

the AVS and the callee share a Consumer ID and a key to authenticate

the Consumer when the AVS provides one of these three tokens, a Request

Token. An unauthorized Request Token is generated upon the Consumer's

request. After the Consumer is authorized by a User, it is provided

with an authorized Request Token. Since this authorized Request Token

has a restricted scope and limited lifetime to access the Users'

resources, this Request Token can be used to query the caller's

attributes once the caller authorizes that. However, to obtain an

authorized Request Token, the callee, who is a Consumer in OAuth, needs

to obtain an unauthorized Request Token from the AVS beforehand. To

resolve these differences in the trust models and the procedures, it is

possible to omit using both an unauthorized and authorized Request

Tokens. In addition, using the third token in OAuth, an Access Token,

which is exchanged with an authorized Request Token, is not needed.

Thus, we do not need unnecessary complexities of using these three

types of tokens. Rather, we prefer a simple mechanism, using a single

token for SIP.

Kerberos provides strong user-client authentication using a Key

Distribution Center (KDC). An Authentication Server in KDC

authenticates a user on behalf of a Service Server (SS), and a Ticket

Granting Server (TGS) issues a ticket which is effective only for a

session between the user and the SS for a limited time period. The

Kerberos features cover all our mechanism needs, but the trust model is

different. Kerberos assumes that the TGS and the SS share the SS's

secret key to allow the SS to verify a received ticket by decrypting

with the SS's key without connecting to the TGS. Since using this

ticket is a key feature in Kerberos, we cannot omit sharing the SS's

key with the TGS to resolve the difference in the trust model. Because

of this difference in assumed trust model, we cannot use Kerberos for

referencing and validating user attributes.

8. Security Considerations

8.1. Man in the Middle Attacks

Man in the middle attacks need to be prevented on the AVS, connection

links, and the recipients of an ARID. To prevent from impersonating a

user on the AVS, the AVS MUST authenticate a user using HTTP Basic or

Digest authentication, a client X.509 PKC or other mechanisms. To

prevent from eavesdropping and message tampering on connection links,

all connection links between UAC and the AVS, UAC and UAS, UAS and the

AVS MUST be protected using TLS.

To prevent from impersonating user attributes using a stolen ARID, the

AVS MUST limit queriers using a specific ARID based on the hashed

contact addresses the original requester of the ARID specifies. SIP UAs

MUST support SHA1 to hash a contact address. To mitigate the damage of

the impersonation in the case where an ARID is stolen with one of these

hashed contact addresses, the AVS MUST limit an ARID's lifetime and MAY

also limit the number of times it can be resolved.

8.2. Replay Attacks Using a Received ARID

The recipient of an ARID can exploit impersonation just by forwarding a

received ARID to another user since this mechanism does not have a

tight link between the username of AVS and the caller ID as described

in Section 3.2 nor a link between the SIP signaling path and the ARID.

To prevent this replay or forwarding attack, the AVS MUST limit

queriers for each ARID based on the hashed contact addresses that the

original requester of the ARID specifies. This is the same way as

preventing impersonation using a stolen ARID described in Section 8.1.

Suppose Bob, the recipient of Alice's ARID, forwards the ARID to Carol

when sending an instant message to her. In the message, Bob instructs

Carol to query his attributes using his hashed contact address, instead

of hers. By instructing this wrong way of query, Bob fails in his

attempt to masquerade as a user having Alice's attributes. However,

despite Alice's original designation, Carol can retrieve Alice's

attributes following Bob's wrong instruction, resulting in raising

Alice's privacy concerns. This privacy problem is caused by Bob's

misbehavior and unavoidable for any attribute mechanisms which others

can retrieve the attributes.

8.3. Denial of Service Attacks on the AVS

Another form of potential attacks is denial of service (DoS) attacks by

flooding requests to exhaust resources on the AVS. To mitigate the

damage from DoS attacks, we need to spare resources for valid requests.

For this purpose, the AVS MUST carefully configure TCP and implement

user authentication. To detect invalid requests as easily as possible,

this mechanism SHOULD use a light query protocol using the RESTful API

[REST], which sets a query key in the path of an HTTP URL.

8.4. Phishing Attacks on the AVS

An evil website having a domain name confusingly similar to a well-

known AVS makes it possible to steal the password of a user for remote

access to the AVS. It is also possible for an evil website to respond

to any attribute queries with an HTTP 200 OK response with forged user

attributes attached to invalidate the attribute validation service. To

prevent these attacks, both a user and the recipient of an ARID MUST

use TLS when connecting to the AVS and MUST ensure that the server's

PKC has a valid signature for the valid domain name.

9. IANA Considerations

This document defines a new SIP Sender-References header field. This

header field needs to be registered by the IANA in the SIP Parameters

registry under the Header Fields sub-registry.

10. References

10.1. Normative References

[RFC2119]
Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC3261]

Rosenberg, J., Schulzrinne, H., Camarillo, G.,

Johnston, A., Peterson, J., Sparks, R., Handley, M. and

E. Schooler, "SIP: Session Initiation Protocol", RFC

3261, June 2002.

[RFC2616]

Fielding, R., Gettys, J., Mogul, J., Frystyk, H.,

Masinter, L., Leach, P. and T. Berners-Lee, "Hypertext

Transfer Protocol -- HTTP/1.1", RFC 2616, June 1999.

[RFC5246]

Dierks, T. and E. Rescorla, "The Transport Layer

Security (TLS) Protocol Version 1.2", RFC 5246, August

2008.

[RFC5234]
Crocker, D. and P. Overell, "Augmented BNF for Syntax

Specifications: ABNF", STD 68, RFC 5234, January 2008.

[RFC3986]

Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform

Resource Identifier (URI): Generic Syntax", STD 66, RFC

3986, January 2005.

[SHA1]

National Institute of Science and Technology, "Secure

Hash Standard", Federal Information Processing Standard

(FIPS) 180-2, August 2002.

10.2. Informative References

, "

[RFC2617]

Franks, J., Hallam-Baker, P.M., Hostetler, J.L.,

Lawrence, S.D., Leach, P.J., Luotonen, A. and L.

mailto:sob@harvard.edu
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc2119
http://tools.ietf.org/html/rfc3261
mailto:fielding@ics.uci.edu
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
mailto:timbl@w3.org
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5234
http://tools.ietf.org/html/rfc5234
mailto:timbl@w3.org
mailto:fielding@gbiv.com
mailto:LMM@acm.org
http://tools.ietf.org/html/rfc3986
http://tools.ietf.org/html/rfc3986
mailto:john@math.nwu.edu
mailto:pbaker@verisign.com
mailto:jeff@AbiSource.com
mailto:lawrence@agranat.com
mailto:paulle@microsoft.com
mailto:stewart@OpenMarket.com

Stewart, "HTTP Authentication: Basic and Digest Access

Authentication", RFC 2617, June 1999.

[RFC4484]

Peterson, J., Polk, J., Sicker, D. and H. Tschofenig,

"Trait-Based Authorization Requirements for the Session

Initiation Protocol (SIP)", RFC 4484, August 2006.

[RFC4627]

Crockford, D., "The application/json Media Type for

JavaScript Object Notation (JSON)", RFC 4627, July

2006.

[RFC5280]

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R. and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, May 2008.

[RFC4474]

Peterson, J. and C. Jennings, "Enhancements for

Authenticated Identity Management in the Session

Initiation Protocol (SIP)", RFC 4474, August 2006.

[RFC5755]

Farrell, S., Housley, R. and S. Turner, "An Internet

Attribute Certificate Profile for Authorization", RFC

5755, January 2010.

[RFC5518]
Hoffman, P., Levine, J. and A. Hathcock, "Vouch By

Reference", RFC 5518, April 2009.

[RFC3966]
Schulzrinne, H., "The tel URI for Telephone Numbers",

RFC 3966, December 2004.

[RFC4120]

Neuman, C., Yu, T., Hartman, S. and K. Raeburn, "The

Kerberos Network Authentication Service (V5)", RFC

4120, July 2005.

[RFC5849]
Hammer-Lahav, E., "The OAuth 1.0 Protocol", RFC 5849,

April 2010.

[RFC5751]

Ramsdell, B. and S. Turner, "Secure/Multipurpose

Internet Mail Extensions (S/MIME) Version 3.2 Message

Specification", RFC 5751, January 2010.

[AES]

National Institute of Science and Technology,

"Specifications for the Advanced Encryption Standard",

Federal Information Processing Standard (FIPS) 197,

November 2001.

[XML]

Bray, T, Paoli, J, Sperberg-McQueen, C.M, Maler, E and

F Yergeau, "Extensible Markup Language (XML) 1.0 (Third

Edition)", W3C Recommendation REC-xml-20040204,

February 2004.

[SAML]
Security Assertion Markup Language (SAML) V2.0", March

2005.

[REST]

Fielding, R and R Taylor, "Principled design of the

modern Web architecture", ACM Transactions on Internet

Technology (TOIT) 2-2, May 2002.

Authors' Addresses

Kumiko Ono Ono Department of Computer Science Columbia University

New York, NY 10027 USA EMail: kumiko@cs.columbia.edu

mailto:stewart@OpenMarket.com
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc2617
http://tools.ietf.org/html/rfc4484
http://tools.ietf.org/html/rfc4484
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc4627
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc5280
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc4474
http://tools.ietf.org/html/rfc5755
http://tools.ietf.org/html/rfc5755
http://tools.ietf.org/html/rfc5518
http://tools.ietf.org/html/rfc5518
http://tools.ietf.org/html/rfc3966
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc4120
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
http://tools.ietf.org/html/rfc5751
mailto:kumiko@cs.columbia.edu

Henning Schulzrinne Schulzrinne Department of Computer Science

Columbia University New York, NY 10027 USA EMail:

hgs@cs.columbia.edu

mailto:hgs@cs.columbia.edu

	Abstract
	Status of this Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Architecture
	3.1. Assumed Trust Relationships among AVS, Caller, and Callee
	3.2. ARIDs are Loosely Associated with the Owner's Identity in SIP
	4. Requirements
	4.1. Differences between Our Requirements and the Requirements for Trait-Based Authorization
	5. Procedures
	5.1. Generating an ARID
	5.2. Obtaining an ARID
	5.3. Sending an ARID in a Communication Request
	5.4. Validating an ARID to Retrieve User Attributes
	6. Sender-References Header Field
	7. Relationship to Existing Mechanisms
	8. Security Considerations
	8.1. Man in the Middle Attacks
	8.2. Replay Attacks Using a Received ARID
	8.3. Denial of Service Attacks on the AVS
	8.4. Phishing Attacks on the AVS
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References
	Authors' Addresses

