
Network Working Group R. Shakir
Internet-Draft BT
Intended status: Informational A. Shaikh
Expires: January 7, 2016 M. Hines
 Google
 July 6, 2015

Consistent Modeling of Operational State Data in YANG
draft-openconfig-netmod-opstate-01

Abstract

 This document proposes an approach for modeling configuration and
 operational state data in YANG [RFC6020] that is geared toward
 network management systems that require capabilities beyond those
 typically envisioned in a NETCONF-based management system. The
 document presents the requirements of such systems and proposes a
 modeling approach to meet these requirements, along with implications
 and design patterns for modeling operational state in YANG.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect

Shakir, et al. Expires January 7, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Modeling Operational State July 2015

 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 3
2. Terminology . 3

 3. Requirement to interact with both intended and applied
 configuration . 5

4. Operational requirements 6
4.1. Applied configuration as part of operational state . . . 6

 4.2. Support for both transactional, synchronous management
 systems as well as distributed, asynchronous management
 systems . 7
 4.3. Separation of configuration and operational state data;
 ability to retrieve them independently 7
 4.4. Ability to retrieve operational state corresponding
 only to derived values, statistics, etc. 8
 4.5. Consistent schema locations for configuration and
 corresponding operational state data 8

5. Implications on modeling operational state 8
 5.1. Inclusion of applied configuration as part of operational
 state . 9

5.2. Corresponding leaves for configuration and state 9
 5.3. Retrieval of only the derived, or NE-generated part of
 the operational state 9
 5.4. Consistency and predictability in the paths where
 corresponding state and configuration data may be
 retrieved . 9
 5.5. Reuse of existing NETCONF conventions where applicable . 9

6. Proposed operational state structure 10
6.1. Example model structure 10

7. Discussion and observations 13
8. Impact on model authoring 14
8.1. Modeling design patterns 15
8.1.1. Basic structure 15
8.1.2. Handling lists 15
8.1.3. Selective use of state data from common groupings . . 16
8.1.4. Non-corresponding configuration and state data . . . 16

9. YANG language considerations 16
 9.1. Distinguishing derived operational state data and
 applied configuration 17

9.2. YANG lists as maps 17
9.3. Configuration and state data hierarchy 17

10. Security Considerations 18
11. References . 18

Shakir, et al. Expires January 7, 2016 [Page 2]

Internet-Draft Modeling Operational State July 2015

11.1. Normative references 18
11.2. Informative references 18

Appendix A. Acknowledgments 18
Appendix B. Example YANG base structure 19
Appendix C. Example YANG list structure 20
Appendix D. Changes between revisions -00 and -01 23

 Authors' Addresses . 23

1. Introduction

 Retrieving the operational state of a network element (NE) is a
 critical process for a network operator, both because it determines
 how the network is currently running (for example, how many errors
 are occurring on a certain link, what is the load of that link); but
 also because it determines whether the intended configuration applied
 by a network management system is currently operational. While
 configuration changes may be relatively infrequent, accessing the
 state of the network happens significantly more often. Knowing the
 real-time state of the network is required for a variety of use cases
 including traffic management, rapid diagnosis and recovery, and
 enabling tight control loops (implying reading this data on
 millisecond timescales).

 Based on this operational requirement, this document seeks to
 enumerate the requirements of representing both configuration and
 operational state data in YANG; propose a common set of terminology;
 and propose a common layout for configuration and state data such
 that they can be retrieved from a NE. These proposals are based on
 the assertion that YANG models should be usable via a number of
 protocols (not solely IETF- defined protocols such as NETCONF and
 RESTCONF), and may also be used to carry data that is pushed from
 devices via streaming rather than polled.

2. Terminology

 In order to understand the way in which a network operator or network
 management system may need to interact with a device, it is key to
 understand the different types of data that network elements may
 store or master:

 o intended configuration - this data represents the state that the
 network operator intends the system to be in. This data is
 colloquially referred to as the 'configuration' of the system.

 o applied configuration - this data represents the state that the
 network element is actually in, i.e., that which is currently
 being run by particular software modules (e.g., the BGP daemon),

Shakir, et al. Expires January 7, 2016 [Page 3]

Internet-Draft Modeling Operational State July 2015

 or other systems within the device (e.g., a secondary control-
 plane, or line card).

 o derived state - this data represents information which is
 generated as part of the system's own interactions. For example,
 derived state may consist of the results of protocol interactions
 (the negotiated duplex state of an Ethernet link), statistics
 (such as message queue depth), or counters (such as packet input
 or output bytes).

 The applied configuration and derived state can be considered as the
 overall 'operational' state of the NE.

 When an external system desires to change the state of the network
 element, the changes are written to the intended configuration. This
 may be done directly or via a set of staged changes. The process of
 transitioning the intended to applied configuration may be implicit,
 or explicitly controlled by the network management system (NMS).
 Derived state is never directly influenced by the external NMS or
 user, since it is generated based on the systems own interactions.
 To this end, operational state information can be considered to be
 'unknown' to the network manager.

 It is notable that the intended configuration and the applied
 configuration represent exactly the same set of variables (leaves).
 These may have different values based on the current point in time
 (e.g., if the change has not been communicated to an external
 software entity), or due to missing dependencies (e.g., a particular
 linecard not being installed).

Shakir, et al. Expires January 7, 2016 [Page 4]

Internet-Draft Modeling Operational State July 2015

 +---------+
 | | transition intended
 |intended | to applied
 | config +---------+
 | | |
 +---------+ |
 ^ | config: true
 +----------|------------------------------------+
 | | config: false
 | |
 | |
 | +-----------------------------+
 | | | operational state | | | |
 | | +----v----+ +-----------+ |
 | | | | | | |
 + | | applied | | derived | | operational:true
 same +------>| config | | state |<-------+
 leaves | | | | | |
 | | | | | |
 | +---------+ +-----------+ |
 +-----------------------------+

 The relationship between intended and applied configuration, and
 derived state. The combination of the applied and derived state is
 referred to as the operational state.

 Figure 1

 Figure 1 shows the relationship between the different types of state
 referred to above. The intended configuration (which is read/write)
 is the only 'config: true' data. The remaining operational state
 (consisting of applied configuration and derived state) is read-only.
 Only derived state is marked as operational data.

 Where the terms 'intended', 'applied', 'derived' and 'operational'
 are used throughout this document to refer to configuration or state,
 this should be read as explained above.

3. Requirement to interact with both intended and applied configuration

 An operator or network management system has key requirements to be
 able to interact with both the intended and applied configuration.
 The type of interaction with each type of data does differ, however.
 The intended configuration is writable by the managing entity. That
 is, intended configuration is the means through which the NMS informs
 the network element of its desire to change the state of the system.
 An NMS may read back this intended configuration in order to

Shakir, et al. Expires January 7, 2016 [Page 5]

Internet-Draft Modeling Operational State July 2015

 determine the state that the network element is currently trying to
 apply.

 Once such changes have been made to the intended configuration, the
 NMS interacts with the read-only applied configuration to determine
 whether the change that was requested has been applied. The NMS can
 only influence changes to the applied configuration based on writing
 changes to the intended configuration. The applied configuration
 cannot be directly changed itself. It is therefore a common
 operation for an NMS to write to the intended configuration, and
 subsequently read the applied configuration to determine whether the
 change has been instantiated. It is therefore of great importance to
 have a means by which the intended and applied configuration can be
 easily related to one another programmatically within a single schema
 to avoid complex mapping between a particular intended configuration
 leaf and the corresponding applied configuration.

 Similarly, it is also important to have operational state data for a
 particular entity easily related to the applied and intended
 configuration without requiring complex mapping. It should be noted
 that this does not imply that the NMS layer that is retrieving the
 operational state data understands the semantics of each data
 element, but rather that it can retrieve the required set of
 elements. A number of existing NMS architectures have a logical
 division between the elements of the system responsible for
 interacting with the network elements themselves, and those that are
 responsible for data processing, such that general data retrieval and
 parsing should be considered separate activities.

4. Operational requirements

 The proposed modeling approach described in this document is
 motivated by a number of operational requirements.

4.1. Applied configuration as part of operational state

 The definition of operational state in [RFC6244] includes read-only
 transient data that is the result of system operation or protocol
 interactions, and data that is typically thought of as counters or
 statistics. In many operational use cases it is also important to
 distinguish between the intended value of a configuration variable
 and its actual configured state, as described above. In non-
 transactional or asynchronous environments, for example, these may be
 different and it is important to know when they are different or when
 they have converged (see requirement #2). For this reason, we
 consider the applied configuration as an additional important element
 of the operational state. This is not considered in [RFC6244].

https://datatracker.ietf.org/doc/html/rfc6244
https://datatracker.ietf.org/doc/html/rfc6244

Shakir, et al. Expires January 7, 2016 [Page 6]

Internet-Draft Modeling Operational State July 2015

4.2. Support for both transactional, synchronous management systems as
 well as distributed, asynchronous management systems

 In a synchronous system, configuration changes are transactional and
 committed as an atomic unit. This implies that the management system
 knows the success or failure of the configuration change based on the
 return value, and hence knows that the intended configuration matches
 what is on the system (i..e, what has been applied). In particular,
 the value of any configuration variable should always reflect the
 (intended) configured value. Synchronous operation is generally
 associated with a NETCONF-based system that provides transactional
 semantics for all changes.

 In an asynchronous system, configuration changes to the system may
 not be reflected immediately, even though the change operation
 returns success. Rather, the change is verified by observing the
 state of the system, for example based on notifications, or
 continuously streamed values of the state. In this case, the value
 of a configuration variable may not reflect the intended configured
 value at a given point in time.

 The asynchronous use case is important because synchronous operation
 may not always be possible. For example, in a large scale
 environment, the management system may not need to wait for all
 changes to complete if it is acceptable to proceed while some
 configuration values are being updated. In addition, not all devices
 may support transactional changes, making asynchronous operation a
 requirement. Moreover, using observed state to infer the configured
 value allows the management system to learn the time taken to
 complete various configuration changes.

4.3. Separation of configuration and operational state data; ability to
 retrieve them independently

 These requirements are also mentioned in [RFC3535]:

 o It is necessary to make a clear distinction between configuration
 data, data that describes operational state, and statistics.

 o It is required to be able to fetch separately configuration data,
 operational state data, and statistics from devices, and to be
 able to compare these between devices.

https://datatracker.ietf.org/doc/html/rfc3535

Shakir, et al. Expires January 7, 2016 [Page 7]

Internet-Draft Modeling Operational State July 2015

4.4. Ability to retrieve operational state corresponding only to
 derived values, statistics, etc.

 When the management system operates in synchronous mode, it should be
 able to retrieve only the operational state corresponding to the
 system determined values, such as negotiated values, protocol
 determined values, or statistics and counters. Since in synchronous
 mode the intended and applied configuration values are identical,
 sending the applied configuration state is redundant.

4.5. Consistent schema locations for configuration and corresponding
 operational state data

 This requirement implies that a common convention is used throughout
 the schema to locate configuration and state data so that the
 management system can infer how to access one or the other without
 needing significant external context. When considering applied
 configuration as part of operational state (as discussed in

Section 4.1), it is similarly required that the intended value vs.
 actual value for a particular configuration variable should be
 possible to locate with minimal, if any, mapping information.

 This requirement becomes more evident when considering the
 composition of individual data models into a higher-level model for a
 complete device (e.g., /device[name=devXY]/protocols/routing/...) or
 even higher layer models maintained by network operators (e.g., /ope
 ratorX/global/continent[name=eur]/pop[name=paris]/device[name=devXY]
 /...). If each model has it's own way to separate configuration and
 state data, then this information must be known at potentially every
 subtree of the composed model.

 From an operator perspective it is highly desirable that data nodes
 are accessible via a single data model - rather than requiring
 different 'views' of the same data model. This greatly simplifies
 NMS operation, and eliminates ambiguity for a single path. That is,
 it avoids the need for an NMS to provide a <RPC-call, path> tuple to
 uniquely identify a data node. A path should be sufficient to
 uniquely reference to a piece of data. Utilizing a single data model
 and set of paths wherever possible, ensures that this existing
 convention can be continued, and ambiguity of a particular path's
 value and meaning can be avoided.

5. Implications on modeling operational state

 The requirements in Section 4 give rise to a number of new
 considerations for modeling operational state. Some of the key
 implications are summarized below.

Shakir, et al. Expires January 7, 2016 [Page 8]

Internet-Draft Modeling Operational State July 2015

5.1. Inclusion of applied configuration as part of operational state

 This implies that a copy of the configurable (i.e., writable) values
 should be included as read-only variables in containers for
 operational state, in addition to the derived variables that are
 traditionally thought of as state data (counters, negotiated values,
 etc.).

5.2. Corresponding leaves for configuration and state

 Any configuration leaf should have a corresponding state leaf. The
 opposite is clearly not true -- some parts of the model may only have
 derived state variables, for example the contents of a routing table
 that are populated by a dynamic routing protocols like BGP or IS-IS.

5.3. Retrieval of only the derived, or NE-generated part of the
 operational state

 YANG and NETCONF do not currently differentiate between state that is
 derived by the NE, state representing statistics, and state
 representing applied configuration -- all state is simply marked as
 'config false' or read-only. To retrieve only the state that is not
 part of intended configuration, we require a new way to tag such
 data. This is proposed in this document as a YANG extension.
 Alternatively, as described in [RFC6244], a new NETCONF datastore for
 operational state that is just for derived state could also be used
 to allow <get> (or similar) operations to specify just that part of
 the state.

5.4. Consistency and predictability in the paths where corresponding
 state and configuration data may be retrieved

 To avoid arbitrary placement of state and configuration data
 containers, the most consistent options would be at the root of the
 model (as done in [YANG-IF]) or at the leaves, i.e., at the start or
 end of the paths. When operators compose models into a higher level
 model, the root of the model is no longer well-defined, and hence
 neither is the start of the path. For these reasons, we propose
 placing configuration and state separation at leaves of the model.

5.5. Reuse of existing NETCONF conventions where applicable

 Though not a specific requirement, models for operational state
 should take advantage of existing protocol mechanisms where possible,
 e.g., to retrieve configuration and state data. As mentioned above,
 this does not mean that the solution for modeling operational state
 and configuration data should be limited to NETCONF architecture or
 protocols.

https://datatracker.ietf.org/doc/html/rfc6244

Shakir, et al. Expires January 7, 2016 [Page 9]

Internet-Draft Modeling Operational State July 2015

6. Proposed operational state structure

 Below we show an example model structure that meets the requirements
 described above for all three types of data we are considering:

 o intended configuration

 o applied configuration

 o derived state

6.1. Example model structure

 The example below shows a partial model (in ascii tree format) for
 managing Ethernet aggregate interfaces (leveraging data definitions
 from [RFC7223]):

https://datatracker.ietf.org/doc/html/rfc7223

Shakir, et al. Expires January 7, 2016 [Page 10]

Internet-Draft Modeling Operational State July 2015

 +--rw interfaces
 +--rw interface* [name]
 +--rw name -> ../config/name
 +--rw config
 | ...
 +--ro state
 | | ...
 | +--ro counters
 | +--ro discontinuity-time yang:date-and-time
 | +--ro in-octets? yang:counter64
 | +--ro in-unicast-pkts? yang:counter64
 | +--ro in-broadcast-pkts? yang:counter64
 | +--ro in-multicast-pkts? yang:counter64
 | +--ro in-discards? yang:counter64
 | +--ro in-errors? yang:counter64
 | +--ro in-unknown-protos? yang:counter64
 | +--ro out-octets? yang:counter64
 | +--ro out-unicast-pkts? yang:counter64
 | +--ro out-broadcast-pkts? yang:counter64
 | +--ro out-multicast-pkts? yang:counter64
 | +--ro out-discards? yang:counter64
 | +--ro out-errors? yang:counter64
 +--rw aggregation!
 +--rw config
 | +--rw lag-type? aggregation-type
 | +--rw min-links? uint16
 +--ro state
 | +--ro lag-type? aggregation-type
 | +--ro min-links? uint16
 | +--ro members* ocif:interface-ref
 +--rw lacp!
 +--rw config
 | +--rw interval? lacp-period-type
 +--rw members* [interface]
 | +--rw interface ocif:interface-ref
 | +--ro state
 | +--ro activity? lacp-activity-type
 | +--ro timeout? lacp-timeout-type
 | +--ro synchronization? lacp-synch-type
 | +--ro aggregatable? boolean
 | +--ro collecting? boolean
 | +--ro distributing? boolean
 +--ro state
 +--ro interval? lacp-period-type

 In this model, the path to the intended configuration (rw) items at
 the aggregate interface level is:

Shakir, et al. Expires January 7, 2016 [Page 11]

Internet-Draft Modeling Operational State July 2015

 /interfaces/interface[name=ifName]/aggregation/config/...

 The corresponding applied configuration and derived state is located
 at:

 /interfaces/interface[name=ifName]/aggregation/state/...

 This container holds a read-only copy of the intended configuration
 variables (lag-type and min-links) - the applied configuration - as
 well as a generated list of member interfaces (the members leaf-list)
 for the aggregate that is active when the lag-type indicates a
 statically configured aggregate (which is derived state). Note that
 although the paths to config and state containers are symmetric, the
 state container contains additional derived variables.

 The model has an additional hierarchy level for aggregate interfaces
 that are maintained using LACP. For these, the configuration path
 is:

 /interfaces/interface[name=ifName]/aggregation/lacp/config/...

 with the corresponding state container (in this case with only the
 state corresponding to the applied configuration) at:

 /interfaces/interface[name=ifName]/aggregation/lacp/state/...

 There is an additional list of members for LACP-managed aggregates
 with only a state container:

 /interfaces/interface[name=ifName]/aggregation/lacp/
 members[name=ifName]/state/...

 Note that it is not required that both a state and a config container
 be present at every leaf. It may be convenient to include an empty
 config container to make it more explicit to the management system
 that there are no configuration variables at this location in the
 data tree.

 Finally, we can see that the generic interface object also has config
 and state containers (these are abbreviated for clarity). The state
 container has a subcontainer for operational state corresponding to
 counters and statistics that are valid for any interface type:

 /interfaces/interface[name=ifName]/state/counters/...

Shakir, et al. Expires January 7, 2016 [Page 12]

Internet-Draft Modeling Operational State July 2015

7. Discussion and observations

 A number of issues have been raised with the proposed solution, which
 are documented below, along with the authors observations relating to
 these issues.

 1. The proposed solution decreases the readability of a YANG data
 model for some, or the ease of writing a model for others. It is
 difficult to make this judgment without being subjective - the
 complexity in model writing (as is noted in the above section) is
 only at the expense of meeting the operational requirement
 described in this document. The authors consider that this is a
 fair trade-off between one-time modeling complexity. It could
 also be observed that a common convention for representing
 operational state data alongside configuration improved
 readability.

 2. Data is duplicated on the wire by this proposal. The intention
 of defining a set of annotations for data (operational: true, or
 the data-type flag proposed below) is in order to allow RPCs to
 be defined which return only specific types of data. For
 example, a >get-operational< call may return only values with
 operational: true so that an NMS can return a specific set of
 data to the requesting entity.

 3. The proposal does not allow items that are not configured,
 configured but not present, or system configured. A common
 example which is quoted is where there are elements that are not
 configured, or are system-generated based on some other
 configuration. For example, consider a model whereby an 'all'
 interface is configured, which corresponds to all interfaces on
 the system. In this case, the intended configuration should
 include only the 'all' interface which is configured. This
 intended configuration should be reflected to the applied
 configuration. The operational state should contain per-
 interface (e.g., eth0, Fa0/1) values relating to the interface
 entities that exist in the network. The intended configuration
 corresponds solely to a particular interface (e.g., eth0) --
 there should be no corresponding 'intended' configuration. In
 these cases, there is no 'intended' configuration for an entity,
 but there is an 'applied' configuration present. One challenge
 here relates to the fact that YANG's list semantics currently
 imply that that the "config true" interface-name leaf has been
 set - in practice, it is unlikely that this list key is actually
 configurable in any real system (it must correspond to a real
 interface, which has an explicit name according to the system
 implementation). Additionally, this could be resolved with the
 alternative map type described later in this document.

Shakir, et al. Expires January 7, 2016 [Page 13]

Internet-Draft Modeling Operational State July 2015

 4. It is not clear what to do when the intended and applied
 configuration differ. The proposal made in this document makes
 no presumption as to the actions that are taken when intended and
 applied leaves for a certain value differ. In fact, it is the
 expectation of the authors that there is separation between
 elements of the NMS that are responsible for retrieving data from
 network elements, as opposed to those that need to understand
 process this data. The fact that this layer interacting with the
 network can retrieve both intended and applied configuration, and
 find the corresponding operational state data in a consistent
 manner is independently useful regardless of whether the
 semantics of the contained data are understood.

 5. An operational-path statement could be used to point between
 intended and applied configuration. Essentially, this proposal
 moves the mapping dictionary on a per-leaf basis within the data
 model itself. It appears to be a more complex solution that the
 proposed approach within this document which does not require any
 need to build a per-leaf mapping.

 6. Models that do not follow the proposed pattern would not be
 usable. Models that do not follow the structural convention for
 modeling operational state data would require some refactoring to
 meet the requirements described in this document. However, by
 following the design pattern for YANG grouping described in
 Section Section 8.1.1 it becomes possible to leverage existing
 modules by importing them and reusing the groupings. More
 specifically, if models are designed with only configuration or
 state related data leaf nodes in groupings, another model could
 create the required structure and reuse these groupings.

8. Impact on model authoring

 One drawback of structuring operational and configuration data in
 this way is the added complexity in authoring the models, relative to
 the way some models are currently built with state and config split
 at the root of the individual model (e.g., in [RFC7223], [RFC7317],
 and [IETF-RTG]). Moving the config and state containers to each leaf
 adds a one-time modeling effort, which is somewhat dependent on the
 model structure itself (how many layers of container hierarchy,
 number of lists, etc.) However, we feel this effort is justified by
 the resulting simplicity with which management systems can access and
 correlate state and configuration data.

https://datatracker.ietf.org/doc/html/rfc7223
https://datatracker.ietf.org/doc/html/rfc7317

Shakir, et al. Expires January 7, 2016 [Page 14]

Internet-Draft Modeling Operational State July 2015

8.1. Modeling design patterns

 We propose some specific YANG modeling design patterns that are be
 useful for building models following these conventions.

8.1.1. Basic structure

 Since leaves that are created under the 'config' container also
 appear under the 'state' container, it is recommended that the
 following conventions are used to ensure that the schema remain as
 simple as possible:

 o A grouping for the intended configuration data items is created -
 with a specific naming convention to indicate that such variables
 are configurable, such as a suffix like '-config' or '_config'.
 For example, the OpenConfig BGP model [OC-BGP] adopts the
 convention of appending "_config" to the name of the grouping.

 o A grouping for the derived state data items is created, with a
 similar naming convention as above, i.e., with a suffix such as
 '-state' or '_state'. The BGP model uses "_state".

 o A 'structural' grouping is created that instantiates both the
 'config' and 'state' containers. The 'config' container should
 include the "-config" grouping, whilst the state container has
 both the "-config" and "-state" groupings, along with the 'config
 false' statement.

 A simple example in YANG is shown in Appendix B.

8.1.2. Handling lists

 In YANG 1.0, lists have requirements that complicate the creation of
 the parallel configuration and state data structures. First, keys
 must be children of the list; they cannot be further down the data
 hierarchy within a subsequent container. For example, the
 'interface' list cannot be keyed by /interfaces/interface/config/
 name. Second, YANG requires that the list key is part of the
 configuration or state data in each list member.

 We consider two possible approaches for lists:

 1. list keys appear only at the top level of the list, i.e., not
 duplicated under the 'config' or 'state' containers within the
 list

 2. the data represented by the list key appears in the config and
 state containers, and a key with type leafref is used in the top

Shakir, et al. Expires January 7, 2016 [Page 15]

Internet-Draft Modeling Operational State July 2015

 level of the list pointing to the corresponding data node in the
 config (or state) container.

 Option 1 has the advantage of not duplicating data, but treats the
 data item (or items) that are keys as special cases, i.e., not
 included in the config or state containers. Option 2 is appealing in
 that configurable data always appears in the config container, but
 requires an arguably unnecessary key pointing to the data from the
 top level of the list.

Appendix C shows a simple example of both options.

8.1.3. Selective use of state data from common groupings

 In a number of cases, it is desirable that the same grouping be used
 within different places in a model - but state information is only
 relevant in one of these paths. For example, considering BGP, peer
 configuration is relevant to both a "neighbor" (i.e., an individual
 BGP peer), and also to a peer-group (a set of peers). Counters
 relating to the number of received prefixes, or queued messages, are
 relevant only within the 'state' container of the peer (rather than
 the peer-group). In this case, use of the 'augment' statement to add
 specific leaves to only one area of the tree is recommended, since it
 allows a common grouping to be utilized otherwise.

8.1.4. Non-corresponding configuration and state data

 There are some instances where only an operational state container is
 relevant without a corresponding configuration data container. For
 example, the list of currently active member interfaces in a LACP-
 managed LAG is typically reported by the system as operational state
 that is governed by the LACP protocol. Such data is not directly
 configured. Similarly, counters and statistics do not have
 corresponding configuration. In these cases, we can either omit the
 config container from such leaves, or provide an empty container as
 described earlier. With both options, the management system is able
 to infer that such data is not configurable.

9. YANG language considerations

 In adopting the approach described in this document for modeling
 operational state data in YANG, we encounter several language
 limitations that are described below. We discuss some initial
 thoughts on possible changes to the language to more easily enable
 the proposed model for operational state modeling.

Shakir, et al. Expires January 7, 2016 [Page 16]

Internet-Draft Modeling Operational State July 2015

9.1. Distinguishing derived operational state data and applied
 configuration

 As mentioned in Section 4, we require a way to separately query
 operational state that is not part of applied configuration (e.g.,
 protocol-determined data, counters, etc.). YANG and NETCONF do not
 distinguish types of operational state data, however. To overcome
 this, we currently use a YANG language extension to mark such data as
 'operational: true'. Ideally, this could be generalized beyond the
 current 'config: true / false' to mark "data-type: intended", "data-
 type: applied", "data-type: derived" to allow filtering of particular
 types of data by a protocol RPC.

9.2. YANG lists as maps

 YANG has two list constructs, the 'leaf-list' which is similar to a
 list of scalars (arrays) in other programming languages, and the
 'list' which allows a keyed list of complex structures, where the key
 is also part of the data values. As described in Section 8.1.2, the
 current requirements on YANG list keys require either duplication of
 data, or treating some data (i.e., those that comprise list keys) as
 a special case. One solution is to generalize lists to be more like
 map data structures found in most modern programming languages, where
 each list member has a key that is not required to part of the
 configuration or state data, and also not subject to existing
 "config-under-state limitations. This allows list keys to be
 arbitrarily defined by the user if desired, or based on values of
 data nodes. In the latter case, the specification of which data
 nodes are used in constructing the list key could be indicated in the
 meta-data associated with the key.

9.3. Configuration and state data hierarchy

 YANG does not allow read-write configuration data to be child nodes
 of read-only operational state data. This requires the definition of
 separate state and config containers as described above. However, it
 may be desirable to simplify the schema by 'flattening', e.g., having
 the operational state as the root of the data tree, with only config
 containers needed to specify the variables that are writable (in
 general, the configuration data is much smaller than operational
 state data). Naming the containers explicitly according the config /
 state convention makes the intent of the data clear, and should allow
 relaxing of the current YANG restrictions. That is, a read-write
 config container makes explicit the nature of the enclosed data even
 if the parent data nodes are read-only. This of course requires that
 all data in a config container are in fact configurable -- this is
 one of the motivations of pushing such containers as far down in the
 schema hierarchy as possible.

Shakir, et al. Expires January 7, 2016 [Page 17]

Internet-Draft Modeling Operational State July 2015

10. Security Considerations

 This document addresses the structure of configuration and
 operational state data, both of which should be considered sensitive
 from a security standpoint. Any data models that follow the proposed
 structuring must be carefully evaluated to determine its security
 risks. In general, access to both configuration (write) and
 operational state (read) data must be controlled through appropriate
 access control and authorization mechanisms.

11. References

11.1. Normative references

 [RFC6020] Bjorklund, M., "YANG - A Data Modeling Language for the
 Network Configuration Protocol (NETCONF)", RFC 6020,
 October 2010.

 [RFC6244] Shafer, P., "An Architecture for Network Management Using
 NETCONF and YANG", RFC 6244, June 2011.

 [RFC3535] Schoenwaelder, J., "Overview of the 2002 IAB Network
 Management Workshop", RFC 3535, May 2003.

 [RFC7223] Bjorklund, M., "A YANG Data Model for Interface
 Management", RFC 7223, May 2014.

 [RFC7317] Bierman, A. and M. Bjorklund, "A YANG Data Model for
 System Management", RFC 7317, August 2014.

11.2. Informative references

 [IETF-RTG]
 Lhotka, L., "A YANG Data Model for Routing Management",

draft-ietf-netmod-routing-cfg-16 (work in progress),
 October 2014.

 [OC-BGP] Shaikh, A., D'Souza, K., Bansal, D., and R. Shakir, "BGP
 Configuration Model for Service Provider Networks", draft-

shaikh-idr-bgp-model-01 (work in progress), March 2015.

Appendix A. Acknowledgments

 The authors are grateful for valuable input to this document from:
 Lou Berger, Martin Bjorklund, Paul Borman, Chris Chase, Raymond Cheh,
 Feihong Chen, Benoit Claise, Josh George, Carl Moberg, Jason Sterne,
 Jim Uttaro, and Kent Watsen.

https://datatracker.ietf.org/doc/html/rfc6020
https://datatracker.ietf.org/doc/html/rfc6244
https://datatracker.ietf.org/doc/html/rfc3535
https://datatracker.ietf.org/doc/html/rfc7223
https://datatracker.ietf.org/doc/html/rfc7317
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-routing-cfg-16
https://datatracker.ietf.org/doc/html/draft-shaikh-idr-bgp-model-01
https://datatracker.ietf.org/doc/html/draft-shaikh-idr-bgp-model-01

Shakir, et al. Expires January 7, 2016 [Page 18]

Internet-Draft Modeling Operational State July 2015

Appendix B. Example YANG base structure

 Below we show an example of the basic YANG building block for
 organizing configuration and operational state data as described in

Section 6

 grouping example-config {
 description "configuration data for example container";

 leaf conf-1 {
 type empty;
 }

 leaf conf-2 {
 type string;
 }
 }

 grouping example-state {
 description
 "operational state data (derived, counters, etc.) for example
 container";

 leaf state-1 {
 type boolean;
 operational true;
 }

 leaf state-2 {
 type string;
 }

 container counters {
 description
 "operational state counters for example container";

 operational true;

 leaf counter-1 {
 type uint32;
 }

 leaf counter-2 {
 type uint64;
 }
 }
 }

Shakir, et al. Expires January 7, 2016 [Page 19]

Internet-Draft Modeling Operational State July 2015

 grouping example-structure {
 description
 "top level grouping for the example container -- this is used
 to put the config and state subtrees in the appropriate
 location";

 container example {
 description
 "top-level container for the example data";

 container config {

 uses example-config;

 }

 container state {

 config false;
 uses example-config;
 uses example-state;
 }
 }
 }

 uses example-structure;

 The corresponding YANG data tree is:

 +--rw example
 +--rw config
 | +--rw conf-1? empty
 | +--rw conf-2? string
 +--ro state
 +--ro conf-1? empty
 +--ro conf-2? string
 +--ro state-1? boolean
 +--ro state-2? string
 +--ro counters
 +--ro counter-1? uint32
 +--ro counter-2? uint64

Appendix C. Example YANG list structure

 As described in Section 8.1.2, there are two options we consider for
 building lists according to the proposed structure. Both are shown
 in the example YANG snippet below. The groupings defined above in

Appendix B are reused here.

Shakir, et al. Expires January 7, 2016 [Page 20]

Internet-Draft Modeling Operational State July 2015

 grouping example-no-conf2-config {
 description
 "configuration data for example container but without the conf-2
 data leaf which is used as a list key";

 leaf conf-1 {
 type empty;
 }

 }

 grouping example-structure {
 description
 "top level grouping for the example container -- this is used
 to put the config and state subtrees in the appropriate
 location";

 list example {

 key conf-2;
 description
 "top-level list for the example data";

 leaf conf-2 {
 type leafref {
 path "../config/conf-2";
 }
 }

 container config {

 uses example-config;

 }

 container state {

 config false;
 uses example-config;
 uses example-state;
 }
 }

 list example2 {

 key conf-2;
 description
 "top-level list for the example data";

Shakir, et al. Expires January 7, 2016 [Page 21]

Internet-Draft Modeling Operational State July 2015

 leaf conf-2 {
 type string;
 }

 container config {

 uses example-no-conf2-config;

 }

 container state {

 config false;
 uses example-no-conf2-config;
 uses example-state;
 }
 }
 }

 uses example-structure;

 The corresponding YANG data tree is shown below for both styles of
 lists.

 +--rw example* [conf-2]
 | +--rw conf-2 -> ../config/conf-2
 | +--rw config
 | | +--rw conf-1? empty
 | | +--rw conf-2? string
 | +--ro state
 | +--ro conf-1? empty
 | +--ro conf-2? string
 | +--ro state-1? boolean
 | +--ro state-2? string
 | +--ro counters
 | +--ro counter-1? uint32
 | +--ro counter-2? uint64
 +--rw example2* [conf-2]
 +--rw conf-2 string
 +--rw config
 | +--rw conf-1? empty
 +--ro state
 +--ro conf-1? empty
 +--ro state-1? boolean
 +--ro state-2? string
 +--ro counters
 +--ro counter-1? uint32
 +--ro counter-2? uint64

Shakir, et al. Expires January 7, 2016 [Page 22]

Internet-Draft Modeling Operational State July 2015

Appendix D. Changes between revisions -00 and -01

 The -01 revision of this documents reflects a number of discussions
 with implementors and members of several IETF working groups,
 including NETMOD. Major changes from the prior version are
 summarized below.

 o Updated introduction to provide additional background on
 operational requirements.

 o Added a detailed terminology section and diagram to provide
 definitions of different types of modeled data based on working
 group discussions.

 o Added new discussion section summarizing issues that have been
 raised with the proposal as well as operator observations and
 comment.

Authors' Addresses

 Rob Shakir
 BT
 pp. C3L, BT Centre
 81, Newgate Street
 London EC1A 7AJ
 UK

 Email: rob.shakir@bt.com
 URI: http://www.bt.com/

 Anees Shaikh
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 US

 Email: aashaikh@google.com

 Marcus Hines
 Google
 1600 Amphitheatre Pkwy
 Mountain View, CA 94043
 US

 Email: hines@google.com

http://www.bt.com/

Shakir, et al. Expires January 7, 2016 [Page 23]

