
Internet-Draft Endpoint MIB August 1999
Expires February, 2000

Internet Endpoint MIB

 <draft-ops-endpoint-mib-00.txt>

1. Status of this Memo

 This document is an Internet-Draft and is in full conformance
 with all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as
 Internet-Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other
 documents at any time. It is inappropriate to use Internet-
 Drafts as reference material or to cite them other than as
 "work in progress."

 The list of current Internet-Drafts can be accessed at^M
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

2. Abstract

 This MIB module defines constructs to represent commonly used
 addressing information. The intent is that these definitions
 will be imported and used in the various MIBs that would otherwise
 define their own representations. This work is output from the
 Operations and Management Area "IPv6MIB" design team.

3. Definitions

INET-ENDPOINT-MIB DEFINITIONS ::= BEGIN

IMPORTS
 MODULE-IDENTITY FROM SNMPv2-SMI
 TEXTUAL-CONVENTION FROM SNMPv2-TC;

inetEndpointMIB MODULE-IDENTITY
 LAST-UPDATED "9907300000Z"
 ORGANIZATION "IETF OPS Area"
 CONTACT-INFO "Send comments to mibs@ops.ietf.org"
 DESCRIPTION
 "A MIB module for Internet address definitions."
 ::= { TBD }

https://datatracker.ietf.org/doc/html/draft-ops-endpoint-mib-00.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

--
--
-- New TCs for representing generic Internet endpoints.
-- These are roughly equivalent to TDomain and TAddress...
--
--

--
-- Internet endpoints types
--
InetEndpointType ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "A value that represents a type of Internet endpoint.

 Note that it is possible to sub-type objects defined with
 this syntax by removing one or more enumerated values.
 The DESCRIPTION clause of such objects (or their corresponding
 InetEndpoint object) must document specific usage."
 SYNTAX INTEGER {
 other(0),
 ipv4(1),
 ipv6(2),
 dns(3)
 }

InetEndpoint ::= TEXTUAL-CONVENTION
 STATUS current
 DESCRIPTION
 "Denotes an generic Internet endpoint.

 A InetEndpoint value is always interpreted within the context of a
 InetEndpointType value. Thus, each definition of a InetEndpointType
 value must be accompanied by a definition of a textual convention
 for use with that InetEndpointType.

 When this Textual Convention is used as the syntax of an index
object,
 there may be issues with the limit of 128 sub-identifiers specified
 in [SMIv2]. In this case, it is recommended that the OBJECT-TYPE
 declaration include a "SIZE" clause to limit the number of potential
 instance sub-identifiers.
 REFERENCE "See the TAddress TC in std58."
 SYNTAX OCTET STRING (SIZE (0..255))

--
--
-- TCs for specific Internet endpoint values.

--
--

--
-- IPv4 Address
--

InetEndpointIPv4 ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "1d.1d.1d.1d"
 STATUS current
 DESCRIPTION
 "Represents an IPv4 network address:

 octets contents encoding
 1-4 IP address network-byte order

 The corresponding InetEndpointType is ipv4(1)."
 SYNTAX OCTET STRING (SIZE (4))

--
-- IPv6 Address
--

InetEndpointIPv6 ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "2x:2x:2x:2x:2x:2x:2x:2x"
 STATUS current
 DESCRIPTION
 "Represents an IPv6 network address:

 octets contents encoding
 1-16 IPv6 address network-byte order

 The corresponding InetEndpointType is ipv6(2)."
 REFERENCE "See the Ipv6Address TC in RFC 2465."
 SYNTAX OCTET STRING (SIZE (16))

--
-- DNS Name
--

InetEndpointDNS ::= TEXTUAL-CONVENTION
 DISPLAY-HINT "255a"
 STATUS current
 DESCRIPTION
 "Represents a fully qualified DNS host name.
 The corresponding InetEndpointType is dns(3).

 The DESCRIPTION clause of InetEndpoint objects that
 may have InetEndpointDNS values must fully describe
 how (and when) such names are to be resolved to IP
 addresses."
 REFERENCE "RFCs 952 and 1123."

https://datatracker.ietf.org/doc/html/rfc2465

 SYNTAX OCTET STRING (SIZE (1..255))

END

4. Usage

 These definitions provide a mechanism to define generic
 Internet-accessible endpoints within MIB specifications.
 It is recommended that MIB developers use these definitions
 when applicable, as opposed to defining their own constructs.

 A generic Internet endpoint consists of two objects,
 one whose syntax is InetEndpointType, and another whose
 syntax is InetEndpoint. The value of the first object
 determines how the value of the second object is encoded.

 One particular usage of InetEndpointType/InetEndpoint pairs
 is to avoid over-constraining an object definition by the
 use of the IpAddress syntax. IpAddress limits an implementation
 to using IPv4 addresses only, and as such should only be used
 when the object truly is IPv4-specific.

5. Indexing

 When a generic Internet endpoint is used as an index, both
 the InetEndpointType and InetEndpoint objects must be used, and
 the InetEndpointType object must come first in the INDEX clause.

 Instance subidentifiers are then of the form T.N.O1.O2...On,
 where T is the value of the InetEndpointType object, O1...On
 are the octets in the InetEndpoint object, and N is the number
 of those octets.

 There is a meaningful lexicographical ordering to tables indexed
 in this fashion. Command generator applications may

 o lookup specific endpoints of known type and value
 o issue GetNext requests for endpoints of a single type
 o issue GetNext requests for specific type and address prefix

 It should be pointed out that another valid approach is to
 define separate tables for different address types. For example,
 one table might be indexed by an IpAddress object, and the other
 table indexed by an Ipv6Address object. This is a decision for the
 MIB designer. (For example, the tcpConnTable was left intact and a new
 table added for TCP connections over IPv6, see RFC 2452.)

6. Uniqueness of Addresses

 IPv4 addresses were intended to be globally unique, current
 usage notwithstanding. IPv6 addresses were architected to
 have different scopes and hence uniqueness. In particular,

https://datatracker.ietf.org/doc/html/rfc2452

 IPv6 "link-local" and "site-local" addresses are not guaranteed
 to be unique on any particular node. In such cases, the duplicate
 addresses must be configured on different interfaces, so the combination
 of IPv6 address/interface is unique.

 For tables indexed by InetEndpointType/InetEndpoint pairs, where
 there may be non-unique instances of InetEndpointIPv6, the recommended
 approach is to add a third index object to ensure uniqueness.

 It is recommended that the syntax of this third index object be
 InterfaceIndexOrZero, from IF-MIB. The value of this object
 should be 0 when the value of the InetEndpointType object is
 not ipv6(2).

 << TBD: what about Ipv6IfIndexOrZero in RFC 2465? >>

7. Multiple InetEndpoints per Host

 Note that a single host system may be configured with multiple
 addresses (IPv4 or IPv6), and possibly with multiple DNS names.
 Thus it is possible for a single host system to be represented
 by multiple (unique) InetEndpointType/InetEndpoint pairs.

 If this could be an implementation or usage issue the DESCRIPTION
 clause of the relevant objects should fully describe required
 behavior.

8. Resolving DNS Names

 DNS names are translated to IP addresses when communication with
 a host is required. This raises a temporal aspect to defining MIB
 objects whose value is a DNS name; when is the name translated to
 an address?

 For example, consider an object defined to indicate a forwarding
 destination, and whose value is a DNS name. When does the
 forwarding entity resolve the DNS name? Each time forwarding occurs?
 Once, when the object was instantiated?

 The DESCRIPTION clause of such objects should precisely define
 how (when) any required name to address resolution is done.

9. Usage Examples

 Example 1:

 fooTable OBJECT-TYPE
 SYNTAX SEQUENCE OF FooEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The foo table."

https://datatracker.ietf.org/doc/html/rfc2465

 ::= { bar 1 }

 fooEntry OBJECT-TYPE
 SYNTAX FooEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A foo entry."
 INDEX { fooPartnerType, fooPartner }
 ::= { fooTable 1 }

 FooEntry ::= SEQUENCE {
 fooPartnerType InetEndpointType,
 fooPartner InetEndpoint,
 fooStatus INTEGER,
 fooDescr OCTET STRING
 }

 fooPartnerType ::= OBJECT-TYPE
 SYNTAX InetEndpointType
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The type of Internet endpoint by which the partner is
reachable."
 ::= { fooEntry 1 }

 fooPartner ::= OBJECT-TYPE
 SYNTAX InetEndpoint (SIZE (0..64))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The Internet endpoint for the partner. Note that
implementations
 must limit themselves to a single entry in this table per
reachable
 partner. Also, if an Ipv6 endpoint is used, it must contain a
globally
 unique IPv6 address."
 ::= { fooEntry 2 }

 Example 2:

 sysAddrTable OBJECT-TYPE
 SYNTAX SEQUENCE OF SysAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The sysAddr table."
 ::= { sysAddr 1 }

 sysAddrEntry OBJECT-TYPE
 SYNTAX SysAddrEntry
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "A sysAddr entry."
 INDEX { sysAddrType, sysAddr, sysAddrIfIndex }
 ::= { sysAddrTable 1 }

 SysAddrEntry ::= SEQUENCE {
 sysAddrPartnerType InetEndpointType,
 sysAddrPartner InetEndpoint,
 sysAddrIfIndex InterfaceIndexOrZero,
 sysAddrStatus INTEGER,
 sysAddrDescr OCTET STRING
 }

 sysAddrType ::= OBJECT-TYPE
 SYNTAX InetEndpointType {
 ipv4(1),
 ipv6(2)
 }
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The type of system address."
 ::= { sysAddrEntry 1 }

 sysAddr ::= OBJECT-TYPE
 SYNTAX InetEndpoint (SIZE (4 | 16))
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The system address."
 ::= { sysAddrEntry 2 }

 sysAddrIfIndex ::= OBJECT-TYPE
 SYNTAX InterfaceIndexOrZero
 MAX-ACCESS not-accessible
 STATUS current
 DESCRIPTION
 "The system address interface. This object is used to
disambiguate
 duplicate system IPv6 addresses, and should be 0 for non-
duplicate
 addresses."
 ::= { sysAddrEntry 3 }

10. References

 TBD

11. Copyright

 TBD

12. Authors

 This work was done by the IETF Ops Area "IPv6MIB" Design Team.
 Comments should be posted to mibs@ops.ietf.org.

Appendix

 This appendix lists the issues raised over common addressing
 MIB constructs, and the reasoning for the decisions made in
 this module.

 1. Efficient table lookups

 Some existing MIBs have tables of generic addresses, indexed
 by a random integer. This makes it impossible to lookup
 specific addresses, or issue meaningful GetNext operations.

 2. Common addressing should be defined such that no SMI changes
 are required.

 For example, the use of the ASN.1 CHOICE would really be an SMI
 change.

 3. TCs and DISPLAY-HINTS

 A single object that contains both address type and value
 does not provide a way to express the display characteristics
 of each type.

 (Also, such a single object requires code changes to handle updates,
 whereas the solution chosen requires only MIB updates.)

 4. Document the possible non-uniqueness of IPv6 addresses, and the
 impact on indexing tables.

 5. TDomain/TAddress limited to transport services

 It was unclear if network layer addresses were appropriate
 for use in TAddress values, since std58 refers specifically to
 "transport addresses".

 This point is less important than std58's definition that
 TAddress values always be defined in the context of TDomain
 values. Since did not want to index by OIDs, we did not
 use TDomain and hence cannot use TAddress.

 6. Harness the use of IpAddress

 Several standard-track MIBs have used IpAddress syntax
 inadvertently, needlessly limiting implementations to IPv4.

 The specification under development should address this.

 7. DNS names in addition to addresses

 It is useful to be able to specify a system via a DNS name,
 so the common addressing mechanism should support them.

Expires February, 2000

