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Abstract

Deeply embedded in some ICN architectures, especially Named Data

Networking (NDN) and Content-Centric Networking (CCNx) is the notion

of flow balance. This captures the idea that there is a one-to-one

correspondence between requests for data, carried in Interest

messages, and the responses with the requested data object, carried

in Data messages. This has a number of highly beneficial properties

for flow and congestion control in networks, as well as some

desirable security properties. For example, neither legitimate users

nor attackers are able to inject large amounts of un-requested data

into the network.

Existing congestion control approaches however have a difficult time

dealing effectively with a widely varying MTU of ICN data messages,

because the protocols allow a dynamic range of 1-64K bytes. Since

Interest messages are used to allocate the reverse link bandwidth

for returning Data, there is large uncertainty in how to allocate

that bandwidth. Unfortunately, most current congestion control

schemes in CCNx and NDN only count Interest messages and have no

idea how much data is involved that could congest the inverse link.

This document proposes a method to maintain flow balance by

accommodating the wide dynamic range in Data message size.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.
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Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference
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1. Introduction

Deeply embedded in some ICN architectures, especially Named Data

Networking ([NDN]) and Content-Centric Networking (CCNx [RFC8569],

[RFC8609]) is the notion of flow balance. This captures the idea

that there is a one-to-one correspondence between requests for data,

carried in Interest messages, and the responses with the requested

data object, carried in Data messages. This has a number of highly

beneficial properties for flow and congestion control in networks,

as well as some desirable security properties. For example, neither
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legitimate users nor attackers are able to inject large amounts of

un-requested data into the network.

This approach leads to a desire to make the size of the objects

carried in Data messages small and near constant, because flow

balance can then be kept using simple bookkeeping of how many

Interest messages are outstanding. While simple, constraining Data

messages to be quite small - usually on the order of a link Maximum

Transmission Unit (MTU) - has some constraints and deleterious

effects, among which are:

Such small data objects are inconvenient for many applications;

their natural data object sizes can be considerably larger than a

link MTU.

Applications with truly small data objects (e.g. voice packets in

an Internet telephony applications) have no way to communicate

that to the network, causing resources to still be allocated for

MTU-sized data objects

When chunking a larger data object into multiple Data messages,

each message has to be individually cryptographically hashed and

signed, increasing both computational overhead and overall

message header size. The signature can be elided when Manifests

are used (by signing the Manifest instead), but the overhead of

hashing multiple small messages rather than fewer larger ones

remains.

One approach which helps with the last of these is to employ

fragmentation for Data messages larger than the Path MTU (PMTU).

Such messages are carved into smaller pieces for transmission over

the link(s). There are three flavors of fragmentation: end-to-end,

hop-by-hop with reassembly at every hop, and hop-by-hop with cut-

through of individual fragments. A number of ICN protocol

architectures incorporate fragmentation and schemes have been

proposed for both NDN and CCNx, for example in [Ghali2013].

Fragmentation alone does not ameliorate the flow balance problem

however, since from a resource allocation standpoint both memory and

link bandwidth must be set aside for maximum-sized data objects to

avoid congestion collapse under overload.

The design space considered in this document does not however extend

to arbitrarily large objects (e.g. 100's of kilobytes or larger). As

the dynamic range of data object sizes gets very large, finding the

right tradeoff between handling a large number of small data objects

versus a single very large data object when allocating link and

buffer resources becomes intractable. Further, the semantics of

Interest-Data exchanges means that any error in the exchange results

in a re-issue of an Interest for the entire Data object. Very large
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data objects represent a performance problem because the cost of

retransmission when Interests are retransmitted (or re-issued)

becomes unsustainably high. Therefore, the method we propose deals

with a dynamic range of object sizes from very small (a fraction of

a link MTU) to moderately large - about 64 kilobytes or equivalently

about 40 Ethernet packets, and assumes an associated fragmentation

scheme to handle link MTUs that cannot carry the Data message in a

single link-layer packet.

The approach described in the rest of this document maintains flow

balance under the conditions outlined above by allocating resources

accurately based on expected Data message size, rather than

employing simple interest counting.

2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in RFC 2119 [RFC2119].

3. Method to enhance congestion control with signaled size information

in Interest Messages

Before diving into the specifics of the design, it is useful to

consider how congestion control works in NDN/CCNx. Unlike the IP

protocol family, which relies on end-to-end congestion control (e.g.

TCP[RFC0793], DCCP[RFC4340], SCTP[RFC4960], QUIC[I-D.ietf-quic-

transport]), CCNx and NDN employ hop-by-hop congestion control.

There is per-Interest/Data state at every hop of the path and

therefore for each outstanding Interest, bandwidth for data

returning on the inverse path can be allocated. In many current

designs, this allocation is done using simple Interest counting - by

queueing and subsequently forwarding one Interest message from a

downstream node, implicitly this provides a guarantee (either hard

or soft) that there is sufficient bandwidth on the inverse direction

of the link to send back one Data message. A number of congestion

control schemes have been developed that operate in this fashion,

for example [Wang2013],[Mahdian2016],[Song2018],[Carofiglio2012].

Other schemes, like [Schneider2016] neither count nor police

interests, but instead monitor queues using AQM (active queue

management) to mark or drop returning Data packets that have

experienced congestion. It is worth noting that every congestion

control algorithm has an explicit fairness goal and associated

objective function (usually either [minmaxfairness] or 

[proportionalfairness]). If your fairness is to be based on resource

usage, pure interest counting doesn't do the trick, since a consumer

asking for large thing can saturate a link and shift loss to

consumers asking for small things.
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In order to deal with a larger dynamic range of Data message size,

some means is required to allocate link bandwidth for Data messages

in bytes with an upper bound larger than a Path MTU and a lower

bound lower than a single link MTU. Since resources are allocated

for returning Data based on arriving Interests, this information

must be available in Interest messages.

Therefore, one key idea is the inclusion of an expected data size

TLV in each Interest message. This allows each forwarder on the path

taken by the Interest to more accurately allocate bandwidth on the

inverse path for the returning Data message. Also, by including the

expected data size, large objects will have a corresponding weight

in resource allocation, maintaining link and forwarder buffering

fairness. The simpler Interest counting scheme was nominally "fair"

on a per-exchange basis within the variations of data that fit in a

single PMTU packet because all Interests produced similar amounts of

data in return. In the absence of such a field, it is not feasible

to allow a large dynamic range in object size. While schemes like 

[Schneider2016] would not employ the expected data size to allocate

reverse link bandwidth, they can still benefit from the information

to affect the AQM congestion marking algorithm, preferentially

marking data packets that exceed the expected data size from the

corresponding Interest.

It is natural to ask whether the additional complexity introduced

into an ICN forwarder, and the additional computational cost for the

congestion control operations is worthwhile. For congestion control

schemes like [Schneider2016] the additional overhead is not trivial,

since no Interest counting is happening. However, if a congestion

control is already counting Interests, the additional overhead is

minimal, only reading one extra TLV from the Interest and

incrementing the outstanding data amount for the corresponding queue

by that number rather than a constant of 1. The overhead on

returning data is simply reducing the amount by the actual Data

message size, rather than by 1.

3.1. How to predict the size of returning Data messages

This of course raises the question "How does the requester know how

big the corresponding Data message coming back will be?". For a

number of important applications, the size is known a priori due to

the characteristics of the application. Here are some examples:

For many sensor and other Internet-of-Things applications, the

data is instrument readings which have fixed known size.

In video streaming, the data is output of a video encoder which

produces variable sized frames. This information is typically

made available ahead of time to the streaming clients in the form
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of a Manifest (e.g [DASH], FLIC [I-D.irtf-icnrg-flic]), which

contains the names of the corresponding segments (or individual

frames) of video and audio and their sizes.

Internet telephony applications use vocoders that typically

employ fixed-size audio frames. Therefore, their size is known

either a priori, or via an initialization exchange at the start

of an audio session.

The more complex cases arise where the data size is not known at the

time the Interest must be sent. Much of the nuance of the proposed

scheme is in how mismatches between the expected data size and the

actual Data message returned are handled. The consumer can either

under- or over-estimate the data size. In the former case, the

under-estimate can lead to congestion and possible loss of data. In

the latter case, bandwidth that could have been used by data objects

requested by other consumers might be wasted. We first consider

"honest" mis-estimates due to imperfect knowledge by the ICN

application; later we consider malicious applications that are using

the machinery to mount some form of attack. We also consider the

effects of Interest aggregation if the aggregated Interests have

differing expected data sizes. Also, it should be obvious that if

the Data message arrives, the application learns its actual size,

which may or may not be useful in adjusting the expected data size

estimate for future Interests.

In all cases, the expected data size from the Interest can be

incorporated in the corresponding Pending Interest Table (PIT) entry

of each CCNx/NDN forwarder on the path and hence when a (possibly

fragmented) Data object comes back, its total size is known and can

be compared to the expected size in the PIT for a mismatch. Aside:

In the case of fragmentation, we assume a fragmentation scheme in

which the total Data message size can be known as soon as any one

fragment is received (a reasonable assumption for most any well-

designed fragmentation method, such as that in [Ghali2013]).

3.2. Handling 'too big' cases

If the returning Data message is larger than the expected data size,

the extra data could result in either unfair bandwidth allocation or

possibly data loss under congestion conditions. When this is

detected, the forwarder has three choices:

It could forward the Data message anyway, which is safe under

non-congestion conditions, but unfair and possibly unstable

when the output link is congested

It could forward the data when un-congested (e.g. by assessing

output queue depth) but drop it when congested

¶

*

¶

¶

¶

¶

1. 

¶

2. 

¶



It could always drop the data, as a way of "punishing" the

requester for the mis-estimate.

Either of the latter two strategies is acceptable from a congestion

control point of view. However, it is not a good idea to simply drop

the Data message with no feedback to the issuer of the Interest

because the application has no way to learn the actual data size and

retry. Further, recovery would be delayed until the failing Interest

timed out. Therefore, an additional element needed in protocol

semantics is the incorporation of a "Data too big" error message

(achieved via the use of an "Interest Return" packet in CCNx).

Upon dropping data as above, the CCNx/NDN forwarder converts the

normal Data message into an Interest Return packet containing the

existing [RFC8609] T_MTU_TOO_LARGE error code and the actual size of

the Data message instead of the original content. It propagates that

back toward the client identically to how the original Data message

would have been handled. Subsequent nodes upon receiving the

T_MTU_TOO_LARGE error treat identically to other Interest Return

errors. When the Interest Return eventually arrives back to the

issuer of the Interest, the user MAY reissue the Interest with the

correct expected data size.

One detail to note is that an Interest Return carrying

T_MTU_TOO_LARGE must be deterministically smaller than the expected

data size in all cases. This is clearly the case for large data

objects, but there is a corner case with small data objects. There

has to be a minimum expected data size that a client can specify in

their Interests, and that minimum cannot be smaller than the size of

a T_MTU_TOO_LARGE Interest Return packet.

3.3. Handling 'too small' cases

Next we consider the case where the returning data is smaller than

the expected data size. While this case does not result in

congestion, it can cause resources to be inefficiently allocated

because not all of the set-aside bandwidth for the returning data

object gets used. The simplest and most straightforward way to deal

with this case is to essentially ignore it. The motivation for not

worrying about the smaller data mismatch is that in many situations

that employ usage-based resource measurement (and possibly

charging), it is trivial to just account for the usage according to

the larger expected data size rather than actual returned data size.

Properly adjusting congestion control parameters to somehow penalize

users for over-estimating their resource usage requires fairly
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heavyweight machinery, which in most cases is not warranted. If

desired, any of the following mechanisms could be considered:

Attempt to identify future Interests for the same object or

closely related objects and allocate resources based on some

retained state about the actual size of prior objects

Police consumer behavior and decrease the expected data size in

one or more future Interests to compensate

For small objects, do more optimistic resource allocation on the

links on the presumption that there will be some "slack" due to

clients overestimating data object size.

3.4. Interactions with Interest Aggregation

One protocol detail of CCNx/NDN that needs to be dealt with is

Interest Aggregation. Interest Aggregation, while a powerful feature

for maintaining flow balance when multiple consumers send Interests

for the same Named object, introduces subtle complications. Whenever

a second or subsequent Interest arrives at a forwarder with an

active PIT entry it is possible that those Interests carry different

parameters, for example hop limit, payload, etc. It is therefore

necessary to specify the exact behavior of the forwarder for each of

the parameters that might differ. In the case of the expected data

size parameter defined here, the value is associated with the

ingress face on which the Interest creating the PIT entry arrived,

as opposed to being global to the PIT entry as a whole. Interest

aggregation interacts with expected data size if Interests from

different clients contain different values of the expected data

size. As above in Section 3.3, the simplest solution to this problem

is to ignore it, as most error cases are benign. However, there is

one problematic error case where one client provides an accurate

expected data size, but another who issued the Interest first

underestimates, causing both to receive a T_MTU_TOO_LARGE error.

This introduces a denial of service vulnerability, which we discuss

below together with the other malicious actor cases.

There are two cases to consider:

The arriving Interest carries an expected data size smaller

than any of the values associated with the PIT entry.

The arriving Interest carries an expected data size larger than

any of the values associated with the PIT entry.

For Case (1) the Interest can be safely aggregated since the

upstream links will have sufficient bandwidth allocated based on the

larger expected data size (assuming the original Interest's expected

data size was itself sufficiently large to accommodate the actual
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size of the returning Data). On the other hand, should the incoming

face have bandwidth allocated based on the larger existing

Interest's expected data size, or on the smaller value in the

arriving interest? Here there are two possible approaches:

Allocate based on the data size already in the PIT. In this

case the consumer sending the earlier Interest can cause over-

allocation of link bandwidth for other incoming faces, but

there will not be a T_MTU_TOO_LARGE error generated for that

Interest

Allocate based on the value in the arriving Interest. If the

returning Data is in fact larger, generate a T_MTU_TOO_LARGE

Interest Return on that ingress face, while successfully

returning the Data message on any faces that do not exhibit a

too small expected data size

It is RECOMMENDED that the second policy be followed. The reasons

behind this recommendation are as follows:

The link can be congested quite quickly after the queuing

decision is made, especially if the data has a long link-

occupancy time, so this is a safer alternative.

The cost of returning the error is only one link RTT, since the

consumer (or downstream forwarder) can immediately re-issue the

Interest with the correct size and perhaps pick up the cached

object from the upstream forwarder's Content Store.

Being optimistic and returning the data interacts with the

behavior of aggregate resource control and resource accounting,

which in turn raises the messy issue of whether to "charge" the

consumer for the actual bandwidth used or only for the

requested bandwidth in the expected data.

The rabbit hole goes deeper if you add differential QoS to the

equation or consumers "playing games" and intentionally

underestimating so their interests get satisfied when links

aren't congested. This makes handling malicious actors (Section

4) more difficult.

For Case (2) above, the Interest MUST be forwarded rather than

aggregated to prevent a consumer from mounting a denial of service

attack by sending intentionally too small expected data size (see 

Section 4 for additional detail on this and other attacks). As above

for Case (1) it is RECOMMENDED that policy (b) above be followed.
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3.5. Operation when some Interests lack the expected data size option

and some have it

Since the expected data size is an optional hop-by-hop packet field,

forwarders need to be prepared to handle an arbitrary mix of packets

containing or lacking this option. There are two general things to

address.

First, we assume that any forwarder supporting expected data size is

running a more sophisticated congestion control algorithm that one

employing simple interest counting. The link bandwidth resource

allocation is therefore based directly, or indirectly, on the

expected Data size in bytes. Therefore, the forwarder has to assign

a value to use in the resource allocation for the reverse link. This

specification does not mandate any particular approach or a default

value to use. However, in the absence on other guidance, it makes

sense to do one of two things:

Pick a default based on the link MTU of the face on which the

Interest arrived and use that for all Interests lacking an

expected data size. This is likely to be most compatible with

simple interest counting which would rate limit all incoming

interests equally.

Configure some values for given Name prefixes that have known

sizes. This may be appropriate for dedicated forwarders

supporting single use cases, such as:

A forwarder handling IoT sensors sending very small Data

messages

A forwarder handling real-time video with large average Data

packets that exceed link MTU and are routinely fragmented

A forwarder doing voice trunking where the vocoders produce

moderate sized packets, still much smaller than the link MTU

The second area to address is what to do if an interest lacking an

expected Data size is responded to by a Data message whose size

exceeds the default discussed above. It would be inappropriate to

issue a T_MTU_TOO_LARGE error, since the consumer is unlikely to

understand or deal correctly with that new error case. Instead, it

is RECOMMENDED that the forwarder:

Ignore the mismatch if the reverse link is not congested and

return the requested Data message anyway.

If the reverse link is congested, issue an Interest Return with

the T_NO_RESOURCES error code
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This specification does not define or recommend any particular

algorithm for assessing the congestion state of the link(s) to carry

the Data message downstream to the requesting consumers. It is

assumed that a reasonable algorithm is in use, because otherwise

even basic Interest counting forms of congestion control would not

be effective.

4. Dealing with malicious actors

First we note that various known attacks in CCNx or NDN can also be

mounted by users employing this method. Attacks that involve

interest flooding, cache pollution, cache poisoning, etc. are

neither worsened nor ameliorated by the introduction of the

congestion control capabilities described here. However, there are

two new vulnerabilities that need to be dealt with. These two new

vulnerabilities involve intentional mis-estimation of data size.

The first is a consumer who intentionally over-estimates data size

with the goal of preventing other users from using the bandwidth.

This is at most a minor additional concern given the discussion of

how to handle over-estimation by honest clients in Section 3.2. If

one of the amelioration techniques described there is used, the case

of malicious over-estimation is also dealt with adequately.

The second is a user who intentionally under-estimates the data size

with the goal having its Interest processed while the other

aggregated interests are not processed, thereby causing

T_MTU_TOO_LARGE errors and denying service to the other users with

overlapping requests. There are a number of possible mitigation

techniques for this attack vector, ranging in complexity. We outline

two below; there may be others as or more effective with acceptable

complexity and overhead:

(Simplest) A user sending Interests resulting in a

T_MTU_TOO_LARGE error is treated similarly to users mounting

interest flooding attacks; the a router aggregating Interests

with differing expected data sizes rate limits the face(s)

exhibiting these errors, thus decreasing the ability of a user to

issue enough mis-estimated Interests to collide and generate

Interest aggregation.

An ICN forwarder aggregating Interests remembers in the PIT entry

not only the expected data size of the Interest it forwarded, but

the maximum of the expected data size of the other Interests it

aggregated. If a T_MTU_TOO_LARGE error comes back, instead of

propagating it, the forwarder MAY treat this as a transient

error, drop the Interest Return, and re-forward the Interest

using the maximum expected data size in the PIT (assuming it is

is bigger). This recovers from the error, but the attacker can
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still cause an extra round trip to the producer or to an upstream

forwarder with a copy of the data in its Content Store.

5. Mapping to CCNx and NDN packet encodings

The only actual protocol needed is a TLV in Interest messages that

states the size in bytes of the expected Data Message coming back,

and in the Interest Return on a "too big" error to carry the actual

data size. In the case of CCNx, this covers the encapsulated Data

Object, but not the hop-by-hop headers.

5.1. Packet encoding for CCNx

For CCNx[RFC8569] there is a new hop-by-hop header TLV, and a new

value of the Interest Return "Return Type".

Expected Data Size (for Interest messages), or Actual Data Size (for

Interest Return messages) TLV

Abbrev Name Description

T_DATASIZE
Data

Size

Expected (Section 3) or Actual (Section 3.2)

Data Size

Table 1: Data Size TLV

5.2. Packet encoding for NDN

TBD based on [NDNTLV]. Suggestions from the NDN team greatly

appreciated.

6. IANA Considerations

Please Add the T_DATASIZE TLV to the Hop-by-Hop TLV types registry

of RFC8609, with fixed length of 2, and data type numeric

Expected/Actual Data Size TLV encoding. The range has an upper bound

of 64K bytes, since that is the largest MTU supported by CCNx.

Figure 1: Expected/Actual Datazize using RFC8609 encoding
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                     1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+---------------+---------------+---------------+---------------+

|             T_DATASIZE        |               2               |

+---------------+---------------+---------------+---------------+

|   Expected/Actual Data Size   |

+---------------+---------------+
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[Ghali2013]

[I-D.ietf-quic-transport]

7. Security Considerations

Section 4 addresses the major security considerations for this

specification.
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