
INTERNET-DRAFT J. Ott/D. Kutscher/C. Bormann
Expires: December 1999 Universitaet Bremen
 June 1999

Capability description for group cooperation
draft-ott-mmusic-cap-00.txt

Status of this memo

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet- Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

Abstract

 This document presents a notation for describing potential and
 specific configurations of end systems in multiparty collaboration
 sessions. The objective is to define a configuration description
 framework that can be used to define end system capabilities, to
 calculate a set of appropriate common capabilities based on the
 descriptions of all (end) systems and to express a selected media
 description for use in session descriptions. One application for this
 framework would be multiparty multimedia conferencing, an application
 area where multiple tools have to be configured on conference startup
 (and/or during the conference) concerning media encoding types and
 other parameters. Other applications are IP Telephony and media
 gateway control.

 This document is intended for discussion in the Multiparty Multimedia
 Session Control (MMUSIC) working group of the Internet Engineering
 Task Force. Comments are solicited and should be addressed to the
 working group's mailing list at confctrl@isi.edu and/or the authors.

Ott/Kutscher/Bormann [Page 1]

https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFTCapability description for group cooperation June 1999

1. Introduction

1.1. Background

1.1.1. Motivation

 Multiparty multimedia conferencing is one application that requires
 the dynamic interchange of end system capabilities and the
 negotiation of a parameter set that is appropriate for all sending
 and receiving end systems in a conference. Currently the parameter
 negotiation is either done by out of band means or, for loosely
 coupled conferences, parameters are simply fixed by the initiator of
 a conference. In the latter scenario no negotiation is required
 because only those participants with media tools that support the
 predefined settings can join a media session and/or a conference.

 This approach is applicable for conferences that are announced some
 time ahead of the actual start date of the conference. Potential
 participants can check the availability of media tools in advance and
 tools like session directories can configure tools on startup. This
 procedure however fails to work for conferences initiated
 spontaneously like Internet phone calls or ad-hoc multiparty
 conferences. Fixed settings for parameters like media types, their
 encoding etc. can easiliy inhibit the initiation of conferences, for
 example in situations where a caller insists on a fixed audio
 encoding that is not available at the callee's end system.

 To allow for spontaneous conferences, the process of defining a
 conference's parameter set must therefore be performed either at
 conference start (for closed conferences) or maybe (potentially) even
 repeatedly every time a new participant joins an active conference.
 The latter approach may not be appropriate for every type of
 conference: For conferences with TV-broadcast or lecture
 characteristics (one main active source) it is usually not desired to
 re-negotiate parameters every time a new participant with an exotic
 configuration joins because it may exclude the main source from media
 sessions. But conferences with equal ``rights'' for participants that
 are open for new participants do need dynamic capability negotiation,
 for example a telephone call that is extented to a 3-parties
 conference at some time during the session.

1.1.2. Current practices in the IETF community

 Capability and session descriptions play different roles in
 applications of IETF conferencing standards and are currently almost
 always specified as SDP (Session Description Protocol) [11] session
 descriptions. In session announcements with SAP (Session Announcement
 Protocol) [12] they are used to define media encodings and parameters
 for conferences and thus at least reflect the system capabilities of

Ott/Kutscher/Bormann [Page 2]

INTERNET-DRAFTCapability description for group cooperation June 1999

 the participants or the active source.

 Within the context of SIP (Session Initiation Protocol) capability
 descriptions can be expressed in different session description
 languages, one of them SDP. For example, in a SIP-INVITE message for
 a unicast session, the session description enumerates the media types
 and formats that the caller is willing to use and thus expresses the
 capabilities of the caller's end system. The SDP content is however
 not only used to express a caller's preferences but is also used to
 configure communication channels in a somewhat crude way. For
 example, if a callee does not want to send or receive data on a
 offered stream he has to set the port number of that stream to zero
 in its media description that he sends as a reply to the caller. The
 use of SDP as a capability description and negotiation mechanism has
 lead to a whole set of conventions and requirements that have to be
 considered by implementations because SDP itself is not powerful
 enough for this purpose. This is clearly not a defect of SDP which
 has never been designed to be a complete capability description and
 negotiation mechanism. SDP has been developed in the context of SAP
 to describe simple static media sets.

 The misuse of SDP reveals a lack of a powerful, yet simple way to
 perform capability description and negotiation in a conference setup
 or reconfiguration phase in the current IETF conferencing model.

1.2. Purpose

 The configuration negotiation framework consists of three components:

 o A language that allows expressing capability descriptions,
 potential configurations, unambiguously;

 o an algorithm that compares different capability descriptions and
 produces an appropriate ``collapsed'' subset that can be used as
 a common set of potential configurations; and

 o a concrete capability name and value range specification for
 specific applications.

 This documents specifies ways to express potential and concrete
 configurations as well as rules to combine, constrain, and collaps
 these configurations. How a particular component's potential
 configurations are gained, what relationship exists to system
 capabilities, and similar meta-discussions are beyond the scope of
 this dcoument.

 It is also not the purpose of this document to specify a complete
 framework including mandatory protocols for capability exchange.
 Names and value ranges for different applications should be defined
 in a follow-up document and registered with the IANA.

 Besides modeling and rules, this document specifies a syntax for

Ott/Kutscher/Bormann [Page 3]

INTERNET-DRAFTCapability description for group cooperation June 1999

 expressing configurations and describes a basic and a concise
 representation format as well as an XML-based notation. A number of
 appendices provide mappings to other specification formats (in
 particular SDP and H.245) as far as possible and also give an
 overview of semantic definitions for configurations for audio codecs.

1.3. Relation to other Developments

 A few other generic or application specific models have been
 developed that deal with capability description and/or capability
 negotiation.

RFC 2295 (Transparent Content Negotiation in HTTP) [3] proposes a
 negotiation mechanism layered on top of HTTP that allows for
 automatically selecting the ``best'' version of documents that are
 accessible by a single URI. A server can describe the properties of
 each variant of a document associated with ``quality degration
 factors''. The content negotiation process will either allow the
 client to select the appropriate version according a variant list
 provided by the server or the server itself may choose a document
 version relying on Accept-headers that are included in the client's
 request.

 The Resource Description Framework (RDF) [4] provides a specification
 model for properties of Web resources and aims at automating
 processing Web resources with respect to resource discovery,
 cataloging, resource selection and other applications.

 CC/PP [5] is an on-going development that is creating a framework for
 describing user preferences and device capabilities that uses RDF to
 express those descriptions. In the CC/PP model a user agent can
 provide capability profiles that enable servers and proxies to
 customize content accordingly.

 The IETF Content Negotiation (conneg) working group is developing a
 collection of media features for display, print and fax [6], a
 registration procedure for feature tags (the names of capability
 properties) [7] as well as description and negotiation models [8] [9]
 for media features and capabilities. One of conneg's goals is to
 develop a ``tag independent negotiation'' process that can work
 without knowing the meaning of feature tags.

 Whereas TCN, RDF and CC/PP focus on describing/negotiating
 capabilities for client/server scenarios such as the WWW, where a
 server provides content with certain properties and a client has
 certain preferences/capabilities, the conneg approach is more
 general. The conneg framework provides the abstraction of ``feature
 sets'' that are media feature collections. Feature sets can either be
 interpreted as a set of variants that a server can provide as data

https://datatracker.ietf.org/doc/html/rfc2295

 formats or as a set of capabilities of a receiver. Content
 negotiation in this model would be to find a non-empty feature set
 that is compatible with both the sender's and the receiver's original

Ott/Kutscher/Bormann [Page 4]

INTERNET-DRAFTCapability description for group cooperation June 1999

 feature set.

 H.245, the multimedia control protocol employed across all newer
 H.32x Recommendations for tightly-coupled multimedia conferencing
 (particularly included H.323) provides the concept of capability
 specification and exchange between terminals and uses the same
 description mechanisms to define particular instantiations of media
 streams in a conference. For capability description purposes, H.245
 provides means to express all the capabilities supported by a system
 (``AlternativeCapabilitySets'') as well as to describe permitted
 combinations of these capability sets to be instantiated at the same
 time. Capability exchange is defined on a peer-to-peer basis, common
 (``collapsed'') capabilities are calculated by some central entity
 that controls the mode of operation in a multipoint conference. This
 calculation requires the central entity to understand the (semantics
 of) the individual endpoints' capability descriptions.

 T.124 specifies a framework for exchanging and collapsing
 capabilities. This framework specifies a core set of rules (minimum,
 maximum, logical AND) and capability types as well as a naming
 scheme, but leaves definition of specific semantics to the
 application protocols. This concept makes the framework extensible
 and enables entities to calculate a common set of supported
 capabilities without having to understand their semantics. Also,
 T.124 distinguishes between capability descriptions and particular
 instantiations for application sessions. In addition to these
 collapsing capabilities, T.124 supports the notion of non- collapsing
 capabilities to which the collapsing process is not applied.

 Capability negotiation for groups of senders and receivers as
 presented in this document can be viewed as a specialization of the
 general conneg approach that focuses on simplicity for capability
 descriptions. Some expressional power of the conneg framework is
 abandoned in favor of simplicity.

1.4. Terminology for requirement specifications

 In this document, the key words "MUST", "MUST NOT", "REQUIRED",
 "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY",
 and "OPTIONAL" are to be interpreted as described in RFC 2119 [1] and
 indicate requirement levels for compliant implementations.

2. Requirements and Concepts

2.1. System Model

 Any (computer) system has a number of rather fixed hardware as well
 as software resources. These resources ultimately define the
 limitations on what can be captured, displayed, rendered, replayed,

https://datatracker.ietf.org/doc/html/rfc2119

 etc. with this particular machine. We term features enabled and

Ott/Kutscher/Bormann [Page 5]

INTERNET-DRAFTCapability description for group cooperation June 1999

 restricted by these resources "system capabilities".

 Example: System capabilities may include the limitation of the
 screen resolution for true color by the graphics board;
 available audio hardware or software may offer only certain
 media encodings (e.g. G.711 and G.723.1 but not GSM); and CPU
 processing power and quality of implementation may constrain the
 possible video encoding algorithms.

 In multiparty multimedia conferences, participants employ different
 ``components'' in conducting the conference.

 Example: In lecture multicast conferences one component might be
 the voice transmission for the lecturer, another the
 transmission of video pictures showing the lecturer and the
 third the transmission of presentation material that are
 different components in a conference.

 Depending on system capabilities, user preferences and other
 technical and political constraints, different configurations can be
 chosen to accomplish the ``deployment'' of these components.

 Each component can be characterized at least by (a) its intended use
 (i.e. the function it shall provide) and (b) a one or more possible
 ways to realize this function. Each way of realizing a particular
 function is referred to as a "configuration".

 Example: A conference component's intended use may be to make
 transparencies of a presentation visible to the audience on the
 Mbone. This can be achieved either by a video camera capturing
 the image and transmitting a video stream via some video tool or
 by loading an copy of the slides into a distributed eletronic
 whiteboard. For each of these cases, additional parameters may
 exist, leading to additional configurations (see below).

 Two configurations are considered different regardless whether they
 employ entirely different mechanisms and protocols (as in the
 previous example) or they choose the same and differ only in a single
 parameter.

 Example: In case of video transmission, a JPEG-based still image
 protocol may be used, H.261 encoded CIF images could be sent as
 could H.261 encoded QCIF images. All three cases constitute
 different configurations. Of course there are many more
 detailed protocol parameters.

 Each component's configurations are limited by the system
 capabilities. In addition, the intended use of a component may
 constrain the possible configurations further to a subset suitable
 for the particular component's purpose.

 Example: In a system for highly interactive audio communication
 the component responsible for audio may decide not to use the

Ott/Kutscher/Bormann [Page 6]

INTERNET-DRAFTCapability description for group cooperation June 1999

 available G.723.1 audio codec to avoid the additional latency
 but only use G.711. This would be reflected in this component
 only showing configurations based upon G.711. Still, multiple
 configurations are possible, e.g. depending on the use of A-law
 or u-Law, packetization and redundancy parameters, etc.

 We distinguish two types of configurations:

 o potential configurations

 (a set of any number of configurations per component) indicating
 a system's functional capabilities as constrained by the
 intended use of the various components;

 o actual configurations

 (exactly one per instance of a component) reflecting the mode of
 operation of this component's particular instantiation.

 Example: The potential configuration of the aforementioned video
 component may indicate support for JPEG, H.261/CIF, and
 H.261/QCIF. A particular instantiation for a video conference
 may use the actual configuration of H.261/CIF for exchanging
 video streams.

 A configuration consists of any number of properties and is uniquely
 identified by a tag. Potential configurations can be grouped into
 alternatives each of which indicates a possible mode of operation of
 a component.

 In a conference, each involved peer contributes to the formation of a
 component's configuration -- by specifying its its own features and
 limitations during the capability exchange process. Based upon all
 systems' input, a set of common capbilities -- potential
 configurations -- is calculated through the collapsing process.

 The collapsing process may be influenced by additional constraints
 that may be expressed on the possible combinations of alternatives --
 between multiple instances of the same component as well as across
 (instances of) different components. Also, user preferences may be
 taken into account -- during the collapsing process as well as when
 deciding on which potential configuration is to be instantiated as
 the actual configuration for a component.

2.2. Definition of terms

 From the system model described above, the following core terms can
 be extracted:

 o conference component

 An element of a multiparty multimedia conference that can appear

Ott/Kutscher/Bormann [Page 7]

INTERNET-DRAFTCapability description for group cooperation June 1999

 as a media stream and has a set of potential configurations.

 o configuration

 A set of named attributes, expressing constraints to a system's
 capabilities.

 o capability

 Resources or system features that influence the selection of
 useful configurations for components.

 o alternative

 When comparing different potential configurations, one potential
 configuration is an alternative to other configurations.

 o property

 A property is a label-value pair.

 The capability description language specified in this document is
 called CAP.

2.3. Description language

 The objective of a capability description language is to allow the
 definition of supported media types, encodings and features of an end
 system. The language must be unambiguous, easily parsable and allow
 for concise definitions to minimize the transport overhead for a
 capability negotiation phase during a conference. It should also be
 extensible and not fixed to certain features, because new encodings
 must be supported without changes to the language definition.

 To ensure the unambiguousness it is however required to have a common
 understanding on the meaning of identifiers and values. E.g. if two
 end systems used different names for the audio encoding ``GSM'' a
 capability negotiation would not lead to the desired result. The
 need for well-known identifiers and the need for extensibility
 require to seperate the definition of identifiers and values from the
 definition of the description language itself. Identifiers and values
 should therefore be standardized and registered.

2.4. Collapsing Algorithm

 The objective of the collapsing algorithm is to take capability
 description sets from each end system in order to find a set of
 media-types, encodings and features that are supported by all end
 system, or, if this is not possible, to find a subset that would
 exclude as few systems as possible.

Ott/Kutscher/Bormann [Page 8]

INTERNET-DRAFTCapability description for group cooperation June 1999

 The procedure described above would be the default algorithm. In
 certain scenarios where some end systems are priveleged it must be
 possible to ensure that the result of the collapsing process does not
 exclude those privileged systems. It must therefore be possible to
 parameterize the process with the policy to be applied.

3. Specification of the Decription Language

 Two, semantically equivalent, notations are introduced. The first
 notation is simple but leads to verbose capability descriptions and
 the second notation is more complex but allows for concise
 descriptions.[1] This specification also defines how to translate
 descriptions using the concise notation to the other, simpler,
 format.

 Please note that all tags and values are just examples and not a
 subject of this specification.

3.1. Basic Description Language

 In the basic description language a end system's capability
 description is a set of alternatives. An alternative is a set of
 constraints for certain parameters. A constraint can be understood as
 a restriction because it limits the capability alternative according
 to the constraint's meaning.

 A constraint is constituted of three components:

 +---------+-------------------------------------+
 |tag | name of the constraint |
 |operator | defines the type of the constraint |
 |value | a value for the constraint operator |
 +---------+-------------------------------------+
 Table 1: Components of a Constraint

 A constraint that limits the capability of an end system to a maximum
 transfer rate of 64 kbit/s (say in a description of audio receiver
 capabilities) would be written as follows:

 bps <= 64000;

 with bps as the tag, <= as the operator and 64000 as the value of
 this constraint (plus a semicolon as a end-of-statement-symbol).

 A complete alternative (a set of constraints) would be written as:

 [1] A third, XML-based notation is included in appendix A.

Ott/Kutscher/Bormann [Page 9]

INTERNET-DRAFTCapability description for group cooperation June 1999

 media = audio;
 mode = receive | send;
 channels = 1;
 encoding = g711;
 compression = mulaw;
 sampling_rate = 8000 | 11025 | 16000;

 This example exhibits another way of expressing constraints using the
 = operator. The = operator can be used to define a set of supported
 values in a single constraint. The value of the = operator's value is
 actually a list of names seperated by ``|''. In the definition of the
 media constraint it is shown how a single name is used as a value for
 the = operator, which has the meaning that (for the respective
 alternative) only the media-type audio is supported.

 Another operator that is not shown in the example is the operator >=
 that can be used to express minimum constraints. Table 2 provides an
 overview of the operators:

 +---+---------------------------+
 |<= | maximum |
 |>= | minimum |
 |= | selection of fixed values |
 +---+---------------------------+
 Table 2: Operators for Capability Constraints

 The reason why the sampling_rate constraint is expressed with a = and
 not with a <= operator is that defining the rate capability as a
 maximum constraint with a value of 16000 would allow any value less
 than 16000 as a valid parameter which would not match the application
 specific semantics in this case.[2]

 The example above contains one alternative of a capability
 description. It could be used as a complete description expressing
 that the end system does not support more than this specific
 alternative. Most end system however support more variants of audio
 parameters, requiring the definition of more alternatives. E.g.
 supporting ``GSM'' as a second encoding would lead to the following
 capability description:

 tag: audio/g711
 media = audio;
 mode = receive | send;
 channels = 1;
 encoding = g711;
 compression = mulaw;
 sampling_rate = 8000 | 11025 | 16000;

 [2] Most codecs do not support arbitrary sampling rates.

Ott/Kutscher/Bormann [Page 10]

INTERNET-DRAFTCapability description for group cooperation June 1999

 tag: audio/gsm
 media = audio;
 mode = receive | send;
 channels = 1;
 encoding = gsm;
 compression = half | full | enhanced_full;

 This description expresses that the end system supports one media
 type ``audio'' and two audio encodings ``g711'' and ``gsm'', each
 with certain other constraints. This way of defining capabilities is
 very redundant as many constraints are the same for both
 alternatives. It is important to know all the constraints of an
 alternative for a later negotiation phase (see below) but for writing
 and transferring capability descriptions another notation that
 expresses common constraints and allows for more concise definition
 is useful.

 The = operator is actually already used to aggregate several
 constraints into one: A hypothetic even more primitive notation could
 translate each alternative containing a = constraint into a set of
 alternatives each containing a ``equality constraint'' for one value
 of the = value list. E.g. for the GSM alternative there would be 3
 alternatives for each compression type (each variant again would
 require an alternative for receive and for send mode in this
 example). This has not been done in this example in order to avoid
 the obvious verbosity. Every alternative containing a = constraint
 with n values can however unrolled to n different alternatives if
 this granularity is required.

 Each alternative also contains a tag that allows to reference it
 later in simultaneous capability specifications. Due to the
 possibility to aggregate alternatives with = constraints several
 specific codec parameters for a media codec can be subsumed under one
 common tag like in the example above. This allows to handle common
 cases, where this is desired, efficiently. Again, if more granularity
 is needed for specific applications, = constraints can be unrolled.

 The ABNF[2] specification for the basic description language is as
 follows:

Ott/Kutscher/Bormann [Page 11]

INTERNET-DRAFTCapability description for group cooperation June 1999

 +---+
 |caps = alternative *(CRLF CRLF alternative) |
 |alternative = tag-definition CRLF *constraint |
 |constraint = *WSP (min-constraint / max-constraint / |
 | oneof-constraint) *WSP [CRLF *WSP] |
 |tag-definition = *WSP "tag:" *WSP identifier *WSP ";" |
 |min-constraint = label *WSP ">=" *WSP numval *WSP ";" |
 |max-constraint = label *WSP "<=" *WSP numval *WSP ";" |
 |oneof-constraint = label *WSP "=" *WSP [oneof-list] *WSP |
 | ";" |
 |oneof-list = val / (oneof-list *WSP "|" *WSP val) |
 |label = identifier |
 |val = identifier |
 |numval = 1*DIGIT |
 |identifier = ALPHA, *(ALPHA / DIGIT) |
 +---+

 Note that the specification does currently not provide ``non-
 collapsing'' attributes, i.e. attributes that are not considered in
 collapsing rules, except for tags. Another syntactic element for
 those attribute will be added in the future.

3.2. Concise Description Language

3.2.1. Syntax

 The goal of the concise description language is to express the same
 capability description more concisely by grouping shared constraints
 of alternatives. The concise language provides the same constraint
 operators but introduces the concept of alternative groups. The
 above, verbose example can be expressed like this:

 media: audio {
 mode = receive | send;
 channels = 1;
 encoding: g711 {
 compression = mulaw;
 sampling_rate = 8000 | 11025 | 16000;
 } || encoding: gsm {
 compression = half | full | enhanced_full;
 };
 };

 An alternative group contains those constraints (and subgroups) that
 are specific to an alternative and cannot be expressed in the common
 part. A group is enclosed by curly brackets and follows a group-tag
 (like ``encoding: g711'' in the example). A group-tag is semantically
 a ``='' constraint (with one value) but is used in the concise
 notation to introduce a new subgroup of constraints.

Ott/Kutscher/Bormann [Page 12]

INTERNET-DRAFTCapability description for group cooperation June 1999

 The example above contains three groups: The top-level group ``media:
 audio'' and two second-level groups ``encoding: g711'' and
 ``encoding: gsm''. Groups on the same hierarchy level (siblings) are
 connected by ``||''. Groups can be nested to arbitrary levels and
 there is no limit for the number of siblings in a hierarchy. The next
 example shows how the ``encoding: g711'' group can be split-up into 2
 subgroups:

 media: audio {
 mode = receive | send;
 channels = 1;
 encoding: g711 {
 compression: mulaw {
 sampling_rate = 8000 | 11025 | 16000;
 } || compression: alaw {
 sampling_rate = 8000 | 11025 | 32000;
 };
 } || encoding: gsm {
 compression = half | full | enhanced_full;
 };
 };

 Note that there are no explicit tags allowed for the concise
 notation. Instead group tags serve as implicit tags components that
 can be composed to unique tags for each expressed alternative. A
 alternative can be uniquely specified by joining the group tags of
 all enclosing groups. The specification example above would thus
 define three alternatives: audio/g711/mulaw, audio/g711/alaw and
 audio/gsm. Tag concatenation uses "/" (slash) as a delimiting
 character.

 The ABNF[2] specification for the concise description language is as
 follows (as an extension to the ABNF of the basic language, see

section 3.1):

 +--+
 |caps = 1*(group LWSP *("||" LWSP group) *WSP |
 | ";") |
 |group = group-tag *WSP "{" LWSP *constraint |
 | [caps] LWSP "}" |
 |group-tag = name ":" *WSP tag |
 +--+

3.2.2. Translation to Basic Notation

 Transforming a capability description from concise to basic notation
 MUST be done by applying the following algorithm, starting at the
 outermost hierarchy level and transforming subgroups recursively:

Ott/Kutscher/Bormann [Page 13]

INTERNET-DRAFTCapability description for group cooperation June 1999

 transform group-tag to = constraint;
 push group-tag to tag stack;
 adopt all other constraints within the group;

 for each group in this level {
 add adopted constraints and transformed group-tag
 to every alternative obtained from transforming the
subgroups
 recursively resulting in a set of alternatives;
 if (is innermost group) {
 construct tag by concatenating all group-tags
from tag stack
 and add it to alternative;
 }
 pop tag stack;
 }

 Two innermost subgroups at the same hierachy level are thus converted
 to two alternatives. An Example:

 A: B {
 C <= 1;
 D: E {
 F <= 2;
 G:H {
 I <= 3 ;
 } || J: K {
 L <=4;
 }
 } || M: L {
 N <= 5;
 }
 }

 would be transformed into the following set of alternatives:

 tag: B/E/H
 A = B;
 C <= 1;
 D = E;
 F <= 2;
 G = H;
 I <= 3;

 tag: B/E/K
 A = B;
 C <= 1;
 D = E;
 F <= 2;

 J = K;
 L <= 4;

Ott/Kutscher/Bormann [Page 14]

INTERNET-DRAFTCapability description for group cooperation June 1999

 tag: B/L
 A = B;
 C <= 1;
 M = L;
 N <= 5;

3.2.3. Translation from Basic to Concise Format

 The mapping from basic to concise representation is not unique by
 itself: In principle, for all alternatives constraints with common
 values can be factored out. Depending on the constraints that are
 chosen for outer groups the results will differ. Nevertheless it
 would be possible to define an algorithm that will guarantee
 uniqueness, for example by defining certain tags as implicit outer-
 level tags (e.g. ``media'') and by demanding that those constraints
 with the largest number of equal values in many alternatives will
 appear in the outermost groups. Conflicts could be avoided by
 imposing a lexicographic ordering on the tags. Only ``='' constraints
 with one parameter can be chosen for group tags.

4. Specification of constraints for simulataneous capabilities

 For some applications it is not sufficient to be able to express the
 capability to support a list of media types and codec parameters.
 Instead constraints of how many instances of codecs of different
 types can be active at a given time must also be specified as an
 input parameter for a negotiation/selection process.

 For example a gateway may be able to handle either 5 GSM streams or,
 alternatively, 5 G.711 streams at the same time but not both GSM and
 G.711 at the same time.

 The specification presented here enables the definitions of such
 constraints by the tagging mechanism. Alternative capability can be
 refered to in rules expressing those simultaneous constraints using
 their tags. The specification of such a definition language is
 however not subject of this draft and will have to be defined
 elsewhere.

5. Specification of the Collapsing Process

 The collapsing process generates a set of alternatives, according to
 the collapsing policy and the set of alternatives that are used as
 the input to this process.

5.1. Finding compatible alternatives

Ott/Kutscher/Bormann [Page 15]

INTERNET-DRAFTCapability description for group cooperation June 1999

 The general collapsing process tries to find a set of alternatives
 that are supported by every end system. This must be accomplished by
 comparing each alternative of an end system's alternative set with
 each alternative of every other alternative set.

 The process of collapsing two alternatives works as follows:

 find intersection of constraints of the two alternatives by
 keeping all constraint with same names and operators;
 for all constraints in the intersection {
 find according constraint (same name and operator) in
second set;
 if(operator==''<='') {
 calculate minimum of both constraint values and
add
 maximum constraint with that value to result set;
 }
 if(operator==''>='') {
 calculate maximum of both constraint values and
add
 minimum constraint with that value to result set;
 }
 if(operator==''='') {
 Build intersection of tags in both constraints;
 add = constraint with a value of the
 intersection to the result set;
 }

 }

 Tags are ignored in the collapsing process. If the result set of
 alternatives contains = constraints with empty value lists the
 collapsing of these two alternatives has failed and the resulting set
 must be discarded.

5.2. Other policies

 Other collapsing policies will have to be defined.

6. Composed Configurations

 For certain configurations it is required to compose configurations
 by combining or referencing other configurations. Sample application
 could be redundant and FEC encodings. A full specification how this
 can be accomplished will have to be defined. The general outline
 would be to use the structuring and referencing mechanisms (tagged
 alternative) to express the required constraints for the respective
 encodings.

7. Security Considerations

 Security considerations will also have to be defined.

Ott/Kutscher/Bormann [Page 16]

INTERNET-DRAFTCapability description for group cooperation June 1999

8. Authors' Addresses

 Joerg Ott <jo@tzi.org>
 Universitaet Bremen, TZI, MZH 5180
 Bibliothekstr. 1
 D-28359 Bremen
 Germany
 voice +49 421 201-7028
 fax +49 421 218-7000

 Dirk Kutscher <dku@tzi.org>
 Universitaet Bremen, TZI, MZH 5160
 Bibliothekstr. 1
 D-28359 Bremen
 Germany
 voice +49 421 218-7595
 fax +49 421 218-7000

 Carsten Bormann <cabo@tzi.org>
 Universitaet Bremen, TZI, MZH 5180
 Bibliothekstr. 1
 D-28359 Bremen
 Germany
 voice +49 421 218-7024
 fax +49 421 218-7000

9. References

 [1] S. Bradner, ``Key words for use in RFCs to Indicate Requirement
 Levels'' RFC 2119, March 1997

 [2] D. Crocker, P. Overell, ``Augmented BNF for Syntax
 Specifications: ABNF'', RFC 2234, November 1997

 [3] K. Holtman, A. Mutz, ``Transparent Content Negotiation in
 HTTP'', RFC 2295, March 1998

 [4] O. Lassila, R. Swick, ``Resource Description Framework (RDF)
 Model und Syntax Specification'', W3C Proposed Recommendation,
 January 1999, work in progress, http://www.w3.org/TR/1999

 [5] F. Reynolds, J. Hjelm, S. Dawkins, S. Singhal, ``Composite
 Capability/Preference Profiles (CC/PP): A user side framework
 for content negotiation'', W3C Note 30, November 1998, work in
 progress, http://www.w3.org/TR/1998/NOTE-CPP-19981130

 [6] L. Massinter, K. Holtman, A. Mutz, D. Wing, ``Media Features for

Ott/Kutscher/Bormann [Page 17]

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2234
https://datatracker.ietf.org/doc/html/rfc2295
http://www.w3.org/TR/1999
http://www.w3.org/TR/1998/NOTE-CPP-19981130

INTERNET-DRAFTCapability description for group cooperation June 1999

 Display, Print, and Fax'', Internet Draft draft-ietf-conneg-
media-features-05.txt, January 1998, Work in Progress

 [7] K. Holtman, A. Mutz, T. Hardie, ``Media Feature Tag Registration
 Procedure'', Internet Draft draft-ietf-conneg-feature-

reg-03.txt, July 1998, Work in Progress

 [8] G. Klyne, ``A syntax for describing media feature sets'',
 Internet Draft draft-ietf-conneg-feature-syntax-04.txt, December
 1998, Work in Progress

 [9] G. Klyne, ``An algebra for describing media feature sets'',
 Internet Draft draft-ietf-conneg-feature-algebra-03.txt, August
 1998, Work in Progress

 [10] G. Klyne, ``W3C Composite Capability/Preference Profiles'',
 Internet-Draft draft-ietf-conneg-W3C-ccpp-01.txt, December 1998,
 Work in progress

 [11] M. Handley, ``SDP: Session Description Protocol'', RFC 2327,
 April 1998

 [12] M.Handley, C. Perkins, E. Whelan, ``Session Announcement
 Protocol'', Internet-Draft draft-ietf-mmusic-sap-v2-01.txt, June
 1999, Work in progress

Ott/Kutscher/Bormann [Page 18]

https://datatracker.ietf.org/doc/html/draft-ietf-conneg-media-features-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-media-features-05.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-feature-reg-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-feature-reg-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-feature-syntax-04.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-feature-algebra-03.txt
https://datatracker.ietf.org/doc/html/draft-ietf-conneg-W3C-ccpp-01.txt
https://datatracker.ietf.org/doc/html/rfc2327
https://datatracker.ietf.org/doc/html/draft-ietf-mmusic-sap-v2-01.txt

INTERNET-DRAFTCapability description for group cooperation June 1999

Appendix A: XML-DTD for the description language

 A XML-DTD for XML documents representing concise CAP descriptions:

 <!ELEMENT cap (media*)>
 <!ATTLIST cap
 version CDATA "1.0"
 >

 <!ELEMENT media (property|min|max|one.of|group)+>
 <!ATTLIST media
 type CDATA #REQUIRED
 >

 <!ELEMENT group (property|min|max|one.of|group)+>
 <!ATTLIST group
 name CDATA #REQUIRED
 val CDATA #REQUIRED
 >

 <!ELEMENT property (#PCDATA)>
 <!ATTLIST property
 name CDATA #IMPLIED
 >

 <!ELEMENT min EMPTY>
 <!ATTLIST min
 name CDATA #REQUIRED
 val CDATA #REQUIRED
 >

 <!ELEMENT max EMPTY>
 <!ATTLIST min
 name CDATA #REQUIRED
 val CDATA #REQUIRED
 >

 <!ELEMENT one.of (property)+>
 <!ATTLIST one.of
 name CDATA #REQUIRED
 >

 The example explained above represented in XML:

Ott/Kutscher/Bormann [Page 19]

INTERNET-DRAFTCapability description for group cooperation June 1999

 <?xml version="1.0"?>
 <cap version="1.0">
 <media type="audio">
 <one.of name="mode">
 <property>receive</property>
 <property>send</property>
 </one.of>
 <property name="channels">1</property>
 <group name="encoding" val="g711">
 <group name="compression" val="mulaw">
 <one.of name="sampling_rate">
 <property>8000</property>
 <property>11025</property>
 </one.of>
 </group>
 <group name="compression" val="alaw">
 <one.of name="sampling_rate">
 <property>8000</property>
 <property>11025</property>
 </one.of>
 </group>
 </group>
 <group name="encoding" val="gsm">
 <one.of name="compression">
 <property>half</property>
 <property>full</property>
 <property>enhanced_full</property>
 </one.of>
 </group>
 </media>
 </cap>

 Note that = constraints with one alternative are represented as
 property elements for brevity while = constraints with multiple
 alternatives are represented as one.of elements with a property
 element (without name attribute) for each value.

Ott/Kutscher/Bormann [Page 20]

INTERNET-DRAFTCapability description for group cooperation June 1999

Appendix B: Mapping from/to SDP

 Note that this appendix is still prelimenary as it does not yet cover
 all the features provided by the capability description language
 presented in this document.

 SDP allows for describing all parameters required for establishing a
 conference. The media parameters that can be interpreted as a
 caller's capabilities are only a subset of the session desription.
 Other information like origin (``o='' field) or communication
 parameters are not related to a system's capability description
 (although they need to be expressable in a session description
 language, as well). An example SDP description:

 v=0
 o=mhandley 2890844526 2890842807 IN IP4 126.16.64.4
 s=SDP Seminar
 i=A Seminar on the session description protocol
 u=http://www.cs.ucl.ac.uk/staff/M.Handley/sdp.03.ps
 e=mjh@isi.edu (Mark Handley)
 c=IN IP4 224.2.17.12/127
 t=2873397496 2873404696
 a=recvonly
 m=audio 49170 RTP/AVP 0
 m=video 51372 RTP/AVP 31
 m=video 51374 RTP/AVP 98
 a=rtpmap:98 X-H.263+
 m=application 32416 udp wb
 a=orient:portrait

 Only the ``m='' and the respective ``a='' fields contain relevant
 information for a mapping to our capability description language.
 The first element of a ``m='' field is the media type that can be
 mapped to the tag of a top-level ``group-tag'' in the concise
 description language. The second element of a ``m='' field, the
 transport port, is a communication parameter and can therefore be
 neglected for now. The third and fourth (and subsequent) elements
 define a transport protocol (that can be regarded as some kind of
 capability) and media formats (encodings). The ``m='' field may be
 followed by an ``a='' field that can contain arbitrary constraints on
 the media description, notably the rtpmap attribute, that maps a
 dynamic RTP payload type number to a media format (and additional
 encoding parameters, depending on the concrete encoding). Further
 encoding specific parameters are specified using a ``a=fmtp''
 attribute. All parameters of a ``a=fmtp'' attribute will be mapped to
 respective constraints in our description language. The concrete
 mapping is yet to be defined for some common uses of ``a=fmtp''.

 For the sake of generality we must translate the implicit encoding

 paramters expressed in static RTP payload numbers to explicit
 descriptions and extract the relevant information from the ``a=''
 fields for dynamic payload types.

Ott/Kutscher/Bormann [Page 21]

INTERNET-DRAFTCapability description for group cooperation June 1999

 The example above could therefore be translated as:

 media: audio {
 mode = receive | send
 encoding: g711 {
 transport = RTP
 compression = mulaw
 sampling_rate = 8000
 channels = 1
 }
 }
 media: video {
 mode = receive | send
 encoding: h261 {
 transport = RTP
 } || encoding: h263+ {
 transport = RTP
 }
 }
 media: application {
 type: wb {
 transport = UDP
 orientation = portrait
 }
 }

 The constraints inside the ``g711'' group have to be adopted from the
 payload types definition in RFC 1890. The ``transport'' constraint
 could also be factored-out to the outer groups ``audio'' and
 ``video'' -- this is not relevant to the semantics of the
 description. Note that the empty group for ``h261'' and ``h263+'' can
 also be abbreviated as a ``= constraint'' if no specific constraints
 exist for those encodings.

 The mapping process can thus defined as follows:

 1) Each ``m=<media>'' format specification is mapped to a ``group''
 nested in a ``group'' for the respective media. The tag for that
 group is inferred either from the static payload type or in case
 of dynamic payload types looked up from a corresponding
 ``a=rtpmap'' field. The corresponding registered payload type
 name leads to an encoding name (by a yet to be defined name
 map). A mapping for unregistered payload type names has to be
 defined, as well.

 2) The transport of a ``m='' field becomes a ``='' constraint in
 the ``group'' for the encoding

 3) For registered payload type names the additional parameters as

https://datatracker.ietf.org/doc/html/rfc1890

 defined in RFC 1890 such as sampling rate and number of channels
 are each translated into corresponding ``='' constraints of the
 encoding group.

Ott/Kutscher/Bormann [Page 22]

https://datatracker.ietf.org/doc/html/rfc1890

INTERNET-DRAFTCapability description for group cooperation June 1999

 4) Translation of ``a=fmtp'' has to be defined...

 5) All other ``a='' fields relating to a ``m='' and representing a
 single attribute-value mapping (like orient:portrait) are
 translated into single ``='' constraints with one value.

 Future versions of this specification will also define how integrate
 other SDP configuration parameters into CAP using non-collapsing
 parameters (see section xx) that are yet to be defined.

 Translating a description written in the concise decscription
 language (back) to SDP again would rely on a well-defined mapping of
 encoding names:

 1) CAP names for video or audio that cannot be translated into
 registered payload type names will be translated as dynamic
 payload types with a corresponding ``a=rtpmap'' field.

 2) CAP groups with encoding names that can be mapped are either
 translated into ``m='' fields with static payload types if the
 encoding parameters (sampling rate and number of channels)
 conform to the specification of a static payload type or, if one
 of these parameters differ are translated to ``m='' fields with
 a dynamic payload type that will be defined in a subsequent
 ``a=rtpmap'' field.

 3) For other media types the encoding groups will be translated to
 ``m=application''fields with the encoding name as the fourth
 element.

 4) The transport constraint of the CAP description is will be
 reflected in the ``m='' field, as well.

 5) Other = constraints with one value will be translated to ``a=''
 fields.

Ott/Kutscher/Bormann [Page 23]

INTERNET-DRAFTCapability description for group cooperation June 1999

Appendix C: Integration into SDP

 Instead of translating a CAPs specification into SDP media
 descriptions it can be more efficient to directly add it to a SDP
 description and thus retain the original specification. This can be
 done by using dynamic payload types:

 m=audio <port> <transport-parameters> 98

 a=rtpmap:98 X-CAP

 a={ channels = 1; encoding: g711 { compression = mulaw);sampling_rate
 = 8000 | 11025 | 16000; } || encoding: gsm { compression = half |
 full | enhanced_full; }; }

Ott/Kutscher/Bormann [Page 24]

INTERNET-DRAFTCapability description for group cooperation June 1999

Appendix D: Mapping to H.245

 TBD.

Ott/Kutscher/Bormann [Page 25]

