
Workgroup: LAMPS

Internet-Draft:

draft-ounsworth-pkix-key-attestation-02

Published: 13 March 2023

Intended Status: Standards Track

Expires: 14 September 2023

Authors: M. Ounsworth

Entrust

R. Kettlewell

Entrust - nCipher

B. Couillard

Crypto4A

JP Fiset

Crypto4A

PKIX Key Attestation Format

Abstract

This document describes syntax for conveying key origin attestation

information to a Certification Authority (CA) or other entity, so

that they may decide how much trust to place in the management of

the private key. For example, a reliant party may use this

information to support a decision about whether to issue a

certificate. In contrast to other key attestation formats, the one

defined in this document requires only ASN.1 and the standard PKIX

modules.

About This Document

This note is to be removed before publishing as an RFC.

Status information for this document may be found at https://

datatracker.ietf.org/doc/draft-ounsworth-pkix-key-attestation/.

Discussion of this document takes place on the Limited Additional

Mechanisms for PKIX and SMIME (lamps) Working Group mailing list

(mailto:spasm@ietf.org), which is archived at https://

mailarchive.ietf.org/arch/browse/spasm/. Subscribe at https://

www.ietf.org/mailman/listinfo/spasm/.

Source for this draft and an issue tracker can be found at https://

github.com/EntrustCorporation/draft-ounsworth-pq-composite-keys.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/doc/draft-ounsworth-pkix-key-attestation/
https://datatracker.ietf.org/doc/draft-ounsworth-pkix-key-attestation/
mailto:spasm@ietf.org
https://mailarchive.ietf.org/arch/browse/spasm/
https://mailarchive.ietf.org/arch/browse/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://www.ietf.org/mailman/listinfo/spasm/
https://github.com/EntrustCorporation/draft-ounsworth-pq-composite-keys
https://github.com/EntrustCorporation/draft-ounsworth-pq-composite-keys
https://datatracker.ietf.org/drafts/current/

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 14 September 2023.

Copyright Notice

Copyright (c) 2023 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

2. Terminology

3. Cryptographic Keys

3.1. Trust Anchor Key

3.2. Intermediate CA Key

3.3. Device Identity Key

3.4. Device Certification Subkey

3.5. Application Key

4. Key Attestations

4.1. Key Attestation Bundle

4.2. Intermediate CA Certificate

4.3. Device Identity Certificate

4.4. Device Delegation Certificate

4.5. Key Attestation Certificate

4.5.1. Vendor-Specific Information

5. Key Usage

5.1. Distinctions between Key Use Policies

5.2. Recoverable Keys

5.3. Key Protection

5.4. Vendor-Defined Key Use Policies

6. Embedding Key Attestations in Certification Requests

7. Implementation Considerations

8. IANA Considerations

9. Security Considerations

9.1. Key Use Constraints

¶

¶

¶

¶

https://trustee.ietf.org/license-info

9.2. Verification Model

9.3. Recoverable Keys

9.4. Uniqueness of Keys

10. References

10.1. Normative References

10.2. Informative References

Appendix A. Samples

Appendix B. ASN.1 Module

Appendix C. Intellectual Property Considerations

Appendix D. Contributors and Acknowledgements

Authors' Addresses

1. Introduction

Key attestation refers to the originator of a cryptographic key pair

providing information about the provenance of that key pair, in a

manner that can be cryptographically verified. The information

provided may include, for example, the model and identity of the

device that created the key pair and any policies that may be

enforced upon the use of the private key, contained in a

cryptographic envelope that can be chained to a manufacturing public

key of the device vendor.

This information can be used by a Certification Authority (CA) to

decide whether to issue a certificate, to apply a given policy or

certificate template, or by other entities for their own purposes.

The CA may choose to publish some or all of the key attestation data

in the certificate for the use of parties that will rely on this

certificate.

Many devices, including Hardware Security Modules, provide

attestation information of some form in proprietary formats. A

common syntax for key attestations is required to reduce the

implementation burden on CA implementors and operators. Furthermore

it is desirable that the syntax is sympathetic to existing CA

implementations.

2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

3. Cryptographic Keys

This section describes the cryptographic keys referenced in this

document.

¶

¶

¶

¶

¶

3.1. Trust Anchor Key

A trust anchor key is a signing key held by a vendor. For the

purposes of this document, a trust anchor may be a proper Trust

Anchor as defined in [RFC5914], or a root certification authority as

defined in [RFC5280]. It is used either to directly sign device

identity keys as defined in Section 3.3 or to sign intermediate CA

keys. A trust anchor key MUST be associated with a vendor identity.

Constraints:

A trust anchor key MUST only be used for purposes consistent with

signing intermediate CA keys or devices (i.e. signing delegation

certificates, CRLs, etc).

3.2. Intermediate CA Key

An intermediate CA key is a signing key held by a vendor and

certified by that vendor's trust anchor.

It can be used for one of two purposes:

To certify device identity keys (see Section 3.3) by signing

device identity certificates (see Section 4.3)

To certify further intermediate CA keys

The exact configuration and management of trust anchor keys and

intermediate CA keys is beyond the scope of this document. An

example configuration is that a vendor have an offline trust anchor,

and an intermediate CA in each of its manufacturing sites, certified

by the trust anchor key when a manufacturing site is created or

during maintenance or recovery activities.

It may be impossible recertify a device after manufacture, and it

may be impossible for a manufacturer to know when a device has been

retired from use. Therefore:

An intermediate CA need not track and public revocation

information

Intermediate CA keys MAY have an expiration date of

99991231235959Z ([RFC5280] section 4.1.2.5).

Constraints:

An intermediate CA key MUST only be used for purposes consistent

with certifying intermediate CA keys (i.e. signing delegation

certificates, CRLs, etc) or devices.

¶

¶

*

¶

¶

¶

*

¶

* ¶

¶

¶

*

¶

*

¶

¶

*

¶

3.3. Device Identity Key

A device identity key is a signing key held by a device. It is

assumed that the key is unique to the device and cannot be extracted

or used for any purpose other than the ones listed below. It is

envisaged that this key will persist for the lifetime of the device.

It can be used for one of two purposes:

To sign key attestations directly

To sign device delegation certificates (see Section 4.4), which

are used to certify device certification subkeys (see

Section 3.4).

Constraints:

A device identity key MUST NOT be used for any purpose other than

signing key attestation certificates or device delegation

certificates.

3.4. Device Certification Subkey

A device certification key is a signing key held by a device. It is

assumed that the key is unique to the device and cannot be extracted

or used for any purpose other than the ones listed below. Depending

on the device architecture, it may also be limited to a particular

context or partition of the device; in this case it is assumed to be

unique to the context. A device certification key may have any

lifetime, from single use to the lifetime of the device.

It can be used for one of two purposes:

To sign key attestations directly

To sign further device delegation certificates.

Constraints:

A device certification subkey MUST NOT be used for any purpose

other than signing key attestation certificates (see Section 4.5)

or device delegation certificates (see Section 4.4).

3.5. Application Key

An application key is a key created and managed by a device

(excluding the device identity key and device certification subkey

described above). Its purpose and lifetime are arbitrary - in other

words, it can be used for any purpose a user of the device wishes.

¶

¶

* ¶

*

¶

¶

*

¶

¶

¶

* ¶

* ¶

¶

*

¶

¶

(MikeO: maybe I'm a noob here, but the distinction between this an a

Device Certification Subkey could be stated more clearly. Maybe the

distinction "This is envisioned for cases where a device needs an

attested key which may be used for arbitrary purposes".)

(RJK: it's not really about what the device desires - these are the

keys that we are trying to attest the origin of. The user has some

higher-level purpose, e.g. code signing, which requires them to

define a code signing key and attest to its origins in an HSM; from

the point of view of this spec, their code-signing key is an

application key. Keeping this comment open in the hope we can find a

clear way of articulating this.)

4. Key Attestations

A verifier is an entity which wishes to verify the origin of a key,

based on its trust in a trust anchor.

For example, it could be a certificate authority with an operational

constraint that it only certifies hardware-protected keys.

4.1. Key Attestation Bundle

A key attestation consists of a nonempty sequence of [RFC5280]

certificates, containing key attestation extensions as described

below.

Specifically, a key attestation consists of:

Zero or more intermediate certificates (see Section 4.2)

Exactly one device identity certificate (see Section 4.3)

Zero or more device delegation certificates (see Section 4.4)

Exactly one key attestation certificate (see Section 4.5)

The first certificate (whether it is an intermediate certificate or

the device identity certificate) is signed by a trust anchor key. A

verifier must decide through its own policies and processes which

trust anchors keys to trust and what policies to accept in key

attestations certified by them. A trust anchor key MUST be

associated with a vendor identity.

Constraints:

A verifier MUST verify that each certificate is well-formed

(except that expiry and revocation information need not be

present)

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

¶

¶

*

¶

A verifier MUST verify that the first certificate is signed by a

trust anchor key

A verifier MUST verify that each certificate, apart from the

first, is certified by the previous certificate in the key

attestation.

A verifier MUST verify that the ordering of certificates is as

described above.

4.2. Intermediate CA Certificate

An intermediate CA delegation certificate certifies an intermediate

CA. Apart from the absence of any constraints on expiry time and

revocation, it is little different from any other intermediate CA's

certificate.

It MUST have the [RFC5280] basic constraints extension with the cA

boolean set to true.

It MAY have the [RFC5280] pathLenConstraint, and there is no change

to the [RFC5280] interpretation this field. Therefore, if it is

present, it must permit sufficiently many following certificates to

account for certificates signed by the device i.e. device identity

certificates (see Section 4.3) and device delegation certificates

(see Section 4.4).

It MUST NOT have any of the extensions defined in the following

sections (Section 4.3, Section 4.4 and Section 4.5). A verifier may

detect an intermediate CA delegation by the presence of a true cA

boolean and the absence of these extensions.

Constraints:

A verifier MUST honor pathLenConstraint if present.

There may be any number of intermediate CA certificates,

including 0.

4.3. Device Identity Certificate

A device identity certificate certifies a specific device by binding

its public device identity key (defined in Section 3.3) to a vendor-

specific representation of device identity such as vendor name,

model, and serial number. For a hardware device, it is envisaged

that a manufacturing facility will use its trust anchor or

intermediate CA to sign a device identity certificate for each

device as it is manufactured.

*

¶

*

¶

*

¶

¶

¶

¶

¶

¶

* ¶

*

¶

¶

A device identity certificate MUST contain a DeviceInformation

extension, identified by id-device-information. This extension

contains the vendor identity, device model and device serial.

Together these are called the device identity and MUST uniquely

define a particular device.

EDNOTE: this is a temporary OID for the purposes of prototyping.

We are requesting IANA to assign a permanent OID, see Section 8.

A device identity certificate MUST have the [RFC5280] basic

constraints extension with the cA boolean set to true (since the

device is acting as a CA).

No significance is attached to the subject field of a device

identity certificate.

Constraints:

A verifier MUST reject any key attestation that does not contain

exactly one device identity certificate.

A verifier MUST reject any device identity certificate whose

vendor identity as indicated in the vendor field does not match

the one associated with the trust anchor used to verify the key

attestation.

Two distinct devices from the same vendor MUST NOT have the same

device identity, i.e. they must have different values for at

least one field of DeviceIdentity.

Two distinct devices MUST NOT have the same device identity key.

As a matter of interpretation, it is envisaged that the uniqueness

requirement on device identity keys (and all other keys in this

specification) is achieved by generating keys of adequate size and

using cryptographically secure pseudorandom number generators,

rather than by maintaining an industry-wide database of all device

identity keys.

¶

id-device-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1567 }

DeviceInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 serial UTF8STring -- device instance information

}

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

¶

4.4. Device Delegation Certificate

A device delegation certificate certifies that a specific

certification subkey (defined in Section 3.4) belongs to a specific

device by binding it to a vendor-specific representation of the

device and the subkey's purpose. It is envisaged that a single

hardware device may have multiple certification subkeys each being

restricted to, for example, a single partition or application

context. The device may create new certification subkeys and

therefore new device delegation certificates over time, for instance

when the device is re-initialized, or if the device supports dynamic

creation of users or application contexts and needs to create

distinct certification subkeys for each.

A device delegation certificate MUST contain a

DeviceSubkeyInformation extension, identified by id-device-subkey-

information. This contains the vendor identity, device model, device

serial and key purpose. Note that this does not uniquely define the

certification subkey.

EDNOTE: this is a temporary OID for the purposes of prototyping.

We are requesting IANA to assign a permanent OID, see Section 8.

The meaning of the purpose field is entirely dependent on the

device.

It MUST have the [RFC5280] basic constraints extension with the cA

boolean set to true (since the device is acting as a CA).

No significance is attached to the subject field of a device

delegation certificate.

Constraints:

A verifier MUST reject any device delegation certificate whose

device identity as indicated in the vendor, model and serial

fields does not match the values from the device identity

certificate.

The purpose field may have any value.

¶

¶

id-device-subkey-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1568 }

DeviceSubkeyInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 serial UTF8STring -- device instance information

 purpose UTF8String -- description of subkey purpose

}

¶

¶

¶

¶

¶

¶

*

¶

* ¶

Two device delegation certificates signed by the same key MAY

have the same purpose field.

4.5. Key Attestation Certificate

A key attestation certificate certifies that an application key was

created in a particular device and is managed according to a

particular policy.

A key attestation certificate MUST contain a

ApplicationKeyInformation extension identified by id-application-

key-information. This contains the vendor identity, device model,

device serial and vendor-specific information.

A key attestation certificate MUST contain an [RFC5280] Extended Key

Usage extension documenting how the device will permit the key to be

used. See Section 5 for more details.

EDNOTE: this is a temporary OID for the purposes of prototyping.

We are requesting IANA to assign a permanent OID, see Section 8.

If the key attestation certificate contains the [RFC5280] Basic

Constraints extension then it MUST have the cA boolean set to false.

No significance is attached to the subject field of a key

attestation certificate.

Constraints:

A verifier MUST reject any key attestation certificate whose

device identity as indicated in the vendor, model and serial

fields does not match the values from the device identity

certificate.

A verifier MUST reject any key attestation certificate which does

not contain exactly one [RFC5280] Extended Key Usage extension

A verifier MUST reject any key attestation certificate which

permits operations inconsistent with its acceptable policies.

4.5.1. Vendor-Specific Information

The ApplicationKeyInformation.vendorInfo field of the key

attestation certificate MAY contain any octet string (including the

*

¶

¶

¶

¶

ApplicationKeyInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 vendorinfo OCTET STRING -- vendor-specific information

}

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

empty string). The interpretation is up to the vendor. For example,

it may be used to convey information about how the key was generated

or a vendor-specific description of the policies that govern its

use.

5. Key Usage

Key attestation certificates contain an [RFC5280] s4.2.1.12 Extended

Key Usage extension describing how the device will permit the key to

be used.

The standard ExtendedKeyUsage purposes defined in [RFC5280] are not

necessarily suitable in this context. For example the standard

ExtendedKeyUsage OIDs are also not necessarily suitable. For example

the device may have no information about whether a signing key is

intended to be used for server authentication, client

authentication, or any other application of digital signatures. For

this reason an additional set of key usage purposes are defined

here.

EDNOTE: these are a temporary OIDs for the purposes of

prototyping. We are requesting IANA to assign a permanent OID,

see Section 8.

EDNOTE: We should consult particularly with CAs to see if there

are other properties that would be beneficial to include in this

list.

¶

¶

¶

id-Signature OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1613 }

-- the device will generate signatures with the key

id-Decryption OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1614 }

-- the device will decrypt messages with the key and return the plaintext

id-KeyAgreement OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1615 }

-- the device will use the key for key agreement

id-KeyTransport OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1616 }

-- the device will use the key for key transport

id-Recoverable OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1612 }

-- the key is can be recovered under administrative authorization

¶

¶

¶

Constraints:

If the device does not include id-Signature in the list of key

use purposes then it MUST NOT generate signatures with the key.

If the device does not include id-Decryption in the list of key

use purposes then it MUST NOT decrypt ciphertexts with the key.

If the device does not include id-KeyAgreement in the list of key

use purposes then it MUST NOT use the key for key agreement.

If the device does not include id-KeyTransport in the list of key

use purposes then it MUST NOT use the key for key transport.

If the device does not include id-Recoverable in the list of key

use purposes then it MUST NOT permit recovery operations on the

key.

5.1. Distinctions between Key Use Policies

Decryption means using the key to decrypt a ciphertext and

returning the plaintext to the caller, outside the device

Key Transport means using the key to decrypt a ciphertext and

using the plaintext as key material, managed by the device

Key Agreement means using the key to agree a secret shared with

another party, as prelude to further secure communication

5.2. Recoverable Keys

The id-Recoverable key use purpose indicates that the policies

controlling use of the key may be modified by a suitably authorized

administrator. This may be necessary, for example, to ensure that

the key remains available for use even when an authentication token

is lost or destroyed.

The scope of possible modifications, and the kind of authorization

required, are intentionally vague.

See Section 9.3 for further discussion.

5.3. Key Protection

These key use purposes are not intended to describe how applications

keys is protected by the device. For example one device may protect

keys by maintaining them inside a hardened boundary at all times;

another may allow keys to be used across multiple devices by

encrypting them under a shared master key, or by sharing them with

other authorized devices via a secure channel.

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

Provided the device is able to guarantee that the key use policy it

signs will be honored, the mechanism is uses to protect application

keys is not relevant.

5.4. Vendor-Defined Key Use Policies

A vendor may define key use policies outside the list above, for

example reflecting policies not envisaged by this document or to

cover device-specific functionality. For example they may describe a

policy in terms of their device's proprietary policy or access

control syntax and publish an OID reflecting that policy.

A verifier MUST NOT accept such a vendor-defined policy unless they

fully understand the intended meaning.

6. Embedding Key Attestations in Certification Requests

A convenient way to convey a key attestation is to embed it into a

[RFC2986] certification request. This may be done via the

AttestationBundle extension, identified by the OID id-attestation-

bundle.

Constraints:

A certification request SHOULD only have one embedded key

attestation.

A CA MUST follow meet all the constraints on verifiers described

above.

A CA MUST verify that the subject public key in the certification

request is the same as the subject public key in the key

attestation certificate.

*RJK TODO tidy up all this section

(MikeO: We'll need to be explicit about how to bundle this into a

[RFC2986] Attribute. Do we need an OID for the type? I assume the

values is straight-forward: it'll be a single item, which is the

OCTET STRING of the AttestationBundle?

Attribute { ATTRIBUTE:IOSet } ::= SEQUENCE { type

ATTRIBUTE.&id({IOSet}), values SET SIZE(1..MAX) OF

ATTRIBUTE.&Type({IOSet}{@type}) }

)

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

EDNOTE: this is a temporary OID for the purposes of prototyping.

We are requesting IANA to assign a permanent OID, see Section 8.

7. Implementation Considerations

... TODO document any (non-security) GOTCHAs ...

8. IANA Considerations

The following Object Identifiers are to be assigned by IANA:

TODO: suggest to IANA which public arc we want these in (these

are just placeholders).

TODO update for our new EKU OIDs

*RJK: the OIDs are assigned by a free OID assignment service. If I

can have something under Entrust then I'll replace them with that.

id-attestation-bundle OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1571 }

AttestationBundle ::= SEQUENCE OF Certificate

¶

¶

¶

¶

id-device-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1567 }

id-device-subkey-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1568 }

id-application-key-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1569 }

id-attestation-bundle OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1571 }

id-Signature OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1613 }

id-Decryption OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1614 }

id-KeyAgreement OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1615 }

id-KeyTransport OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1616 }

id-Recoverable OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1612 }

¶

¶

¶

¶

9. Security Considerations

9.1. Key Use Constraints

The key use constraints describe above are essential. For example if

a device identity key could be used by a user to sign arbitrary

messages, that user could forge key attestations.

9.2. Verification Model

An API that verifies a key attestation may be designed in a number

of different ways.

It may accept just a key attestation. It will verify it, and

return either an error indicator or the public trust anchor

key, vendor identity, public application key, and the policy

governing is use. The caller must check at least that the trust

anchor key is acceptable; the vendor identity from the key

attestation matches the one associated with the trust anchor;

and that the policy is acceptable, before using the application

key. If the caller is running in a context where there are

multiple copies of the application key (for example, the

certification request verification described in Section 6 it

must also check that all copies of the application key match.

It may accept a key attestation, trust anchor, vendor identity

and at least one acceptable policy. It will verify the key

attestation using the trust anchor, and check that the vendor

identities in the key attestation match the trust anchor, and

check that the policy is acceptable. It will return either an

error indicator or the application key. If the caller is

running in a context where there are multiple copies of the

application key then it must also check that all copies of the

application key match. Apart from that it can use the

application key without further checks.

It may accept a key attestation, trust anchor, vendor identity,

application key and at least one acceptable policy. It will

verify the key attestation using the trust anchor, and check

that the vendor identities in the key attestation match the

trust anchor, check that the policy is acceptable, and that the

application key is the expected value. It will return either an

error or a success indicator. The caller can use the

application key without further checks.

In all of these models the same set of checks must be done, but in

the first two some of the checks are delegated to the caller. The

advantage of the later models is that they are more robust against

the caller ommitting some of the necessary checks. For a publicly

available API this robustness is particularly appropriate.

¶

¶

1.

¶

2.

¶

3.

¶

¶

[RFC2119]

[RFC2986]

[RFC5280]

9.3. Recoverable Keys

The definition of recoverability is intentionally vague. Depending

on the device it may mean that, for example, a signature-only RSA

key could additionally be given decrypt permission, or it could mean

that private key material could be extracted in plaintext. The range

of possibilities is too broad to tie down in a device-independent

specification.

It should be noted that placing trust in a key does mean generally

placing trust in the operators and administrators of the device that

contains it, even without any possibility of administrator override

of the policy governing its use. For example, even if a key is not

recoverable, there is nothing to prevent a key owner exposing a

signature oracle for their key, allowing anyone to sign with it. As

such, if the key owner and the device administrator belong to the

same organization, and have aligned priorities, there is not much

practical difference between recoverable and non-recoverable keys.

However, in the example where a device is owned and managed by a

service provider but leased to an end user, the key owner and the

device administrators belong to separate organizations and have

different priorities. In that case a verifier may prefer to reject

recoverable keys.

9.4. Uniqueness of Keys

It's generally assumed that all keys are unique. This is the

expected outcome for properly generated cryptographic keys, and

while a collision is in principle possible by chance, it's much more

likely that a collision indicates a failure in the key generation

process (for example, [DSA1571]).

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986

[RFC5914]

[RFC8174]

[RFC8411]

[X.690]

[DSA1571]

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor

Format", RFC 5914, DOI 10.17487/RFC5914, June 2010,

<https://www.rfc-editor.org/info/rfc5914>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2015, November 2015.

10.2. Informative References

Debian Project, "DSA-1571-1 openssl - predictable random

number generator", May 2008, <https://www.debian.org/

security/2008/dsa-1571>.

Appendix A. Samples

... either place samples here inline, or reference on Github. I've

got a script I've used in other I-Ds to inline include files, if

that's useful here.

Appendix B. ASN.1 Module

... any ASN.1 that we are defining goes here ...

¶

¶

https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5914
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
https://www.debian.org/security/2008/dsa-1571
https://www.debian.org/security/2008/dsa-1571

Appendix C. Intellectual Property Considerations

... mention any IP considerations here ...

Appendix D. Contributors and Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

-- TODO probably need some ASN.1 furniture around this

-- TODO need to import Certificate from RFC5280

id-device-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1567 }

DeviceInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 serial UTF8STring -- device instance information

}

id-device-subkey-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1568 }

DeviceSubkeyInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 serial UTF8STring -- device instance information

 purpose UTF8String -- description of subkey purpose

}

id-application-key-information OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1569 }

ApplicationKeyInformation ::= SEQUENCE {

 vendor UTF8STring -- manufacturer of device

 model UTF8STring -- device model information

 policy OBJECT IDENTIFIER -- policy governing key use

 vendorinfo OCTET STRING -- vendor-specific information

}

id-attestation-bundle OBJECT IDENTIFIER ::=

 { 1 3 6 1 4 1 54392 5 1571 }

AttestationBundle ::= SEQUENCE OF Certificate

¶

¶

electronic mail and VOIP traffic over the past year in pursuit of

this document:

Chris Trufan (Entrust).

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

Authors' Addresses

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100

Ottawa, Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Richard Kettlewell

Entrust - nCipher Security Limited

One Station Square

Cambridge

CB1 2GA

United Kingdom

Email: richard.kettlewell@entrust.com

Bruno Couillard

Crypto4A

1550 Laperriere Ave

Ottawa, On K1Z 7T2

Canada

Email: bruno@crypto4a.com

Jean-Pierre Fiset

Crypto4A

1550 Laperriere Ave

Ottawa, On K1Z 7T2

Canada

Email: jp@crypto4a.com

¶

¶

¶

¶

mailto:mike.ounsworth@entrust.com
mailto:richard.kettlewell@entrust.com
mailto:bruno@crypto4a.com
mailto:jp@crypto4a.com

	PKIX Key Attestation Format
	Abstract
	About This Document
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Cryptographic Keys
	3.1. Trust Anchor Key
	3.2. Intermediate CA Key
	3.3. Device Identity Key
	3.4. Device Certification Subkey
	3.5. Application Key

	4. Key Attestations
	4.1. Key Attestation Bundle
	4.2. Intermediate CA Certificate
	4.3. Device Identity Certificate
	4.4. Device Delegation Certificate
	4.5. Key Attestation Certificate
	4.5.1. Vendor-Specific Information

	5. Key Usage
	5.1. Distinctions between Key Use Policies
	5.2. Recoverable Keys
	5.3. Key Protection
	5.4. Vendor-Defined Key Use Policies

	6. Embedding Key Attestations in Certification Requests
	7. Implementation Considerations
	8. IANA Considerations
	9. Security Considerations
	9.1. Key Use Constraints
	9.2. Verification Model
	9.3. Recoverable Keys
	9.4. Uniqueness of Keys

	10. References
	10.1. Normative References
	10.2. Informative References

	Appendix A. Samples
	Appendix B. ASN.1 Module
	Appendix C. Intellectual Property Considerations
	Appendix D. Contributors and Acknowledgements
	Authors' Addresses

