
Workgroup: LAMPS

Internet-Draft:

draft-ounsworth-pq-composite-keys-02

Published: 7 June 2022

Intended Status: Standards Track

Expires: 9 December 2022

Authors: M. Ounsworth

Entrust

M. Pala

CableLabs

J. Klaussner

D-Trust GmbH

Composite Public and Private Keys For Use In Internet PKI

Abstract

The migration to post-quantum cryptography is unique in the history

of modern digital cryptography in that neither the old outgoing nor

the new incoming algorithms are fully trusted to protect data for

the required data lifetimes. The outgoing algorithms, such as RSA

and elliptic curve, may fall to quantum cryptalanysis, while the

incoming post-quantum algorithms face uncertainty about both the

underlying mathematics as well as hardware and software

implementations that have not had sufficient maturing time to rule

out classical cryptanalytic attacks and implementation bugs.

Cautious implementors may wish to layer cryptographic algorithms

such that an attacker would need to break all of them in order to

compromise the data being protected. For digital signatures, this is

referred to as "dual", and for encryption key establishment this as

reffered to as "hybrid". This document, and its companions, defines

a specific instantiation of the dual and hybrid paradigm called

"composite" where multiple cryptographic algorithms are combined to

form a single key, signature, or key encapsulation mechanism (KEM)

such that they can be treated as a single atomic object at the

protocol level.

EDNOTE: the terms "dual" and "hybrid" are currently in flux. We

anticipate an Informational draft to normalize terminology, and will

update this draft accordingly.

This document defines the structures CompositePublicKey and

CompositePrivateKey, which are sequences of the respective structure

for each component algorithm. The generic composite variant is

defined which allows arbitrary combinations of key types to be

placed in the CompositePublicKey and CompositePrivateKey structures

without needing the combination to be pre-registered or pre-agreed.

The explicit variant is also defined which allows for a set of

algorithm identifier OIDs to be registered together as an explicit

composite algorithm and assigned an OID.

¶

¶

¶

¶

This document is intended to be coupled with corresponding documents

that define the structure and semantics of composite signatures and

encryption, such as [draft-ounsworth-pq-composite-sigs-05] and

draft-ounsworth-pq-composite-kem (yet to be published).

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 9 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Changes in version -02

2. Introduction

2.1. Terminology

3. Composite Key Structures

3.1. pk-Composite

3.1.1. Key Usage

3.2. CompositePublicKey

3.3. CompositePrivateKey

3.4. Encoding Rules

4. Algorithm Identifiers

4.1. id-composite-key (Generic Composite Keys)

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4.2. Explicit Composite Keys

5. Implementation Considerations

5.1. Textual encoding of Composite Private Keys

5.2. Asymmetric Key Packages (CMS)

5.3. Backwards Compatibility

5.3.1. OR modes

5.3.2. Parallel PKIs

6. IANA Considerations

7. Security Considerations

7.1. Reuse of keys in a Composite public key

7.2. Key mismatch in explicit composite

7.3. Policy for Deprecated and Acceptable Algorithms

7.4. Protection of Private Keys

7.5. Checking for Compromised Key Reuse

8. References

8.1. Normative References

8.2. Informative References

Appendix A. Creating explicit combinations

Appendix B. Examples

B.1. Generic Composite Public Key Examples

B.2. Explicit Composite Public Key Examples

Appendix C. ASN.1 Module

Appendix D. Intellectual Property Considerations

Appendix E. Contributors and Acknowledgements

E.1. Making contributions

Authors' Addresses

1. Changes in version -02

Merged Generic Composite (Section 4.1) and Explicit Composite

(Section 4.2) into one document and made them share a wire

encoding (only differing by the OIDs used).

Removed Composite-OR Public Key.

Synced document structure with -sigs

Added Section 5.3 addressing backwards compatibility and ease of

migration concerns.

TODO diff this against the public version and see if there are any

more changes.

2. Introduction

During the transition to post-quantum cryptography, there will be

uncertainty as to the strength of cryptographic algorithms; we will

no longer fully trust traditional cryptography such as RSA, Diffie-

Hellman, DSA and their elliptic curve variants, but we may also not

fully trust their post-quantum replacements until further time has

*

¶

* ¶

* ¶

*

¶

¶

passed to allow additional scrutiny and the discovery of

implementation bugs. Unlike previous cryptographic algorithm

migrations, the choice of when to migrate and which algorithms to

migrate to, is not so clear. Even after the migration period, it may

be advantageous for an entity's cryptographic identity to be

composed of multiple public-key algorithms.

The deployment of composite public keys, and composite signatures

and composite encryption using post-quantum algorithms will face two

challenges:

Algorithm strength uncertainty: During the transition period,

some post-quantum signature and encryption algorithms will not be

fully trusted, while also the trust in legacy public key

algorithms will start to erode. A relying party may learn some

time after deployment that a public key algorithm has become

untrustworthy, but in the interim, they may not know which

algorithm an adversary has compromised.

Migration: During the transition period, systems will require

mechanisms that allow for staged migrations from fully classical

to fully post-quantum-aware cryptography.

This document provides a mechanism to address algorithm strength

uncertainty concerns by providing formats for encoding multiple

public key and private key values into existing public key and

private key fields. Backwards compatibility is not directly

addressed via the composite mechanisms defined in the document, but

some notes on how it can be obtained can be found in Section 5.3.

This document is intended for general applicability anywhere that

keys are used within PKIX or CMS structures.

2.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used in this document:

ALGORITHM: A standardized cryptographic primitive, as well as any

ASN.1 structures needed for encoding data and metadata needed to use

the algorithm. This document is concerned with algorithms for

producing either digital signatures or ciphertexts for the purpose

of key exchange.

BER: Basic Encoding Rules (BER) as defined in [X.690].

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

CLIENT: Any software that is making use of a cryptographic key. This

includes a signer, verifier, encrypter, decrypter.

COMPONENT ALGORITHM: A single basic algorithm which is contained

within a composite algorithm.

COMPOSITE ALGORITHM: An algorithm which is a combination of two or

more component algorithms.

DER: Distinguished Encoding Rules as defined in [X.690].

LEGACY: For the purposes of this document, a legacy algorithm is any

cryptographic algorithm currently in use which is not believed to be

resistant to quantum cryptanalysis.

PKI: Public Key Infrastructure, as defined in [RFC5280].

POST-QUANTUM AGLORITHM: Any cryptographic algorithm which is

believed to be resistant to classical and quantum cryptanalysis,

such as the algorithms being considered for standardization by NIST.

PUBLIC / PRIVATE KEY: The public and private portion of an

asymmetric cryptographic key, making no assumptions about which

algorithm.

3. Composite Key Structures

In order to represent public keys and private keys that are composed

of multiple algorithms, we define encodings consisting of a sequence

of public key or private key primitives (aka "components") such that

these structures can be used directly in existing public key fields

such as those found in PKCS#10 [RFC2986], CMP [RFC4210], X.509

[RFC5280], CMS [RFC5652], and the Trust Anchor Format [RFC5914].

A composite key is a single key object that performs an atomic

cryptographic operation -- such a signing, verifying, encapsulating,

or decapsulating -- using its encapsulated sequence of component

keys as if it was a single key. This generally means that the

complexity of combining algorithms can be deferred from the protocol

layer to the cryptographic library layer.

3.1. pk-Composite

The PUBLIC-KEY ASN.1 information object class is defined in

[RFC5912]. The PUBLIC-KEY information object for generic (Section

4.1) and explicit (Section 4.2) composite public and private keys

has the following form:

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

The identifier may be an OID representing any composite key type.

Section 4.1 defines the object identifier id-composite-key which

indicates that this is a "generic composite key" which allows

arbitrary combinations of key types to be placed in the

CompositePublicKey and CompositePrivateKey structures without

needing the combination to be pre-registered or pre-agreed.

Section 4.2 defines a framework for defining new "explicit"

combinations that use the same wire encoding structures as generic,

but with OIDs that dictate specific combinations of component

algorithms.

3.1.1. Key Usage

For protocols such as X.509 [RFC5280] that specify key usage along

with the public key, any key usage may be used with composite keys,

with the requirement that the specified key usage MUST apply to all

component keys. For example if a composite key is marked with a

KeyUsage of digitalSignature, then all component keys MUST be

capable of producing digital signatures. The composite mechanism

MUST NOT be used to implement mixed-usage keys, for example, where a

digitalSignature and a keyEncipherment key are combined together

into a single composite key.

3.2. CompositePublicKey

Composite public key data is represented by the following structure:

A composite key MUST contain at least two component public keys.

A CompositePublicKey MUST NOT contain a component public key which

itself describes a composite key; i.e. recursive CompositePublicKeys

are not allowed.

EDNOTE: unclear that banning recursive composite keys actually

accomplishes anything other than a general reduction in complexity

and therefore reduction in attack surface.

Each component SubjectPublicKeyInfo SHALL contain an

AlgorithmIdentifier OID which identifies the public key type and

pk-Composite PUBLIC-KEY ::= {

 id <identifier>,

 KeyValue CompositePublicKey,

 Params ARE ABSENT,

 PrivateKey CompositePrivateKey,

}

¶

¶

¶

¶

¶

¶

CompositePublicKey ::= SEQUENCE SIZE (2..MAX) OF SubjectPublicKeyInfo¶

¶

¶

¶

parameters for the public key contained within it. See Appendix B

for examples.

Each element of a CompositePublicKey is a SubjectPublicKeyInfo

object encoding a component public key. When the CompositePublicKey

must be provided in octet string or bit string format, the data

structure is encoded as specified in Section 3.4.

3.3. CompositePrivateKey

EDNOTE: we need to put a bit more effort into private keys,

specifically defining what OIDs to use in the generic and explicit

cases.

This section provides an encoding for composite private keys

intended for PKIX protocols and other applications that require an

interoperable format for transmitting private keys, such as PKCS #12

[RFC7292] or CMP / CRMF [RFC4210], [RFC4211]. It is not intended to

dictate a storage format in implementations not requiring

interoperability of private key formats.

In some cases the private keys that comprise a composite key may not

be represented in a single structure or even be contained in a

single cryptographic module. The establishment of correspondence

between public keys in a CompositePublicKey and private keys not

represented in a single composite structure is beyond the scope of

this document.

The composite private key data is represented by the following

structure:

Each element is a OneAsymmetricKey [RFC5958] object for a component

private key.

The parameters field MUST be absent.

A CompositePrivateKey MUST contain at least two component private

keys, and they MUST be in the same order as in the corresponding

CompositePublicKey.

EDNOTE: does this also need an explicit version? It would probably

reduce attack surface of tricking a client into running the wrong

parser and a given piece of data.

¶

¶

¶

¶

¶

¶

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey¶

¶

¶

¶

¶

3.4. Encoding Rules

Many protocol specifications will require that the composite public

key and composite private key data structures be represented by an

octet string or bit string.

When an octet string is required, the DER encoding of the composite

data structure SHALL be used directly.

EDNOTE: will this definition include an ASN.1 tag and length byte

inside the OCTET STRING object? If so, that's probably an extra

uneccessary layer.

When a bit string is required, the octets of the DER encoded

composite data structure SHALL be used as the bits of the bit

string, with the most significant bit of the first octet becoming

the first bit, and so on, ending with the least significant bit of

the last octet becoming the last bit of the bit string.

4. Algorithm Identifiers

This section defines the algorithm identifier for generic composite,

as well as a framework for defining explicit combinations. This

section is not intended to be exhaustive and other authors may

define others so long as they are compatible with the structures and

processes defined in this and companion signature and encryption

documents.

Some use-cases desire the flexibility for client to use any

combination of supported algorithms, while others desire the

rigidity of explicitly-specified combinations of algorithms.

4.1. id-composite-key (Generic Composite Keys)

The id-composite-key algorithm identifier is used for identifying a

generic composite public key and a generic composite private key.

This allows arbitrary combinations of key types to be placed in the

CompositePublicKey and CompositePrivateKey structures without

needing the combination to be pre-registered or pre-agreed.

EDNOTE: this is a temporary OID for the purposes of prototyping. We

are requesting IANA to assign a permanent OID, see Section 6.

¶

¶

CompositePublicKeyOs ::= OCTET STRING (CONTAINING CompositePublicKey ENCODED BY der)¶

¶

¶

CompositePublicKeyBs ::= BIT STRING (CONTAINING CompositePublicKey ENCODED BY der)¶

¶

¶

¶

id-composite-key OBJECT IDENTIFIER ::= {

 joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)

 Algorithm(80) Composite(4) CompositeKey(1) }

¶

¶

Which yields an information object:

The motivation for this variant is primarily for prototyping work

prior to the standardization of algorithm identifiers for explicit

combinations of algorithms. However, the authors envision that this

variant will remain relevant beyond full standardization for example

in environments requiring very high levels of crypto agility, for

example where clients support a large number of algorithms or where

a large number of keys will be used at a time and it is therefore

prohibitive to define algorithm identifiers for every combination of

pairs, triples, quadruples, etc of algorithms.

4.2. Explicit Composite Keys

This variant provides a rigid way of specifying supported

combinations of key types. This document does not define any

explicit combinations, but provides a framework for doing so.

The motivation for this variant is to make it easier to reference

and enforce specific combinations of algorithms. The authors

envision this being useful for client-server negotiated protocols,

protocol designers who wish to place constraints on allowable

algorithm combinations in the protocol specification, as well as

audited environments that wish to prove that only certain

combinations will be supported by clients.

Profiles need to define an explicit composite key type which

consists of:

A new algorithm identifier OID for the explicit algorithm.

The PUBLIC-KEY information object of each component public key

type.

See Appendix A for guidance on creating and registering OIDs for

specific explicit combinations.

In this variant, the public key is encoded as defined in Section 3

and Section 3.2, however the PUBLIC-KEY.id SHALL be an OID which is

registered to represent a specific combination of component public

key types. See Appendix B for examples.

¶

pk-Composite PUBLIC-KEY ::= {

 id id-composite-key,

 KeyValue CompositePublicKey,

 Params ARE ABSENT,

 PrivateKey CompositePrivateKey,

}

¶

¶

¶

¶

¶

* ¶

*

¶

¶

¶

The SubjectPublicKeyInfo.algorithm for each component key is

redundant information which MUST match -- and can be inferred from

-- the specification of the explicit algorithm. It has been left

here for ease of implementation as the component

SubjectPublicKeyInfo structures are the same between generic and

explicit, as well as with single-algorithm keys. However, it

introduces the risk of mismatch and leads to the following security

consideration:

Security consideration: Implementations MUST check that the

component AlgorithmIdentifier OIDs and parameters match those

expected by the definition of the explicit algorithm.

Implementations SHOULD first parse a component's

SubjectPublicKeyInfo.algorithm, and ensure that it matches what is

expected for that position in the explicit key, and then proceed to

parse the SubjectPublicKeyInfo.subjectPublicKey. This is to reduce

the attack surface associated with parsing the public key data of an

unexpected key type, or worse; to parse and use a key which does not

match the explicit algorithm definition. Similar checks MUST be done

when handling the corresponding private key.

5. Implementation Considerations

This section addresses practical issues of how this draft affects

other protocols and standards.

EDNOTE 10: Possible topics to address:

The size of these certs and cert chains.

In particular, implications for (large) composite keys /

signatures / certs on the handshake stages of TLS and IKEv2.

If a cert in the chain is a composite cert then does the whole

chain need to be of composite Certs?

We could also explain that the root CA cert does not have to be

of the same algorithms. The root cert SHOULD NOT be transferred

in the authentication exchange to save transport overhead and

thus it can be different than the intermediate and leaf certs.

5.1. Textual encoding of Composite Private Keys

CompositePrivateKeys can be encoded to the Privacy-Enhanced Mail

(PEM) [RFC1421] format by placing a CompositePrivateKey into the

privateKey field of a PrivateKeyInfo or OneAsymmetricKey object, and

then applying the PEM encoding rules as defined in [RFC7468] section

10 and 11 for plaintext and encrypted private keys, respectively.

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

¶

5.2. Asymmetric Key Packages (CMS)

The Cryptographic Message Syntax (CMS), as defined in [RFC5652], can

be used to digitally sign, digest, authenticate, or encrypt the

asymmetric key format content type.

When encoding composite private keys, the privateKeyAlgorithm in the

OneAsymmetricKey SHALL be set to id-composite-key or to an OID

corresponding to an explicit composite key.

The parameters of the privateKeyAlgorithm SHALL be a sequence of

AlgorithmIdentifier objects, each of which are encoded according to

the rules defined for each of the different keys in the composite

private key.

The value of the privateKey field in the OneAsymmetricKey SHALL be

set to the DER encoding of the SEQUENCE of private key values that

make up the composite key. The number and order of elements in the

sequence SHALL be the same as identified in the sequence of

parameters in the privateKeyAlgorithm.

The value of the publicKey (if present) SHALL be set to the DER

encoding of the corresponding CompositePublicKey. If this field is

present, the number and order of component keys MUST be the same as

identified in the sequence of parameters in the privateKeyAlgorithm.

The value of the attributes is encoded as usual.

EDNOTE: I wonder whether this has value as its own section, or if we

should take what's relevant and merge it into Section 3.3?

5.3. Backwards Compatibility

As noted in the introduction, the post-quantum cryptographic

migration will face challenges in both ensuring cryptographic

strength against adversaries of unknown capabilities, as well as

providing ease of migration. The composite mechanisms defined in

this document primarily address cryptographic strength, however this

section contains notes on how backwards compatibility may be

obtained.

The term "ease of migration" is used here to mean that existing

systems can be gracefully transitioned to the new technology without

requiring large service disruptions or expensive upgrades. The term

"backwards compatibility" is used here to mean something more

specific; that existing systems as they are deployed today can

interoperate with the upgraded systems of the future.

These migration and interoperability concerns need to be thought

about in the context of various types of protocols that make use of

¶

¶

¶

¶

¶

¶

¶

¶

¶

X.509 and PKIX with relation to public key objects, from online

negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2 [RFC7296],

to non-negotiated asynchronous protocols such as S/MIME signed and

encrypted email [RFC8551], document signing such as in the context

of the European eIDAS regulations [eIDAS2014], and publicly trusted

code signing [codeSigningBRsv2.8], as well as myriad other

standardized and proprietary protocols and applications that

leverage CMS [RFC5652] signed or encrypted structures.

5.3.1. OR modes

This document purposefully does not specify how clients are to

combine component keys together to form a single cryptographic

operation; this is left up to the specifications of signature and

encryption algorithms that make use of the composite key type. One

possible way to combine component keys is through an OR relation, or

OR-like client policies for acceptable algorithm combinations, where

senders and / or receivers are permitted to ignore some component

keys. Some envisioned uses of this include environments where the

client encounters a component key for which it does not possess a

compatible algorithm implementation but wishes to proceed with the

cryptographic operation using the subset of component keys for which

it does have compatible implementations. Such a mechanism could be

designed to provide ease of migration by allowing for composite keys

to be distributed and used before all clients in the environment are

fully upgraded, but it does not allow for full backwards

compatibility since clients would at least need to be upgraded from

their current state to be able to parse the composite structures.

5.3.2. Parallel PKIs

We present the term "Parallel PKI" to refer to the setup where a PKI

end entity possesses two or more distinct public keys or

certificates for the same key type (signature, key establishment,

etc) for the same identity (name, SAN), but containing keys for

different cryptographic algorithms. One could imagine a set of

parallel PKIs where an existing PKI using legacy algorithms (RSA,

ECC) is left operational during the post-quantum migration but is

shadowed by one or more parallel PKIs using pure post quantum

algorithms or composite algorithms (legacy and post-quantum).

Equipped with a set of parallel public keys in this way, a client

would have the flexibility to choose which public key(s) or

certificate(s) to use in a given cryptographic operation.

For negotiated protocols, the client could choose which public

key(s) or certificate(s) to use based on the negotiated algorithms,

or could combine two of the public keys for example in a non-

composite hybrid method such as [draft-becker-guthrie-noncomposite-

¶

¶

¶

¶

hybrid-auth-00] (NOTE: need kramdown formatting help with this ref)

or [draft-guthrie-ipsecme-ikev2-hybrid-auth-00]. Note that it is

possible to use the signature algorithm defined in [draft-ounsworth-

pq-composite-sigs-06] as a way to carry the multiple signature

values generated by a non-composite public mechanism in protocols

where it is easier to support the composite signature algorithms

than to implement such a mechanism in the protocol itself. There is

also nothing precluding a composite public key from being one of the

components used within a non-composite authentication operation;

this may lead to greater convenience in setting up parallel PKI

hierarchies that need to service a range of clients implementing

different styles of post-quantum migration strategies.

For non-negotiated protocols, the details for obtaining backwards

compatibility will vary by protocol, but for example in CMS

[RFC5652], the inclusion of multiple SignerInfo or RecipientInfo

objects is often already treated as an OR relationship, so including

one for each of the end entity's parallel PKI public keys would, in

many cases, have the desired effect of allowing the receiver to

choose one they are compatible with and ignore the others, thus

achieving full backwards compatibility.

6. IANA Considerations

The ASN.1 module OID is TBD. The id-composite-key and id-composite-

or-key OIDs are to be assigned by IANA. The authors suggest that

IANA assign an OID on the id-pkix arc:

7. Security Considerations

7.1. Reuse of keys in a Composite public key

There is an additional security consideration that some use cases

such as signatures remain secure against downgrade attacks if and

only if component keys are never used outside of their composite

context and therefore it is RECOMMENDED that component keys in a

composite key are not to be re-used in other contexts. In

particular, the components of a composite key SHOULD NOT also appear

in single-key certificates. This is particularly relevant for

protocols that use composite keys in a logical AND mode since the

appearance of the same component keys in single-key contexts

undermines the binding of the component keys into a single composite

key by allowing messages signed in a multi-key AND mode to be

presented as if they were signed in a single key mode in what is

known as a "stripping attack".

¶

¶

¶

id-composite-key OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) composite(??) }

¶

¶

7.2. Key mismatch in explicit composite

This security consideration copied from Section 4.2.

Implementations MUST check that that the component

AlgorithmIdentifier OIDs and parameters match those expected by the

definition of the explicit algorithm. Implementations SHOULD first

parse a component's SubjectPublicKeyInfo.algorithm, and ensure that

it matches what is expected for that position in the explicit key,

and then proceed to parse the SubjectPublicKeyInfo.subjectPublicKey.

This is to reduce the attack surface associated with parsing the

public key data of an unexpected key type, or worse; to parse and

use a key which does not match the explicit algorithm definition.

Similar checks MUST be done when handling the corresponding private

key.

7.3. Policy for Deprecated and Acceptable Algorithms

Traditionally, a public key, certificate, or signature contains a

single cryptographic algorithm. If and when an algorithm becomes

deprecated (for example, RSA-512, or SHA1), it is obvious that

clients performing signature verification or encryption operations

should be updated to fail to validate or refuse to encrypt for these

algorithms.

In the composite model this is less obvious since implementers may

decide that certain cryptographic algorithms have complementary

security properties and are acceptable in combination even though

one or both algorithms are deprecated for individual use. As such, a

single composite public key, certificate, signature, or ciphertext

MAY contain a mixture of deprecated and non-deprecated algorithms.

Specifying behaviour in these cases is beyond the scope of this

document, but should be considered by implementers and potentially

in additional standards.

EDNOTE: Max is working on a CRL mechanism to accomplish this.

7.4. Protection of Private Keys

Structures described in this document do not protect private keys in

any way unless combined with a security protocol or encryption

properties of the objects (if any) where the CompositePrivateKey is

used (see next Section).

Protection of the private keys is vital to public key cryptography.

The consequences of disclosure depend on the purpose of the private

key. If a private key is used for signature, then the disclosure

allows unauthorized signing. If a private key is used for key

management, then disclosure allows unauthorized parties to access

¶

¶

¶

¶

¶

¶

¶

[RFC1421]

[RFC2119]

[RFC2986]

[RFC5280]

[RFC5652]

[RFC5912]

the managed keying material. The encryption algorithm used in the

encryption process must be at least as 'strong' as the key it is

protecting.

7.5. Checking for Compromised Key Reuse

Certification Authority (CA) implementations need to be careful when

checking for compromised key reuse, for example as required by

WebTrust regulations; when checking for compromised keys, you MUST

unpack the CompositePublicKey structure and compare individual

component keys. In other words, for the purposes of key reuse

checks, the composite public key structures need to be un-packed so

that primitive keys are being compared. For example if the composite

key {RSA1, PQ1} is revoked for key compromise, then the keys RSA1

and PQ1 need to be individually considered revoked. If the composite

key {RSA1, PQ2} is submitted for certification, it SHOULD be

rejected because the key RSA1 was previously declared compromised

even though the key PQ2 is unique.

8. References

8.1. Normative References

Linn, J., "Privacy Enhancement for Internet Electronic

Mail: Part I: Message Encryption and Authentication

Procedures", RFC 1421, DOI 10.17487/RFC1421, February

1993, <https://www.rfc-editor.org/info/rfc1421>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Hoffman, P. and J. Schaad, "New ASN.1 Modules for the

Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,

¶

¶

https://www.rfc-editor.org/info/rfc1421
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652

[RFC5914]

[RFC5958]

[RFC7468]

[RFC8174]

[RFC8411]

[X.690]

[Bindel2017]

[codeSigningBRsv2.8]

[eIDAS2014]

DOI 10.17487/RFC5912, June 2010, <https://www.rfc-

editor.org/info/rfc5912>.

Housley, R., Ashmore, S., and C. Wallace, "Trust Anchor

Format", RFC 5914, DOI 10.17487/RFC5914, June 2010,

<https://www.rfc-editor.org/info/rfc5914>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI

10.17487/RFC5958, August 2010, <https://www.rfc-

editor.org/info/rfc5958>.

Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,

PKCS, and CMS Structures", RFC 7468, DOI 10.17487/

RFC7468, April 2015, <https://www.rfc-editor.org/info/

rfc7468>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2015, November 2015.

8.2. Informative References

Bindel, N., Herath, U., McKague, M., and D. Stebila,

"Transitioning to a quantum-resistant public key

infrastructure", 2017, <https://link.springer.com/

chapter/10.1007/978-3-319-59879-6_22>.

CAB Forum, ., "Baseline Requirements for the

Issuance and Management of Publicly-Trusted Code Signing

Certificates v2.8", May 2022, <https://cabforum.org/wp-

content/uploads/Baseline-Requirements-for-the-Issuance-

and-Management-of-Code-Signing.v2.8.pdf>.

"REGULATION (EU) No 910/2014 OF THE EUROPEAN PARLIAMENT

AND OF THE COUNCIL of 23 July 2014 on electronic

identification and trust services for electronic

transactions in the internal market and repealing

Directive 1999/93/EC", July 2014, <https://ec.europa.eu/

futurium/en/system/files/ged/eidas_regulation.pdf>.

https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc5912
https://www.rfc-editor.org/info/rfc5914
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22
https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22
https://cabforum.org/wp-content/uploads/Baseline-Requirements-for-the-Issuance-and-Management-of-Code-Signing.v2.8.pdf
https://cabforum.org/wp-content/uploads/Baseline-Requirements-for-the-Issuance-and-Management-of-Code-Signing.v2.8.pdf
https://cabforum.org/wp-content/uploads/Baseline-Requirements-for-the-Issuance-and-Management-of-Code-Signing.v2.8.pdf
https://ec.europa.eu/futurium/en/system/files/ged/eidas_regulation.pdf
https://ec.europa.eu/futurium/en/system/files/ged/eidas_regulation.pdf

[I-D.becker-guthrie-noncomposite-hybrid-auth]

[I-D.guthrie-ipsecme-ikev2-hybrid-auth]

[I-D.ounsworth-pq-composite-sigs]

[RFC3279]

[RFC4210]

[RFC4211]

[RFC7292]

[RFC7296]

Becker, A., Guthrie,

R., and M. J. Jenkins, "Non-Composite Hybrid

Authentication in PKIX and Applications to Internet

Protocols", Work in Progress, Internet-Draft, draft-

becker-guthrie-noncomposite-hybrid-auth-00, 22 March

2022, <https://www.ietf.org/archive/id/draft-becker-

guthrie-noncomposite-hybrid-auth-00.txt>.

Guthrie, R., "Hybrid Non-Composite Authentication in

IKEv2", Work in Progress, Internet-Draft, draft-guthrie-

ipsecme-ikev2-hybrid-auth-00, 25 March 2022, <https://

www.ietf.org/archive/id/draft-guthrie-ipsecme-ikev2-

hybrid-auth-00.txt>.

Ounsworth, M. and M. Pala,

"Composite Signatures For Use In Internet PKI", Work in

Progress, Internet-Draft, draft-ounsworth-pq-composite-

sigs-05, 12 July 2021, <https://www.ietf.org/archive/id/

draft-ounsworth-pq-composite-sigs-05.txt>.

Bassham, L., Polk, W., and R. Housley, "Algorithms and

Identifiers for the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279,

April 2002, <https://www.rfc-editor.org/info/rfc3279>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Schaad, J., "Internet X.509 Public Key Infrastructure

Certificate Request Message Format (CRMF)", RFC 4211, DOI

10.17487/RFC4211, September 2005, <https://www.rfc-

editor.org/info/rfc4211>.

Moriarty, K., Ed., Nystrom, M., Parkinson, S., Rusch, A.,

and M. Scott, "PKCS #12: Personal Information Exchange

Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014,

<https://www.rfc-editor.org/info/rfc7292>.

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P., and T.

Kivinen, "Internet Key Exchange Protocol Version 2

https://www.ietf.org/archive/id/draft-becker-guthrie-noncomposite-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-becker-guthrie-noncomposite-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-guthrie-ipsecme-ikev2-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-guthrie-ipsecme-ikev2-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-guthrie-ipsecme-ikev2-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-sigs-05.txt
https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-sigs-05.txt
https://www.rfc-editor.org/info/rfc3279
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc4211
https://www.rfc-editor.org/info/rfc7292

[RFC8446]

[RFC8551]

(IKEv2)", STD 79, RFC 7296, DOI 10.17487/RFC7296, October

2014, <https://www.rfc-editor.org/info/rfc7296>.

Rescorla, E., "The Transport Layer Security (TLS)

Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446,

August 2018, <https://www.rfc-editor.org/info/rfc8446>.

Schaad, J., Ramsdell, B., and S. Turner, "Secure/

Multipurpose Internet Mail Extensions (S/MIME) Version

4.0 Message Specification", RFC 8551, DOI 10.17487/

RFC8551, April 2019, <https://www.rfc-editor.org/info/

rfc8551>.

Appendix A. Creating explicit combinations

The following ASN.1 Information Objects may be useful in defining

and parsing explicit pairs of public key types. Given an ASN.1 2002

compliant ASN.1 compiler, these Information Objects will enforce the

binding between the public key types specified in the instantiation

of pk-explicitComposite, and the wire objects which implement it.

The one thing that is not enforced automatically by this Information

Object is that publicKey.params are intended to be absent if and

only if they are absent for the declared public key type. This ASN.1

module declares them OPTIONAL and leaves it to implementers to

perform this check explicitly.

EDNOTE this ASN.1 needs to change. The current definition doesn't

put a component AlgorithmIdentifier with each component key. Once we

agree as a group that the text accurately describes what we want, we

can spend a bit of time figuring out if the ASN.1 machinery lets us

express it in a readable way and/or a way that will actually help

people creating explicit pairs.

The following ASN.1 object class then automatically generates the

public key structure from the types defined in pk-explicitComposite.

¶

¶

-- pk-explicitComposite - Composite public key information object

pk-explicitComposite{OBJECT IDENTIFIER:id, PUBLIC-KEY:firstPublicKey,

 FirstPublicKeyType, PUBLIC-KEY:secondPublicKey, SecondPublicKeyType}

 PUBLIC-KEY ::= {PUBLIC-KEYPUBLIC-KEY

 IDENTIFIER id

 KEY ExplicitCompositePublicKey{firstPublicKey, FirstPublicKeyType,

 secondPublicKey, SecondPublicKeyType}

 PARAMS ARE absent

 CERT-KEY-USAGE {digitalSignature, nonRepudiation, keyCertSign,

 cRLSign}

}

¶

¶

https://www.rfc-editor.org/info/rfc7296
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8551
https://www.rfc-editor.org/info/rfc8551

Using this module, it becomes trivial to define explicit pairs. For

an example, see Appendix B.2.

To define explicit triples, quadruples, etc, these Information

Objects can be extended to have thirdPublicKey, fourthPublicKey, etc

throughout.

Appendix B. Examples

B.1. Generic Composite Public Key Examples

This is an example generic composite public key

which decodes as:

-- ExplicitCompositePublicKey - The data structure for a composite

-- public key sec-composite-pub-keys and SecondPublicKeyType are needed

-- because PUBLIC-KEY contains a set of public key types, not a single

-- type.

-- TODO The parameters should be optional only if they are marked

-- optional in the PUBLIC-KEY.

ExplicitCompositePublicKey{PUBLIC-KEY:firstPublicKey, FirstPublicKeyType,

 PUBLIC-KEY:secondPublicKey, SecondPublicKeyType} ::= SEQUENCE {

 firstPublicKey SEQUENCE {

 params firstPublicKey.&Params OPTIONAL,

 publicKey FirstPublicKeyType

 },

 secondPublicKey SEQUENCE {

 params secondPublicKey.&Params OPTIONAL,

 publicKey SecondPublicKeyType

 }

}

¶

¶

¶

¶

-----BEGIN PUBLIC KEY-----

MIIBmDAMBgpghkgBhvprUAQBA4IBhgAwggGBMFkwEwYHKoZIzj0CAQYIKoZIzj0D

AQcDQgAExGPhrnuSG/fGyw1FN+l5h4p4AGRQCS0LBXnBO+djhcI6qnF2TvrQEaIY

GGpQT5wHS+7y5iJJ+dE5qjxcv8loRDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCC

AQoCggEBANsVQK1fcLQObL4ZYtczWbObECAFSsng0OLpRTPr9VGV3SsS/VoMRZqX

F+sszz6I2UcFTaMF9CwNRbWLuIBczzuhbHSjn65OuoN+Om2wsPo+okw46RTekB4a

d9QQvYRVzPlILUQ8NvZ4W0BKLviXTXWIggjtp/Y1pKRHKz8n35J6OmFWz4TKGNth

n87D28kmdwQYH5NLsDePHbfdw3AyLrPvQLlQw/hRPz/9Txf7yi9Djg9HtJ88ES6+

ZbfE1ZHxLYLSDt25tSL8A2pMuGMD3P81nYWO+gJ0vYV2WcRpXHRkjmliGqiCg4eB

mC4//tm0J4r9Ll8b/pp6xyOMI7jppVUCAwEAAQ==

-----END PUBLIC KEY-----

¶

¶

The corresponding generic private key is:

algorithm: AlgorithmIdentifier{id-composite-key}

subjectPublicKey: CompositePublicKey {

 SubjectPublicKeyInfo {

 algorithm: AlgorithmIdentifier {

 algorithm: ecPublicKey

 parameters: prime256v1

 }

 subjectPublicKey: <ec key octet string>

 },

 SubjectPublicKeyInfo {

 algorithm: AlgorithmIdentifier {

 algorithm: rsaEncryption

 parameters: NULL

 }

 subjectPublicKey: <rsa key octet string>

 }

 }

¶

¶

which decodes as:

-----BEGIN PRIVATE KEY-----

MIIFHgIBADAMBgpghkgBhvprUAQBBIIFCTCCBQUwQQIBADATBgcqhkjOPQIBBggq

hkjOPQMBBwQnMCUCAQEEICN0ihCcgg5n8ALtk9tkQZqg/WLEm5NefMi/kdN06Z9u

MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDbFUCtX3C0Dmy+

GWLXM1mzmxAgBUrJ4NDi6UUz6/VRld0rEv1aDEWalxfrLM8+iNlHBU2jBfQsDUW1

i7iAXM87oWx0o5+uTrqDfjptsLD6PqJMOOkU3pAeGnfUEL2EVcz5SC1EPDb2eFtA

Si74l011iIII7af2NaSkRys/J9+SejphVs+EyhjbYZ/Ow9vJJncEGB+TS7A3jx23

3cNwMi6z70C5UMP4UT8//U8X+8ovQ44PR7SfPBEuvmW3xNWR8S2C0g7dubUi/ANq

TLhjA9z/NZ2FjvoCdL2FdlnEaVx0ZI5pYhqogoOHgZguP/7ZtCeK/S5fG/6aescj

jCO46aVVAgMBAAECggEAFtT6LpdZuYofTxh6Mo9Jc+xfG9cxWiSx4FQLQEQBBwWl

TQ3nlXDd+CRy+7Fpz8yXSE2HL8w5DDY945OyIL6LYl2KXgWHaLUPvxByqmfVqd7J

L0RnFiOzxU9g2Zr9BUOj3v7kqM3VtI4KhIK2rnWmPu+BDckmzgP9Kpm4KhbPuAYP

iqUZSkxpSUsd5ALLsk9b0xjR7UEYkEpV2/vORwieEhOmPLzuXh+Px0yavkazT/vU

+h/rDSoLQn7v4fVsQgNdOaaOG/gHemGuuiLPJJlX5ZZ6mmsIaEjz+MNk0aJDH2po

KbAr4B709dTsnYgv7YtkEfSyOeMEdhMiswI1c9FpwQKBgQD6kdHmHCoeWNNvlqxU

v57e7ZDAXDA6WcfrypcsF0l72rI3J8oOPmFaNaCmwIH/Icz+Zy7fr2IYxVjyDjCa

zi8qTnj2ZNds71hUYOcq60u0TcSVrtocA4HW7NoWJqK5thNlNaa1M358cYBopGoN

ocS9yf10q2MBZtpF0fc5PbFf+QKBgQDf1L4cezoebbNTaN4KoapycHXxKozP2GwI

r15YRYjt0ZpHstdUPABQuwlL9CuL+5Q17VRiM81cUVNfFsBzKIXYb/PBC5UD+DmR

qGlT6v6uUWY6jifUgEjfyPxO0oJ3M6cChHR/TvpkT5SyaEwHpIH7IeXbMFcS5m4G

mSNBECO/PQKBgCD0CoHT1Go3Tl9PloxywwcYgT/7H9CcvCEzfJws19o1EdkVH4qu

A4mkoeMsUCxompgeo9iBLUqKsb7rxNKnKSbMOTZWXsqR07ENKXnIhiVJUQBKhZ7H

i0zjy268WAxKeNSHsMwF4K2nE7cvYE84pjI7nVy5qYSmrTAfg/8AMRKpAoGBAN/G

wN6WsE9Vm5BLapo0cMUC/FdFFAyEMdYpBei4dCJXiKgf+7miVypfI/dEwPitZ8rW

YKPhaHHgeLq7c2JuZAo0Ov2IR831MBEYz1zvtvmuNcda8iU4sCLTvLRNL9Re1pzk

sdfJrPn2uhH3xfNqG+1oQXZ3CMbDi8Ka/a0Bpst9AoGBAPR4p6WN0aoZlosyT6NI

4mqzNvLE4KBasmfoMmTJih7qCP3X4pqdgiI0SjsQQG/+utHLoJARwzhWHOZf1JKk

D8lSJH02cp/Znrjn5wPpfYKLphJBiKSPwyIjuFwcR1ck84ONeYq421NDqf7lXbvx

oMqjTPagXUpzHvwluDjtSi8+

-----END PRIVATE KEY-----

¶

¶

B.2. Explicit Composite Public Key Examples

Assume that the following is a defined explicit pair:

Then the same key as above could be encoded as an explicit composite

public key as:

algorithm: AlgorithmIdentifier{id-composite-key}

SEQUENCE {

 OneAsymmetricKey {

 version: 0,

 privateKeyAlgorithm: PrivateKeyAlgorithmIdentifier{

 algorithm: ecPublicKey

 parameters: prime256v1

 }

 privateKey: <ec key octet string>

 },

 OneAsymmetricKey {

 version: 0,

 privateKeyAlgorithm: PrivateKeyAlgorithmIdentifier{

 algorithm: rseEncryption

 parameters: NULL

 }

 privateKey: <rsa key octet string>

 }

 }

¶

¶

id-pk-example-ECandRSA OBJECT IDENTIFIER ::= { 1 2 3 4 }

pk-example-ECandRSA PUBLIC-KEY ::= pk-explicitComposite{

 id-pk-example-ECandRSA,

 ecPublicKey,

 pk-ec,

 rsaEncryption,

 pk-rsa,

}

¶

¶

-----BEGIN PUBLIC KEY-----

MIIBkTAFBgMqAwQDggGGADCCAYEwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATE

Y+Gue5Ib98bLDUU36XmHingAZFAJLQsFecE752OFwjqqcXZO+tARohgYalBPnAdL

7vLmIkn50TmqPFy/yWhEMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEA

2xVArV9wtA5svhli1zNZs5sQIAVKyeDQ4ulFM+v1UZXdKxL9WgxFmpcX6yzPPojZ

RwVNowX0LA1FtYu4gFzPO6FsdKOfrk66g346bbCw+j6iTDjpFN6QHhp31BC9hFXM

+UgtRDw29nhbQEou+JdNdYiCCO2n9jWkpEcrPyffkno6YVbPhMoY22GfzsPbySZ3

BBgfk0uwN48dt93DcDIus+9AuVDD+FE/P/1PF/vKL0OOD0e0nzwRLr5lt8TVkfEt

gtIO3bm1IvwDaky4YwPc/zWdhY76AnS9hXZZxGlcdGSOaWIaqIKDh4GYLj/+2bQn

iv0uXxv+mnrHI4wjuOmlVQIDAQAB

-----END PUBLIC KEY-----

¶

which decodes as:

The corresponding explicit private key is:

¶

algorithm: AlgorithmIdentifier{id-pk-example-ECandRSA}

subjectPublicKey: CompositePublicKey {

 SubjectPublicKeyInfo {

 algorithm: AlgorithmIdentifier {

 algorithm: ecPublicKey

 parameters: prime256v1

 }

 subjectPublicKey: <ec key octet string>

 },

 SubjectPublicKeyInfo {

 algorithm: AlgorithmIdentifier {

 algorithm: rsaEncryption

 parameters: NULL

 }

 subjectPublicKey: <rsa key octet string>

 }

 }

¶

¶

which decodes as:

-----BEGIN PRIVATE KEY-----

MIIFFwIBADAFBgMqAwQEggUJMIIFBTBBAgEAMBMGByqGSM49AgEGCCqGSM49AwEH

BCcwJQIBAQQgI3SKEJyCDmfwAu2T22RBmqD9YsSbk158yL+R03Tpn24wggS+AgEA

MA0GCSqGSIb3DQEBAQUABIIEqDCCBKQCAQACggEBANsVQK1fcLQObL4ZYtczWbOb

ECAFSsng0OLpRTPr9VGV3SsS/VoMRZqXF+sszz6I2UcFTaMF9CwNRbWLuIBczzuh

bHSjn65OuoN+Om2wsPo+okw46RTekB4ad9QQvYRVzPlILUQ8NvZ4W0BKLviXTXWI

ggjtp/Y1pKRHKz8n35J6OmFWz4TKGNthn87D28kmdwQYH5NLsDePHbfdw3AyLrPv

QLlQw/hRPz/9Txf7yi9Djg9HtJ88ES6+ZbfE1ZHxLYLSDt25tSL8A2pMuGMD3P81

nYWO+gJ0vYV2WcRpXHRkjmliGqiCg4eBmC4//tm0J4r9Ll8b/pp6xyOMI7jppVUC

AwEAAQKCAQAW1Poul1m5ih9PGHoyj0lz7F8b1zFaJLHgVAtARAEHBaVNDeeVcN34

JHL7sWnPzJdITYcvzDkMNj3jk7IgvotiXYpeBYdotQ+/EHKqZ9Wp3skvRGcWI7PF

T2DZmv0FQ6Pe/uSozdW0jgqEgraudaY+74ENySbOA/0qmbgqFs+4Bg+KpRlKTGlJ

Sx3kAsuyT1vTGNHtQRiQSlXb+85HCJ4SE6Y8vO5eH4/HTJq+RrNP+9T6H+sNKgtC

fu/h9WxCA105po4b+Ad6Ya66Is8kmVfllnqaawhoSPP4w2TRokMfamgpsCvgHvT1

1OydiC/ti2QR9LI54wR2EyKzAjVz0WnBAoGBAPqR0eYcKh5Y02+WrFS/nt7tkMBc

MDpZx+vKlywXSXvasjcnyg4+YVo1oKbAgf8hzP5nLt+vYhjFWPIOMJrOLypOePZk

12zvWFRg5yrrS7RNxJWu2hwDgdbs2hYmorm2E2U1prUzfnxxgGikag2hxL3J/XSr

YwFm2kXR9zk9sV/5AoGBAN/Uvhx7Oh5ts1No3gqhqnJwdfEqjM/YbAivXlhFiO3R

mkey11Q8AFC7CUv0K4v7lDXtVGIzzVxRU18WwHMohdhv88ELlQP4OZGoaVPq/q5R

ZjqOJ9SASN/I/E7SgnczpwKEdH9O+mRPlLJoTAekgfsh5dswVxLmbgaZI0EQI789

AoGAIPQKgdPUajdOX0+WjHLDBxiBP/sf0Jy8ITN8nCzX2jUR2RUfiq4DiaSh4yxQ

LGiamB6j2IEtSoqxvuvE0qcpJsw5NlZeypHTsQ0peciGJUlRAEqFnseLTOPLbrxY

DEp41IewzAXgracTty9gTzimMjudXLmphKatMB+D/wAxEqkCgYEA38bA3pawT1Wb

kEtqmjRwxQL8V0UUDIQx1ikF6Lh0IleIqB/7uaJXKl8j90TA+K1nytZgo+FoceB4

urtzYm5kCjQ6/YhHzfUwERjPXO+2+a41x1ryJTiwItO8tE0v1F7WnOSx18ms+fa6

EffF82ob7WhBdncIxsOLwpr9rQGmy30CgYEA9HinpY3RqhmWizJPo0jiarM28sTg

oFqyZ+gyZMmKHuoI/dfimp2CIjRKOxBAb/660cugkBHDOFYc5l/UkqQPyVIkfTZy

n9meuOfnA+l9goumEkGIpI/DIiO4XBxHVyTzg415irjbU0Op/uVdu/GgyqNM9qBd

SnMe/CW4OO1KLz4=

-----END PRIVATE KEY-----

¶

¶

algorithm: AlgorithmIdentifier{id-pk-example-ECandRSA}

SEQUENCE {

 OneAsymmetricKey {

 version: 0,

 privateKeyAlgorithm: PrivateKeyAlgorithmIdentifier{

 algorithm: ecPublicKey

 parameters: prime256v1

 }

 privateKey: <ec key octet string>

 },

 OneAsymmetricKey {

 version: 0,

 privateKeyAlgorithm: PrivateKeyAlgorithmIdentifier{

 algorithm: rseEncryption

 parameters: NULL

 }

 privateKey: <rsa key octet string>

 }

 }

¶

Appendix C. ASN.1 Module

<CODE STARTS>

Composite-Keys-2022

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 PUBLIC-KEY, SIGNATURE-ALGORITHM, ParamOptions, AlgorithmIdentifier{}

 FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) }

 SubjectPublicKeyInfo

 FROM PKIX1Explicit-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51) }

 OneAsymmetricKey

 FROM AsymmetricKeyPackageModuleV1

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0)

 id-mod-asymmetricKeyPkgV1(50) } ;

--

-- Object Identifiers

--

der OBJECT IDENTIFIER ::=

 {joint-iso-itu-t asn1(1) ber-derived(2) distinguished-encoding(1)}

-- To be replaced by IANA

id-composite-key OBJECT IDENTIFIER ::= {

 joint-iso-itu-t(2) country(16) us(840) organization(1) entrust(114027)

 Algorithm(80) Composite(4) CompositeKey(1)

-- COMPOSITE-KEY-ALGORITHM

--

-- Describes the basic properties of a composite key algorithm

--

-- &id - contains the OID identifying the composite algorithm

-- &Params - if present, contains the type for the algorithm

-- parameters; if absent, implies no parameters

-- ¶mPresence - parameter presence requirement

--

-- }

COMPOSITE-KEY-ALGORITHM ::= CLASS {

 &id OBJECT IDENTIFIER UNIQUE,

 &Params OPTIONAL,

 ¶mPresence ParamOptions DEFAULT absent

} WITH SYNTAX {

 IDENTIFIER &id

 [PARAMS [TYPE &Params] ARE ¶mPresence]

}

CompositeAlgorithmIdentifier ::= AlgorithmIdentifier{COMPOSITE-KEY-ALGORITHM, {CompositeAlgorithmSet}}

CompositeAlgorithmSet COMPOSITE-KEY-ALGORITHM ::= {

 CompositeAlgorithms, ...

}

--

-- Public Key

--

pk-Composite PUBLIC-KEY ::= {

 IDENTIFIER id-composite-key

 KEY CompositePublicKey

 PARAMS TYPE CompositeAlgorithmIdentifier ARE optional

 PRIVATE-KEY CompositePrivateKey

}

CompositePublicKey ::= SEQUENCE SIZE (2..MAX) OF SubjectPublicKeyInfo

CompositePublicKeyOs ::= OCTET STRING (CONTAINING CompositePublicKey ENCODED BY der)

CompositePublicKeyBs ::= BIT STRING (CONTAINING CompositePublicKey ENCODED BY der)

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey

-- pk-explicitComposite - Composite public key information object

pk-explicitComposite{OBJECT IDENTIFIER:id, PUBLIC-KEY:firstPublicKey,

 FirstPublicKeyType, PUBLIC-KEY:secondPublicKey, SecondPublicKeyType}

 PUBLIC-KEY ::= {

 IDENTIFIER id

 KEY ExplicitCompositePublicKey{firstPublicKey, FirstPublicKeyType,

 secondPublicKey, SecondPublicKeyType}

 PARAMS ARE absent

}

-- The following ASN.1 object class then automatically generates the

-- public key structure from the types defined in pk-explicitComposite.

-- ExplicitCompositePublicKey - The data structure for a composite

-- public key sec-composite-pub-keys and SecondPublicKeyType are needed

-- because PUBLIC-KEY contains a set of public key types, not a single

-- type.

-- TODO The parameters should be optional only if they are marked

-- optional in the PUBLIC-KEY

ExplicitCompositePublicKey{PUBLIC-KEY:firstPublicKey, FirstPublicKeyType,

 PUBLIC-KEY:secondPublicKey, SecondPublicKeyType} ::= SEQUENCE {

 firstPublicKey SEQUENCE {

 params firstPublicKey.&Params OPTIONAL,

 publicKey FirstPublicKeyType

 },

 secondPublicKey SEQUENCE {

 params secondPublicKey.&Params OPTIONAL,

 publicKey SecondPublicKeyType

 }

}

END

<CODE ENDS>

¶

Appendix D. Intellectual Property Considerations

The following IPR Disclosure relates to this draft:

https://datatracker.ietf.org/ipr/3588/

Appendix E. Contributors and Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

electronic mail and VOIP traffic over the past year in pursuit of

this document:

John Gray (Entrust), Serge Mister (Entrust), Scott Fluhrer (Cisco

Systems), Panos Kampanakis (Cisco Systems), Daniel Van Geest

(ISARA), Tim Hollebeek (Digicert), Klaus-Dieter Wirth (D-Trust), and

Francois Rousseau.

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

E.1. Making contributions

Additional contributions to this draft are welcome. Please see the

working copy of this draft at, as well as open issues at:

https://github.com/EntrustCorporation/draft-ounsworth-pq-composite-

keys

Authors' Addresses

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100

Ottawa, Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Massimiliano Pala

CableLabs

Email: director@openca.org

¶

¶

¶

¶

¶

¶

¶

¶

mailto:mike.ounsworth@entrust.com
mailto:director@openca.org

Jan Klaussner

D-Trust GmbH

Kommandantenstr. 15

10969 Berlin

Germany

Email: jan.klaussner@d-trust.net

mailto:jan.klaussner@d-trust.net

	Composite Public and Private Keys For Use In Internet PKI
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Changes in version -02
	2. Introduction
	2.1. Terminology

	3. Composite Key Structures
	3.1. pk-Composite
	3.1.1. Key Usage

	3.2. CompositePublicKey
	3.3. CompositePrivateKey
	3.4. Encoding Rules

	4. Algorithm Identifiers
	4.1. id-composite-key (Generic Composite Keys)
	4.2. Explicit Composite Keys

	5. Implementation Considerations
	5.1. Textual encoding of Composite Private Keys
	5.2. Asymmetric Key Packages (CMS)
	5.3. Backwards Compatibility
	5.3.1. OR modes
	5.3.2. Parallel PKIs

	6. IANA Considerations
	7. Security Considerations
	7.1. Reuse of keys in a Composite public key
	7.2. Key mismatch in explicit composite
	7.3. Policy for Deprecated and Acceptable Algorithms
	7.4. Protection of Private Keys
	7.5. Checking for Compromised Key Reuse

	8. References
	8.1. Normative References
	8.2. Informative References

	Appendix A. Creating explicit combinations
	Appendix B. Examples
	B.1. Generic Composite Public Key Examples
	B.2. Explicit Composite Public Key Examples

	Appendix C. ASN.1 Module
	Appendix D. Intellectual Property Considerations
	Appendix E. Contributors and Acknowledgements
	E.1. Making contributions

	Authors' Addresses

