
Workgroup: LAMPS

Internet-Draft:

draft-ounsworth-pq-composite-sigs-06

Published: 8 February 2022

Intended Status: Standards Track

Expires: 12 August 2022

Authors: M. Ounsworth

Entrust

M. Pala

CableLabs

Composite Signatures For Use In Internet PKI

Abstract

With the widespread adoption of post-quantum cryptography will come

the need for an entity to possess multiple public keys on different

cryptographic algorithms. Since the trustworthiness of individual

post-quantum algorithms is at question, a multi-key cryptographic

operation will need to be performed in such a way that breaking it

requires breaking each of the component algorithms individually.

This requires defining new structures for holding composite

signature data.

This document defines the structures CompositeSignatureValue, and

CompositeParams, which are sequences of the respective structure for

each component algorithm. This document also defines processes for

generating and verifying composite signatures. This document makes

no assumptions about what the component algorithms are, provided

that their algorithm identifiers and signature generation and

verification processes are defined.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 12 August 2022.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Composite Identifiers and Structures

2.1. Algorithm Identifier

2.2. Composite Keys

2.2.1. Key Usage Bits

2.3. Composite Signature

2.4. Encoding Rules

3. Composite Signature Processes

3.1. Composite Signature Generation Process

3.2. Composite-OR Signature Generation Process

3.3. Composite Signature Verification Process

3.4. Composite-OR Signature Verification

3.4.1. Composite-OR Legacy Mode

4. In Practice

4.1. Cryptographic protocols

5. IANA Considerations

6. Security Considerations

6.1. Policy for Deprecated and Acceptable Algorithms

7. Appendices

7.1. ASN.1 Module

7.2. Intellectual Property Considerations

8. Contributors and Acknowledgements

8.1. Making contributions

9. Normative References

Authors' Addresses

1. Introduction

During the transition to post-quantum cryptography, there will be

uncertainty as to the strength of cryptographic algorithms; we will

no longer fully trust traditional cryptography such as RSA, Diffie-

¶

¶

https://trustee.ietf.org/license-info

Hellman, DSA and their elliptic curve variants, but we will also not

fully trust their post-quantum replacements until they have had

sufficient scrutiny. Unlike previous cryptographic algorithm

migrations, the choice of when to migrate and which algorithms to

migrate to, is not so clear. Even after the migration period, it may

be advantageous for an entity's cryptographic identity to be

composed of multiple public-key algorithms.

The deployment of composite signatures using post-quantum algorithms

will face two challenges

Algorithm strength uncertainty: During the transition period,

some post-quantum signature and encryption algorithms will not be

fully trusted, while also the trust in legacy public key

algorithms will start to erode. A relying party may learn some

time after deployment that a public key algorithm has become

untrustworthy, but in the interim, they may not know which

algorithm an adversary has compromised.

Backwards compatibility: During the transition period, post-

quantum algorithms will not be supported by all clients.

This document provides a mechanism to address algorithm strength

uncertainty by building on ~~ reference draft-ounsworth-pq-

composite-pubkeys ~~ by providing formats for encoding multiple

signature values into existing public signature fields, as well as

the process for validating a composite signature. Backwards

compatibility is addressed via the Composite-OR mechanism described

herein.

This document is intended for general applicability anywhere that

digital signatures are used within PKIX and CMS structures.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used in this document:

ALGORITHM: An information object class for identifying the type of

cryptographic operation to be performed. This document is primarily

concerned with algorithms for producing digital signatures.

BER: Basic Encoding Rules (BER) as defined in [X.690].

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

¶

COMPONENT ALGORITHM: A single basic algorithm which is contained

within a composite algorithm.

COMPOSITE ALGORITHM: An algorithm which is a sequence of two or more

component algorithms, as defined in Section 2.

DER: Distinguished Encoding Rules as defined in [X.690].

LEGACY: For the purposes of this document, a legacy key or signature

is a non-composite key or signature.

PUBLIC / PRIVATE KEY: The public and private portion of an

asymmetric cryptographic key, making no assumptions about which

algorithm.

SIGNATURE: A digital cryptographic signature, making no assumptions

about which algorithm.

2. Composite Identifiers and Structures

In order for signatures to be composed of multiple algorithms, we

define encodings consisting of a sequence of signature primitives

(aka "component algorithms") such that these structures can be used

as a drop-in replacement for existing signature fields such as those

found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS

[RFC5652].

This section defines the following structures:

The id-alg-composite is an AlgorithmIdentifier identifying a

composite signature object.

The sa-CompositeSignature AlgorithmIdentifier and the

corresponding CompositeParams identify the algorithm(s) used in a

composite signature.

The CompositeSignatureValue, carries a sequence of signatures

that are generated by a CompositePrivateKey, and can be verified

with the corresponding CompositePublicKey.

EDNOTE 2: the choice to define composite algorithm parameters as a

sequence inside the existing fields avoids the exponential

proliferation of OIDs that are needed for each combination of

signature algorithms in other schemes for achieving multi-key

certificates. This scheme also naturally extends from 2-keypair to

n-keypair keys and certificates.

EDNOTE 2a: We have heard community feedback that the ASN.1

structures presented here are too flexible in that allow arbitrary

combinations of an arbitrary number of signature algorithms. The

¶

¶

¶

¶

¶

¶

¶

¶

*

¶

¶

*

¶

¶

feedback is that this is too much of a "footgun" for implementors

and sysadmins. We are working on an alternative formulation using

ASN.1 information object classes that allow for compiling explicit

pairs of algorithmIDs. We would love community feedback on which

approach is preferred. See slide 30 of this presentation: https://

datatracker.ietf.org/meeting/interim-2021-lamps-01/materials/slides-

interim-2021-lamps-01-sessa-position-presentation-by-mike-

ounsworth-00.pdf

2.1. Algorithm Identifier

The following object identifier is used for identifying a composite

signature. Additional encoding information is provided below for

each of these objects.

EDNOTE 3: this is a temporary OID for the purposes of prototyping.

We are requesting IANA to assign a permanent OID, see Section 5.

2.2. Composite Keys

A Composite signature MUST be associated with a Composite public key

as defined in ~~ reference draft-ounsworth-pq-composite-pubkey ~~.

2.2.1. Key Usage Bits

For protocols such as X.509 [RFC5280] that specify key usage along

with the public key, then the composite public key associated with a

composite signature MUST have a signing-type key usage.

If the keyUsage extension is present in a Certification Authority

(CA) certificate that indicates id-composite-key, then any

combination of the following values MAY be present:

If the keyUsage extension is present in an End Entity (EE)

certificate that indicates id-composite-key, then any combination of

the following values MAY be present:

¶

¶

id-alg-composite OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) private(4)

 enterprise(1) OpenCA(18227) Algorithms(2) id-alg-composite(1) }

¶

¶

¶

¶

¶

digitalSignature;

nonRepudiation;

keyCertSign; and

cRLSign.

¶

¶

digitalSignature; and

nonRepudiation;

¶

2.3. Composite Signature

The ASN.1 algorithm object for a composite signature is:

The following algorithm parameters MUST be included:

The signature's CompositeParams sequence MUST contain the same

component algorithms listed in the same order as in the associated

CompositePrivateKey and CompositePublicKey.

The output of the composite signature algorithm is the DER encoding

of the following structure:

Where each BIT STRING within the SEQUENCE is a signature value

produced by one of the component keys. It MUST contain one signature

value produced by each component algorithm, and in the same order as

in the associated CompositeParams object.

The choice of SEQUENCE OF BIT STRING, rather than for example a

single BIT STRING containing the concatenated signature values, is

to gracefully handle variable-length signature values by taking

advantage of ASN.1's built-in length fields.

2.4. Encoding Rules

Many protocol specifications will require that composite signature

data structures be represented by an octet string or bit string.

When an octet string is required, the DER encoding of the composite

data structure SHALL be used directly.

When a bit string is required, the octets of the DER encoded

composite data structure SHALL be used as the bits of the bit

string, with the most significant bit of the first octet becoming

the first bit, and so on, ending with the least significant bit of

the last octet becoming the last bit of the bit string.

¶

sa-CompositeSignature SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-alg-composite

 VALUE CompositeSignatureValue

 PARAMS TYPE CompositeParams ARE required

 PUBLIC-KEYS { pk-Composite }

 SMIME-CAPS { IDENTIFIED BY id-alg-composite } }

}

¶

¶

CompositeParams ::= SEQUENCE SIZE (2..MAX) OF AlgorithmIdentifier¶

¶

¶

CompositeSignatureValue ::= SEQUENCE SIZE (2..MAX) OF BIT STRING¶

¶

¶

¶

¶

¶

In the interests of simplicity and avoiding compatibility issues,

implementations that parse these structures MAY accept both BER and

DER.

3. Composite Signature Processes

This section specifies the processes for generating and verifying

composite signatures.

This process addresses algorithm strength uncertainty by providing

the verifier with parallel signatures from all the component

signature algorithms; thus breaking the composite signature would

require breaking all of the component signatures.

3.1. Composite Signature Generation Process

Generation of a composite signature involves applying each component

algorithm's signature process to the input message according to its

specification, and then placing each component signature value into

the CompositeSignatureValue structure defined in Section 2.3.

The following process is used to generate composite signature

values.

Since recursive composite public keys are disallowed in ~~ Reference

draft-ounsworth-pq-composite-pubkeys sec-composite-pub-keys ~~, no

component signature may itself be a composite; ie the signature

¶

¶

¶

¶

¶

Input:

 K1, K2, .., Kn Private keys for the n component signature

 algorithms, a CompositePrivateKey

 M Message to be signed, an octet string

Output:

 S The signatures, a CompositeSignatureValue

Signature Generation Process:

 1. Generate the n component signatures independently,

 according to their algorithm specifications.

 for i := 1 to n

 Si := Sign(Ki, M)

 2. Encode each component signature S1, S2, .., Sn into a BIT STRING

 according to its algorithm specification.

 S ::= Sequence { S1, S2, .., Sn }

 3. Output S

¶

generation process MUST fail if one of the private keys K1, K2, ..,

Kn is a composite with the OID id-alg-composite.

A composite signature MUST produce and include in the output a

signature value for every component key in the corresponding

CompositePrivateKey. For this mode, please see Composite-OR in

section Section 3.2.

3.2. Composite-OR Signature Generation Process

EDNOTE: This section was written with the intention of keeping the

primary Composite OID reserved for the simple and strict mode; if

you want to do either a simple OR, or a custom policy then we have

given a different OID. We are still debating whether this is useful

to specify at issuing time, or whether this is adding needless

complexity to the draft.

If the algorithm ID of the public key associated with this signature

is id-composite-or-key then the signer MAY use only a subset of the

component keys and therefore produce fewer signatures than the

number of component keys.

Composite-OR signature generation uses the same structures and

algorithms as Composite, with the difference that the signature

generation process may emit a null instead of a signature value in

step 1 for one or more component algorithms. A Composite-OR

signature MUST NOT be entirely null; it must contain at least one

valid signature.

The design intent of this mode is to support migration scenarios

where an end entity has been issued keys on algorithms that either

itself or the peer with which it is communicating do not (yet)

support. This design allows for both the mode where the signer omits

signatures that it knows its peer cannot process in order to save

bandwidth and performance, and the mode where it includes all

component signatures and allows the verifier to choose how many to

verify. The latter is RECOMMENDED for signatures that need both

sort-term backwards compatibility as well as long-term security.

EDNOTE: Do we want to allow a Composite-OR with only a single

signature to produce non-composite signatureAlgorithm and

signatureValua as per [RFC5280]? Advantages: bandwidth savings of an

extra OID and some sequences with one element. Disadvantages:

ambiguous whether a signature is traditional or composite until you

look at the corresponding public key.

¶

¶

¶

¶

¶

¶

¶

3.3. Composite Signature Verification Process

Verification of a composite signature involves applying each

component algorithm's verification process according to its

specification.

In the absence of an application profile specifying otherwise,

compliant applications MUST output "Valid signature" (true) if and

only if all component signatures were successfully validated, and

"Invalid signature" (false) otherwise.

The following process is used to perform this verification.

Since recursive composite public keys are disallowed in ~~ Reference

draft-ounsworth-pq-composite-keys sec-composite-pub-keys ~~, no

component signature may be composite; ie the signature verification

¶

¶

¶

Input:

 P Signer's composite public key

 M Message whose signature is to be verified, an octet string

 S Composite Signature to be verified

 A Composite Algorithm identifier

Output:

 Validity "Valid signature" (true) if the composite signature

 is valid, "Invalid signature" (false) otherwise.

Signature Verification Procedure::

 1. Parse P, S, A into the component public keys, signatures,

 and algorithm identifiers

 P1, P2, .., Pn := Desequence(P)

 S1, S2, .., Sn := Desequence(S)

 A1, A2, .., An := Desequence(A)

 If Error during Desequencing, or the three sequences have

 different numbers of elements, or any of the public keys P1, P2, .., Pn or

 algorithm identifiers A1, A2, .., An are composite with the OID

 id-alg-composite then output "Invalid signature" and stop.

 2. Check each component signature individually, according to its

 algorithm specification.

 If any fail, then the entire signature validation fails.

 for i := 1 to n

 if not verify(Pi, M, Si), then

 output "Invalid signature"

 if all succeeded, then

 output "Valid signature"

¶

procedure MUST fail if any of the public keys P1, P2, .., Pn or

algorithm identifiers A1, A2, .., An are composite with the OID id-

alg-composite.

3.4. Composite-OR Signature Verification

EDNOTE: This section was written with the intention of keeping the

primary Composite OID reserved for the simple and strict mode; if

you want to do either a simple OR, or a custom policy then we have

given a different OID. We are still debating whether this is useful

to specify at issuing time, or whether this is adding needless

complexity to the draft.

When the public key associated with the signature being verified has

algorithm id-composite-or-key, then an alternate verification

processes MAY be used, at the discretion of the implementor. In this

section we provide some examples of alternate verification

processes.

If the signature is a traditional (non-composite) algorithm and

value or a composite signature with a single component, then it MAY

be considered valid if it verifies under one of the component keys.

If the signature is composite, then the implementor MAY implement

policy for which combinations are acceptable.

EDNOTE: Does this mean Composite-OR end entity certificates need to

be issued by a PKI that is marked as Composite-OR all the way to the

top so that verifiers that do not support all the algorithms don't

fail? Need to think more about the security implications of allowing

a Composite-or in an end entity cert implicitely turning all

Composite algIDs into Composite-or algIDs in its cert chain.

EDNOTE: Do we need to specify the semantics of verifying an "n of m"

subset signature? I suspect that specifying this in general will be

a rat's nest of edge cases, so I propose to "leave this to the

implementor".

3.4.1. Composite-OR Legacy Mode

The Composite-OR Legacy Mode is provided to facilitate migration by

allowing existing PKI entities (including root CAs, intermediate

CAs, and end entities) to have their existing keys re-certified

inside a Composite-OR structure along with Post-Quantum keys, and

for signatures made by that key prior to the migration to remain

valid. Note that Composite-OR Legacy Mode is only provided for

signature verification, and not for signature generation; legacy

signatures SHOULD NOT be produced from a Composite key.

¶

¶

¶

¶

¶

¶

¶

¶

EDNOTE: to further solidify this, we could add a clause that Legacy

Mode signatures are to fail if the signature was produced after

notBefore date of the Composite-OR certificate?

In Composite-OR Legacy Mode, a legacy signature algorithm and legacy

signature value MAY be validated against a Composite-OR public key.

The legacy signature algorithm is to be interpreted by the verifier

as a sa-CompositeSignature with CompositeParams in the following

way:

with the correct number of nulls to match the Composite-OR public

key that the signature is being verified against. For the purposes

of a signature validation under Composite-OR Legacy Mode, a null

AlgorithmIdentifier is considered to be a match for the

corresponding algorithm in the Composite-OR public key.

The legacy signature value is to be interpreted by the verifier as a

sa-CompositeSignature with CompositeParams in the following way:

with the correct number of nulls to match the Composite-OR public

key that the signature is being verified against. The verification

algorithm in section Section 3.4 applies.

Security consideration: when implementing Composite-OR Legacy Mode,

it is important to catch the edge case of {null, null, .., null} for

both AlgorithmIdentifier and SignatureValue and return Invalid

Signature.

It is RECOMMENDED that Composite-OR Legacy Mode be implemented as an

optional mode in the verifier that can be enabled or disabled by

runtime configuration or policy.

EDNOTE: the signing public key is often identified in the signed

document by issuer+serialNumber or by an SKI containing a hash of

the public key value. Might need X.509 extensions identifying the

SKI of the legacy cert it's replacing?

4. In Practice

This section addresses practical issues of how this draft affects

other protocols and standards.

~~~ BEGIN EDNOTE 10~~~

¶

¶

CompositeParams {legacyAlgorithmIdentifier, null, .., null}¶

¶

¶

CompositeSignatureValue  {legacySignatureValue, null, .., null}¶

¶

¶

¶

¶

¶

¶



EDNOTE 10: Possible topics to address:

The size of these certs and cert chains.

In particular, implications for (large) composite keys /

signatures / certs on the handshake stages of TLS and IKEv2.

If a cert in the chain is a composite cert then does the whole

chain need to be of composite Certs?

We could also explain that the root CA cert does not have to be

of the same algorithms. The root cert SHOULD NOT be transferred

in the authentication exchange to save transport overhead and

thus it can be different than the intermediate and leaf certs.

We could talk about overhead (size and processing).

We could also discuss backwards compatibility.

We could include a subsection about implementation

considerations.

~~~ END EDNOTE 10~~~

4.1. Cryptographic protocols

This section talks about how protocols like (D)TLS and IKEv2 are

affected by this specifications. It will not attempt to solve all

these problems, but it will explain the rationale, how things will

work and what open problems need to be solved. Obvious issues that

need to be discussed.

How does the protocol declare support for composite signatures?

TLS has hooks for declaring support for specific signature

algorithms, however it would need to be extended, because the

client would need to declare support for both the composite

infrastructure, as well as for the various component signature

algorithms.

How does the protocol use the multiple keys. The obvious way

would be to have the server sign using its composite public key;

is this sufficient.

Overhead; including certificate size, signature processing time,

and size of the signature.

How to deal with crypto protocols that use public key encryption

algorithms; this document only lists how to work with signature

algorithms. Encoding composite public keys is straightforward;

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

*

¶

*

¶

*

¶

*

encoding composite ciphertexts is less so - we decided to put

that off to another draft.

5. IANA Considerations

The ASN.1 module OID is TBD. The id-alg-composite OID is to be

assigned by IANA. The authors suggest that IANA assign an OID on the

id-pkix arc:

6. Security Considerations

6.1. Policy for Deprecated and Acceptable Algorithms

Traditionally, a public key, certificate, or signature contains a

single cryptographic algorithm. If and when an algorithm becomes

deprecated (for example, RSA-512, or SHA1), it is obvious that

structures using that algorithm are implicitly revoked.

In the composite model this is less obvious since a single public

key, certificate, or signature may contain a mixture of deprecated

and non-deprecated algorithms. Moreover, implementers may decide

that certain cryptographic algorithms have complementary security

properties and are acceptable in combination even though neither

algorithm is acceptable by itself.

Specifying a modified verification algorithm to handle these

situations is beyond the scope of this draft, but could be desirable

as the subject of an application profile document, or to be up to

the discretion of implementers.

While intentionally not specified in this document, implementors

should put careful thought into implementing a meaningfull policy

mechinism within the context of their signature verification

engines, for example only algorithms that provide similar security

levels should be combined together.

¶

¶

id-alg-composite OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) composite(??) }

¶

¶

¶

¶

2. Check policy to see whether A1, A2, ..., An constitutes a valid

 combination of algorithms.

 if not checkPolicy(A1, A2, ..., An), then

 output "Invalid signature"

¶

¶

7. Appendices

7.1. ASN.1 Module

<CODE STARTS>

Composite-Signatures-2019

 { TBD }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 PUBLIC-KEY, SIGNATURE-ALGORITHM

 FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) }

 SubjectPublicKeyInfo

 FROM PKIX1Explicit-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51) }

 OneAsymmetricKey

 FROM AsymmetricKeyPackageModuleV1

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0)

 id-mod-asymmetricKeyPkgV1(50) } ;

--

-- Object Identifiers

--

id-alg-composite OBJECT IDENTIFIER ::= { TBD }

--

-- Public Key

--

pk-Composite PUBLIC-KEY ::= {

 IDENTIFIER id-alg-composite

 KEY CompositePublicKey

 PARAMS ARE absent

 PRIVATE-KEY CompositePrivateKey

}

CompositePublicKey ::= SEQUENCE SIZE (2..MAX) OF SubjectPublicKeyInfo

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey

--

-- Signature Algorithm

--

sa-CompositeSignature SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-alg-composite

 VALUE CompositeSignatureValue

 PARAMS TYPE CompositeParams ARE required

 PUBLIC-KEYS { pk-Composite }

 SMIME-CAPS { IDENTIFIED BY id-alg-composite } }

CompositeParams ::= SEQUENCE SIZE (2..MAX) OF AlgorithmIdentifier

CompositeSignatureValue ::= SEQUENCE SIZE (2..MAX) OF BIT STRING

END

<CODE ENDS>

¶

[RFC2119]

[RFC2986]

[RFC4210]

7.2. Intellectual Property Considerations

The following IPR Disclosure relates to this draft:

https://datatracker.ietf.org/ipr/3588/

8. Contributors and Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

electronic mail and VOIP traffic over the past year in pursuit of

this document:

John Gray (Entrust), Serge Mister (Entrust), Scott Fluhrer (Cisco

Systems), Panos Kampanakis (Cisco Systems), Daniel Van Geest

(ISARA), Tim Hollebeek (Digicert), and Francois Rousseau.

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

8.1. Making contributions

Additional contributions to this draft are weclome. Please see the

working copy of this draft at, as well as open issues at:

https://github.com/EntrustCorporation/draft-ounsworth-composite-sigs

9. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

¶

¶

¶

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986

[RFC5280]

[RFC5652]

[RFC8174]

[RFC8411]

[X.690]

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2015, November 2015.

Authors' Addresses

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100

Ottawa, Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Massimiliano Pala

CableLabs

Email: director@openca.org

https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
mailto:mike.ounsworth@entrust.com
mailto:director@openca.org

	Composite Signatures For Use In Internet PKI
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Composite Identifiers and Structures
	2.1. Algorithm Identifier
	2.2. Composite Keys
	2.2.1. Key Usage Bits

	2.3. Composite Signature
	2.4. Encoding Rules

	3. Composite Signature Processes
	3.1. Composite Signature Generation Process
	3.2. Composite-OR Signature Generation Process
	3.3. Composite Signature Verification Process
	3.4. Composite-OR Signature Verification
	3.4.1. Composite-OR Legacy Mode

	4. In Practice
	4.1. Cryptographic protocols

	5. IANA Considerations
	6. Security Considerations
	6.1. Policy for Deprecated and Acceptable Algorithms

	7. Appendices
	7.1. ASN.1 Module
	7.2. Intellectual Property Considerations

	8. Contributors and Acknowledgements
	8.1. Making contributions

	9. Normative References
	Authors' Addresses

