
Workgroup: LAMPS

Internet-Draft:

draft-ounsworth-pq-composite-sigs-07

Published: 8 June 2022

Intended Status: Standards Track

Expires: 10 December 2022

Authors: M. Ounsworth

Entrust

M. Pala

CableLabs

Composite Signatures For Use In Internet PKI

Abstract

The migration to post-quantum cryptography is unique in the history

of modern digital cryptography in that neither the old outgoing nor

the new incoming algorithms are fully trusted to protect data for

the required data lifetimes. The outgoing algorithms, such as RSA

and elliptic curve, may fall to quantum cryptanalysis, while the

incoming post-quantum algorithms face uncertainty about both the

underlying mathematics as well as hardware and software

implementations that have not had sufficient maturing time to rule

out classical cryptanalytic attacks and implementation bugs.

Cautious implementer may wish to layer cryptographic algorithms such

that an attacker would need to break all of them in order to

compromise the data being protected. For digital signatures, this is

referred to as "dual", and for encryption key establishment this as

referred to as "hybrid". This document, and its companions, defines

a specific instantiation of the dual and hybrid paradigm called

"composite" where multiple cryptographic algorithms are combined to

form a single key, signature, or key encapsulation mechanism (KEM)

such that they can be treated as a single atomic object at the

protocol level.

EDNOTE: the terms "dual" and "hybrid" are currently in flux. We

anticipate an Informational draft to normalize terminology, and will

update this draft accordingly.

This document defines the structures CompositeSignatureValue, and

CompositeParams, which are sequences of the respective structure for

each component algorithm. The generic composite variant is defined

which allows arbitrary combinations of signature algorithms to be

used in the CompositeSignatureValue and CompositeParams structures

without needing the combination to be pre-registered or pre-agreed.

The explicit variant is also defined which allows for a set of

signature algorithm identifier OIDs to be registered together as an

explicit composite signature algorithm and assigned an OID.

¶

¶

¶

¶

This document is intended to be coupled with corresponding documents

that define the structure and semantics of composite public and

private keys and encryption [I-D.draft-ounsworth-pq-composite-

keys-01], however may also be used with non-composite keys, such as

when a protocol combines multiple certificates into a single

cryptographic operation.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 10 December 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Changes in version -07

2. Introduction

2.1. Terminology

3. Composite Signature Structures

3.1. Composite Keys

3.1.1. Key Usage Bits

3.2. sa-CompositeSignature

3.3. CompositeSignatureValue

3.4. Encoding Rules

¶

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

4. Algorithm Identifiers

4.1. id-alg-composite (Generic Composite Signatures)

4.2. Explicit Composite Signatures

5. Composite Signature Processes

5.1. Composite Signature Generation Process

5.2. Composite Signature Verification Process

6. Implementation Considerations

6.1. Backwards Compatibility

6.1.1. OR modes

6.1.2. Parallel PKIs

7. IANA Considerations

8. Security Considerations

8.1. Policy for Deprecated and Acceptable Algorithms

8.2. OR Modes

8.2.1. Subset Signature Generation

8.2.2. Subset Signature Verification

9. References

9.1. Normative References

9.2. Informative References

Appendix A. Work in Progress

A.1. Combiner modes (KofN)

Appendix B. Creating explicit combinations

Appendix C. Examples

C.1. Generic Composite Signature Examples

C.2. Explicit Composite Signature Examples

Appendix D. ASN.1 Module

Appendix E. Intellectual Property Considerations

Appendix F. Contributors and Acknowledgements

F.1. Making contributions

Authors' Addresses

1. Changes in version -07

Merged Generic Composite (Section 4.1) and Explicit Composite

(Section 4.2) into one document and made them share a wire

encoding (only differing by the OIDs used).

Removed Composite-OR signature mode.

Added Section 6.1 addressing backwards compatibility and ease of

migration concerns.

Added CompositeParams := Alg1, Alg2, .. Algn as an input

parameter to the sig gen and verification processes.

TODO diff this against the public version and see if there are any

more changes.

*

¶

* ¶

*

¶

*

¶

¶

2. Introduction

During the transition to post-quantum cryptography, there will be

uncertainty as to the strength of cryptographic algorithms; we will

no longer fully trust traditional cryptography such as RSA, Diffie-

Hellman, DSA and their elliptic curve variants, but we will also not

fully trust their post-quantum replacements until they have had

sufficient scrutiny and time to discover and fix implementation

bugs. Unlike previous cryptographic algorithm migrations, the choice

of when to migrate and which algorithms to migrate to, is not so

clear. Even after the migration period, it may be advantageous for

an entity's cryptographic identity to be composed of multiple

public-key algorithms.

The deployment of composite signatures using post-quantum algorithms

will face two challenges

Algorithm strength uncertainty: During the transition period,

some post-quantum signature and encryption algorithms will not be

fully trusted, while also the trust in legacy public key

algorithms will start to erode. A relying party may learn some

time after deployment that a public key algorithm has become

untrustworthy, but in the interim, they may not know which

algorithm an adversary has compromised.

Backwards compatibility: During the transition period, post-

quantum algorithms will not be supported by all clients.

This document provides a mechanism to address algorithm strength

uncertainty concerns by building on [draft-ounsworth-pq-composite-

keys-00] (NOTE: need kramdown formatting help with this ref) by

providing formats for encoding multiple signature values into

existing public signature fields, as well as the process for

validating a composite signature. Backwards compatibility is

addressed via using composite in conjunction with a non-composite

hybrid mode such as that described in [draft-becker-guthrie-

noncomposite-hybrid-auth-00] (NOTE: need kramdown formatting help

with this ref).

This document is intended for general applicability anywhere that

digital signatures are used within PKIX and CMS structures.

2.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

¶

¶

*

¶

*

¶

¶

¶

¶

The following terms are used in this document:

ALGORITHM: A standardized cryptographic primitive, as well as any

ASN.1 structures needed for encoding data and metadata needed to use

the algorithm. This document is primarily concerned with algorithms

for producing digital signatures.

BER: Basic Encoding Rules (BER) as defined in [X.690].

CLIENT: Any software that is making use of a cryptographic key. This

includes a signer, verifier, encrypter, decrypter.

COMPONENT ALGORITHM: A single basic algorithm which is contained

within a composite algorithm.

COMPOSITE ALGORITHM: An algorithm which is a sequence of two or more

component algorithms, as defined in Section 3.

DER: Distinguished Encoding Rules as defined in [X.690].

LEGACY: For the purposes of this document, a legacy algorithm is any

cryptographic algorithm currently is use which is not believe to be

resistant to quantum cryptanalysis.

PKI: Public Key Infrastructure, as defined in [RFC5280].

POST-QUANTUM ALGORITHM: Any cryptographic algorithm which is

believed to be resistant to classical and quantum cryptanalysis,

such as the algorithms being considered for standardization by NIST.

PUBLIC / PRIVATE KEY: The public and private portion of an

asymmetric cryptographic key, making no assumptions about which

algorithm.

SIGNATURE: A digital cryptographic signature, making no assumptions

about which algorithm.

STRIPPING ATTACK: An attack in which the attacker is able to

downgrade the cryptographic object to an attacker-chosen subset of

original set of component algorithms in such a way that it is not

detectable by the receiver. For example, substituting a composite

public key or signature for a version with fewer components.

3. Composite Signature Structures

In order for signatures to be composed of multiple algorithms, we

define encodings consisting of a sequence of signature primitives

(aka "component algorithms") such that these structures can be used

as a drop-in replacement for existing signature fields such as those

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

found in PKCS#10 [RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS

[RFC5652].

3.1. Composite Keys

A composite signature MAY be associated with a composite public key

as defined in [draft-ounsworth-pq-composite-keys-00] (NOTE: need

kramdown formatting help with this ref), but MAY also be associated

with multiple public keys from different sources, for example

multiple X.509 certificates, or multiple cryptographic modules. In

the latter case, composite signatures MAY be used as the mechanism

for carrying multiple signatures in a non-composite authentication

mechanism such as those described in [draft-becker-guthrie-

noncomposite-hybrid-auth-00] (NOTE: need kramdown formatting help

with this ref).

3.1.1. Key Usage Bits

For protocols such as X.509 [RFC5280] that specify key usage along

with the public key, then the composite public key associated with a

composite signature MUST have a signing-type key usage.

If the keyUsage extension is present in a Certification Authority

(CA) certificate that indicates id-composite-key, then any

combination of the following values MAY be present:

If the keyUsage extension is present in an End Entity (EE)

certificate that indicates id-composite-key, then any combination of

the following values MAY be present:

3.2. sa-CompositeSignature

The ASN.1 algorithm object for a composite signature is:

¶

¶

¶

¶

digitalSignature;

nonRepudiation;

keyCertSign; and

cRLSign.

¶

¶

digitalSignature; and

nonRepudiation;

¶

¶

sa-CompositeSignature SIGNATURE-ALGORITHM ::= {

 IDENTIFIER identifier

 VALUE CompositeSignatureValue

 PARAMS ANY DEFINED BY ALGORITHM

 PUBLIC-KEYS { pk-Composite }

 SMIME-CAPS { IDENTIFIED BY id-alg-composite } }

}

¶

The identifier specifies the type of composite signature and the

component algorithms. This document defines a generic composite

algorithm, identified by id-alg-composite, in Section 4.1, and

allows for other standards that will define explicit algorithms that

specify which component algorithms are to be contained within them.

3.3. CompositeSignatureValue

The output of the composite signature algorithm is the DER encoding

of the following structure:

Where each BIT STRING within the SEQUENCE is a signature value

produced by one of the component keys. It MUST contain one signature

value produced by each component algorithm, and in the same order as

in the associated CompositeParams object.

A CompositeSignatureValue MUST contain the same number of component

signatures as the corresponding public and private keys, and the

order of component signature values MUST correspond to the component

public keys.

The choice of SEQUENCE OF BIT STRING, rather than for example a

single BIT STRING containing the concatenated signature values, is

to gracefully handle variable-length signature values by taking

advantage of ASN.1's built-in length fields.

3.4. Encoding Rules

Many protocol specifications will require that composite signature

data structures be represented by an octet string or bit string.

When an octet string is required, the DER encoding of the composite

data structure SHALL be used directly.

EDNOTE: will this definition include an ASN.1 tag and length byte

inside the OCTET STRING object? If so, that's probably an extra

unnecessary layer.

When a bit string is required, the octets of the DER encoded

composite data structure SHALL be used as the bits of the bit

string, with the most significant bit of the first octet becoming

the first bit, and so on, ending with the least significant bit of

the last octet becoming the last bit of the bit string.

In the interests of simplicity and avoiding compatibility issues,

implementations that parse these structures MAY accept both BER and

DER.

¶

¶

CompositeSignatureValue ::= SEQUENCE SIZE (2..MAX) OF BIT STRING¶

¶

¶

¶

¶

¶

¶

¶

¶

4. Algorithm Identifiers

This section defines the algorithm identifier for generic composite,

as well as a framework for defining explicit combinations. This

section is not intended to be exhaustive and other authors may

define others so long as they are compatible with the structures and

processes defined in this and companion public and private key

documents.

Some use-cases desire the flexibility for clients to use any

combination of supported algorithms, while others desire the

rigidity of explicitly-specified combinations of algorithms.

4.1. id-alg-composite (Generic Composite Signatures)

The id-alg-composite object identifier is used for identifying a

generic composite signature. This algorithm allows arbitrary

combinations of signature algorithms to be used in the

CompositeSignatureValue and CompositeParams structures without

needing the combination to be pre-registered or pre-agreed. This

identifier MUST be used in sa-CompositeSignature.identifier.

EDNOTE: this is a temporary OID for the purposes of prototyping. We

are requesting IANA to assign a permanent OID, see Section 7.

The following algorithm parameters MUST be included:

The signature's CompositeParams sequence MUST contain the same

component algorithms listed in the same order as in the associated

CompositePublicKey.

The motivation for this variant is primarily for prototyping work

prior to the standardization of algorithm identifiers for explicit

combinations of algorithms. However, the authors envision that this

variant will remain relevant beyond full standardization for example

in environments requiring very high levels of crypto agility, for

example where clients support a large number of algorithms or where

a large number of keys will be used at a time and it is therefore

prohibitive to define algorithm identifiers for every combination of

pairs, triples, quadruples, etc of algorithms.

¶

¶

¶

id-alg-composite OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) private(4)

 enterprise(1) OpenCA(18227) Algorithms(2) id-alg-composite(1) }

¶

¶

¶

CompositeParams ::= SEQUENCE SIZE (2..MAX) OF AlgorithmIdentifier¶

¶

¶

4.2. Explicit Composite Signatures

This variant provides a rigid way of specifying supported

combinations of algorithms.

The motivation for this variant is to make it easier to reference

and enforce specific combinations of algorithms. The authors

envision this being useful for client-server negotiated protocols,

protocol designers who wish to place constraints on allowable

algorithm combinations in the protocol specification, as well as

audited environments that wish to prove that only certain

combinations will be supported by clients.

Explicit algorithms must define a new signature algorithm which

consists of:

A new algorithm identifier OID for the explicit algorithm.

The algorithm identifier OID and PUBLIC-KEY type of each

component algorithm.

Signature parameters either declared ABSENT, or defined with a

type and encoding.

See Appendix B for guidance on creating and registering OIDs for

specific explicit combinations.

For explicit algorithms, it is not necessary to carry a

CompositeParams with the list of component algorithms in the

signature algorithm parameters because clients can infer the

expected component algorithms from the algorithm identifier. The

PARAMS is left optional because some types of component algorithms

will require parameters to be carried, such as RSASSA-PSS-params as

defined in [RFC8017]. Section 3.2 defines PARAMS ANY DEFINED BY

ALGORITHM so that explicit algorithms may define params as ABSENT,

use CompositeParams defined in Section 4.1 or use any other encoding

that is appropriate.

In this variant, the signature is encoded as defined in Section 3.2,

however the sa-CompositeSignature.identifier SHALL be an OID which

is registered to represent a specific combination of component

signature algorithms. See Appendix C for examples.

5. Composite Signature Processes

This section specifies the processes for generating and verifying

composite signatures.

This process addresses algorithm strength uncertainty by providing

the verifier with parallel signatures from all the component

¶

¶

¶

* ¶

*

¶

*

¶

¶

¶

¶

¶

signature algorithms; thus forging the composite signature would

require forging all of the component signatures.

5.1. Composite Signature Generation Process

Generation of a composite signature involves applying each component

algorithm's signature process to the input message according to its

specification, and then placing each component signature value into

the CompositeSignatureValue structure defined in Section 3.2.

The following process is used to generate composite signature

values.

Note on composite inputs: the method of providing the list of

component keys and algorithms is flexible and beyond the scope of

this pseudo-code, for example they may be carried in

CompositePrivateKey and CompositeParams structures. It is also

possible to generate a composite signature that combines signatures

from distinct keys stored in separate software or hardware

keystores. Variations in the process to accommodate particular

private key storage mechanisms are considered to be conformant to

this document so long as it produces the same output as the process

sketched above.

¶

¶

¶

Input:

 K1, K2, .., Kn Signing private keys. See note below on

 composite inputs.

 A1, A2, ... An Component signature algorithms. See note below on

 composite inputs.

 M Message to be signed, an octet string

Output:

 S The signatures, a CompositeSignatureValue

Signature Generation Process:

 1. Generate the n component signatures independently,

 according to their algorithm specifications.

 for i := 1 to n

 Si := Sign(Ki, Ai, M)

 2. Encode each component signature S1, S2, .., Sn into a BIT STRING

 according to its algorithm specification.

 S ::= Sequence { S1, S2, .., Sn }

 3. Output S

¶

¶

Since recursive composite public keys are disallowed in ~~ Reference

draft-ounsworth-pq-composite-pubkeys sec-composite-pub-keys ~~, no

component signature may itself be a composite; ie the signature

generation process MUST fail if one of the private keys K1, K2, ..,

Kn is a composite with the OID id-alg-composite.

A composite signature MUST produce, and include in the output, a

signature value for every component key in and include in the

output, a signature value for every component key in the

corresponding CompositePublicKey, and they MUST be in the same

order; ie in the output, S1 MUST correspond to K1, S2 to K2, etc.

The authors recognize that there may be valid use cases for "subset

signature generation"; see Section 8.2.1 for further discussion of

security implications, and Section 6.1 for further discussion of

backwards compatibility implications.

For security when using a generic composite signature algorithm as

defined in Section 4.1, the list of component signature algorithms

A1, A2, .., An, which may be carried in a CompositeParams object,

SHOULD be included in the signed message M to prevent an attacker

from substituting a weaker algorithm which is compatible with the

same public key. This attack is not unique or new to the composite

format.

5.2. Composite Signature Verification Process

Verification of a composite signature involves applying each

component algorithm's verification process according to its

specification.

In the absence of an application profile specifying otherwise,

compliant applications MUST output "Valid signature" (true) if and

only if all component signatures were successfully validated, and

"Invalid signature" (false) otherwise.

The following process is used to perform this verification.

¶

¶

¶

¶

¶

¶

Note on composite inputs: the method of providing the list of

component keys, algorithms and signatures is flexible and beyond the

scope of this pseudo-code, for example they may be carried in

CompositePublicKey, CompositeParams, and compositesignaturevalue

structures. It is also possible to verify a composite signature

where the component public verification keys belong, for example, to

separate X.509 certificates or cryptographic modules. Variations in

the process to accommodate particular public verification key

storage mechanisms are considered to be conformant to this document

so long as it produces the same output as the process sketched

above.

Input:

 P1, P2, .., Pn Public verification keys. See note below on

 composite inputs.

 M Message whose signature is to be verified,

 an octet string

 S1, S2, .., Sn Component signature values to be verified.

 See note below on composite inputs.

 A1, A2, ... An Component signature algorithms. See note

 below on composite inputs.

Output:

 Validity (bool) "Valid signature" (true) if the composite

 signature is valid, "Invalid signature"

 (false) otherwise.

Signature Verification Procedure::

 1. Check keys, signatures, and algorithms lists for consistency.

 If Error during Desequencing, or the three sequences have

 different numbers of elements, or any of the public keys

 P1, P2, .., Pn or algorithm identifiers A1, A2, .., An are

 composite with the OID id-alg-composite or an explicit composite

 OID then output "Invalid signature" and stop.

 2. Check each component signature individually, according to its

 algorithm specification.

 If any fail, then the entire signature validation fails.

 for i := 1 to n

 if not verify(Pi, M, Si, Ai), then

 output "Invalid signature"

 if all succeeded, then

 output "Valid signature"

¶

¶

Since recursive composite public keys are disallowed in ~~ Reference

draft-ounsworth-pq-composite-keys sec-composite-pub-keys ~~, no

component signature may be composite; ie the signature verification

procedure MUST fail if any of the public keys P1, P2, .., Pn or

algorithm identifiers A1, A2, .., An are composite with the OID id-

alg-composite.

Some verification clients may include a policy mechanism for

specifying acceptable subsets of algorithms. In these cases,

implementer MAY, in the interest of performance of compatibility,

modify the above process to skip one or more signature validations

as per their local client policy. See Section 8.2 for a discussion

of associated risks.

In the absence of such a policy mechanism that can be easily updated

to reflect new cryptanalytic breakthroughs, clients MUST perform

signature verifications in the AND mode defined here. See Section

8.2.1 for further discussion of security implications of subset

signature verifications, and Section 6.1 for further discussion of

backwards compatibility implications.

6. Implementation Considerations

This section addresses practical issues of how this draft affects

other protocols and standards.

~~~ BEGIN EDNOTE 10~~~

EDNOTE 10: Possible topics to address:

The size of these certs and cert chains.

In particular, implications for (large) composite keys /

signatures / certs on the handshake stages of TLS and IKEv2.

If a cert in the chain is a composite cert then does the whole

chain need to be of composite Certs?

We could also explain that the root CA cert does not have to be

of the same algorithms. The root cert SHOULD NOT be transferred

in the authentication exchange to save transport overhead and

thus it can be different than the intermediate and leaf certs.

We could talk about overhead (size and processing).

We could also discuss backwards compatibility.

We could include a subsection about implementation

considerations.

¶

¶

¶

¶

¶

¶

* ¶

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶



~~~ END EDNOTE 10~~~

6.1. Backwards Compatibility

As noted in the introduction, the post-quantum cryptographic

migration will face challenges in both ensuring cryptographic

strength against adversaries of unknown capabilities, as well as

providing ease of migration. The composite mechanisms defined in

this document primarily address cryptographic strength, however this

section contains notes on how backwards compatibility may be

obtained.

The term "ease of migration" is used here to mean that existing

systems can be gracefully transitioned to the new technology without

requiring large service disruptions or expensive upgrades. The term

"backwards compatibility" is used here to mean something more

specific; that existing systems as they are deployed today can

interoperate with the upgraded systems of the future.

These migration and interoperability concerns need to be thought

about in the context of various types of protocols that make use of

X.509 and PKIX with relation to digital signature objects, from

online negotiated protocols such as TLS 1.3 [RFC8446] and IKEv2

[RFC7296], to non-negotiated asynchronous protocols such as S/MIME

signed email [RFC8551], document signing such as in the context of

the European eIDAS regulations [eIDAS2014], and publicly trusted

code signing [codeSigningBRsv2.8], as well as myriad other

standardized and proprietary protocols and applications that

leverage CMS [RFC5652] signed structures.

6.1.1. OR modes

Section 5.1 and Section 5.2 make reference to subset signature

generation and verification modes to achieve an OR relation between

component signatures, where senders and / or receivers are permitted

to ignore some component keys. Some envisioned uses of this include

environments where the client encounters a component signature

algorithm for which it does not posses a compatible implementation

but wishes to proceed with the signature verification using the

subset of component signatures for which it does have compatible

implementations. Such a mechanism could be designed to provide ease

of migration by allowing for composite keys to be distributed and

used before all clients in the environment are fully upgraded, but

it does not allow for full backwards compatibility since clients

would at least need to be upgraded from their current state to be

able to parse the composite structures.

¶

¶

¶

¶

¶

6.1.2. Parallel PKIs

We present the term "Parallel PKI" to refer to the setup where a PKI

end entity possesses two or more distinct public keys or

certificates for the same identity (name), but containing keys for

different cryptographic algorithms. One could imagine a set of

parallel PKIs where an existing PKI using legacy algorithms (RSA,

ECC) is left operational during the post-quantum migration but is

shadowed by one or more parallel PKIs using pure post quantum

algorithms or composite algorithms (legacy and post-quantum).

Equipped with a set of parallel public keys in this way, a client

would have the flexibility to choose which public key(s) or

certificate(s) to use in a given signature operation.

For negotiated protocols, the client could choose which public

key(s) or certificate(s) to use based on the negotiated algorithms,

or could combine two of the public keys for example in a non-

composite hybrid method such as [draft-becker-guthrie-noncomposite-

hybrid-auth-00] (NOTE: need kramdown formatting help with this ref)

or [draft-guthrie-ipsecme-ikev2-hybrid-auth-00]. Note that it is

possible to use the signature algorithms defined in Section 4 as a

way to carry the multiple signature values generated by one of the

non-composite public mechanism in protocols where it is easier to

support the composite signature algorithms than to implement such a

mechanism in the protocol itself. There is also nothing precluding a

composite public key from being one of the components used within a

non-composite authentication operation; this may lead to greater

convenience in setting up parallel PKI hierarchies that need to

service a range of clients implementing different styles of post-

quantum migration strategies.

For non-negotiated protocols, the details for obtaining backwards

compatibility will vary by protocol, but for example in CMS

[RFC5652], the inclusion of multiple SignerInfo objects is often

already treated as an OR relationship, so including one for each of

the signer's parallel PKI public keys would, in many cases, have the

desired effect of allowing the receiver to choose one they are

compatible with and ignore the others, thus achieving full backwards

compatibility.

7. IANA Considerations

The ASN.1 module OID is TBD. The id-alg-composite OID is to be

assigned by IANA. The authors suggest that IANA assign an OID on the

id-pkix arc:

¶

¶

¶

¶

¶

8. Security Considerations

8.1. Policy for Deprecated and Acceptable Algorithms

Traditionally, a public key, certificate, or signature contains a

single cryptographic algorithm. If and when an algorithm becomes

deprecated (for example, RSA-512, or SHA1), it is obvious that

clients performing signature verifications should be updated to fail

to validate signatures using these algorithms.

In the composite model this is less obvious since a single public

key, certificate, or signature may contain a mixture of deprecated

and non-deprecated algorithms. Moreover, implementers may decide

that certain cryptographic algorithms have complementary security

properties and are acceptable in combination even though neither

algorithm is acceptable by itself.

Specifying a modified verification algorithm to handle these

situations is beyond the scope of this draft, but could be desirable

as the subject of an application profile document, or to be up to

the discretion of implementers.

8.2. OR Modes

8.2.1. Subset Signature Generation

This document defines a composite signature generation process in

Section 5.1 where the signer MUST produce a signature value with

each of their component private keys, this providing full protection

of the content under all available component algorithms.

The authors recognize that there may be cases where a client may

wish to generate a composite signature that only uses a subset of

the available component algorithms, for example to save bandwidth,

or because a client has been issued a key for which it does not

(yet) have implementations of all component algorithms. This could

be easily encoded by placing a NULL value into the corresponding

field of the CompositeSignatureValue. However, this mode was

intentionally omitted from this specification as it trivially allows

for stripping attacks where an attacker replaces a valid component

id-alg-composite OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) composite(??) }

¶

¶

¶

¶

2. Check policy to see whether A1, A2, ..., An constitutes a valid

 combination of algorithms.

 if not checkPolicy(A1, A2, ..., An), then

 output "Invalid signature"

¶

¶

[RFC2119]

signature value with NULL, thus reducing the security of the

composite signature to the weakest of the available component

algorithms.

Implementer who wish to perform subset signature generations are

advised to couple it with an out-of-band policy mechanism that

limits the potential for stripping attacks. Note that, in an effort

to keep compliant implementations simple and secure, implementations

claiming to be compliant with this draft MUST NOT generate subset

signatures in this way, and MUST reject during verification any

subset signatures that they encounter.

8.2.2. Subset Signature Verification

This document defines a composite signature verification process in

Section 5.2 where the verifier verifies all component signatures and

fails if any component fails. The authors recognize that there will

be scenarios where the verifier considers a single component

algorithm -- or subset of component algorithms -- to provide

sufficient security, and therefore for performance reasons wishes to

skip the verification of one or more component signatures.

-- harmonize this with Serge's blurb --

Implementers who wish to perform subset signature verifications are

advised to couple it with an out-of-band policy mechanism that can

control the list of acceptable algorithm combinations, and keep this

list up to date as new cryptanalytic advances are made.

Risks:

Failing to update client verification policy in response to

advances in cryptanalysis

Verifications of a subset of signatures leads to ambiguity in the

security strength of the signature verification; ie if a message

carries two signatures, one at 128 bits and the other at 112 bits

of security and clients are verifying in an OR mode with flexible

policy, then it becomes difficult to audit the security strength

used at runtime.

Moreover, verifying multiple algorithms provides security even in

the event that one of the algorithms has already been broken, but

knowledge of the break has not been made public yet.

9. References

9.1. Normative References

¶

¶

¶

¶

¶

¶

*

¶

*

¶

*

¶

[RFC2986]

[RFC4210]

[RFC5280]

[RFC5652]

[RFC8174]

[RFC8411]

[X.690]

[Bindel2017]

[I-D.becker-guthrie-noncomposite-hybrid-auth]

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2015, November 2015.

9.2. Informative References

Bindel, N., Herath, U., McKague, M., and D. Stebila,

"Transitioning to a quantum-resistant public key

infrastructure", 2017, <https://link.springer.com/

chapter/10.1007/978-3-319-59879-6_22>.

Becker, A., Guthrie,

R., and M. J. Jenkins, "Non-Composite Hybrid

Authentication in PKIX and Applications to Internet

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22
https://link.springer.com/chapter/10.1007/978-3-319-59879-6_22

[I-D.ounsworth-pq-composite-keys]

[RFC3279]

[RFC8017]

Protocols", Work in Progress, Internet-Draft, draft-

becker-guthrie-noncomposite-hybrid-auth-00, 22 March

2022, <https://www.ietf.org/archive/id/draft-becker-

guthrie-noncomposite-hybrid-auth-00.txt>.

Ounsworth, M. and M. Pala,

"Composite Public and Private Keys For Use In Internet

PKI", Work in Progress, Internet-Draft, draft-ounsworth-

pq-composite-keys-00, 12 July 2021, <https://

www.ietf.org/archive/id/draft-ounsworth-pq-composite-

keys-00.txt>.

Bassham, L., Polk, W., and R. Housley, "Algorithms and

Identifiers for the Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 3279, DOI 10.17487/RFC3279,

April 2002, <https://www.rfc-editor.org/info/rfc3279>.

Moriarty, K., Ed., Kaliski, B., Jonsson, J., and A.

Rusch, "PKCS #1: RSA Cryptography Specifications Version

2.2", RFC 8017, DOI 10.17487/RFC8017, November 2016,

<https://www.rfc-editor.org/info/rfc8017>.

Appendix A. Work in Progress

A.1. Combiner modes (KofN)

For content commitment use-cases, such as legally-binding non-

repudiation, the signer (whether it be a CA or an end entity) needs

to be able to specify how its signature is to be interpreted and

verified.

For now we have removed combiner modes (AND, OR, KofN) from this

draft, but we are still discussing how to incorporate this for the

cases where it is needed (maybe a X.509 v3 extension, or a signature

algorithm param).

Appendix B. Creating explicit combinations

The following ASN.1 Information Objects may be useful in defining

and parsing explicit pairs of signature algorithms.

... TODO ... copy & adapt from the keys draft.

Appendix C. Examples

C.1. Generic Composite Signature Examples

TODO

¶

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-becker-guthrie-noncomposite-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-becker-guthrie-noncomposite-hybrid-auth-00.txt
https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-keys-00.txt
https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-keys-00.txt
https://www.ietf.org/archive/id/draft-ounsworth-pq-composite-keys-00.txt
https://www.rfc-editor.org/info/rfc3279
https://www.rfc-editor.org/info/rfc8017

C.2. Explicit Composite Signature Examples

TODO¶

Appendix D. ASN.1 Module

<CODE STARTS>

Composite-Signatures-2019

 { TBD }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 PUBLIC-KEY, SIGNATURE-ALGORITHM

 FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) }

 SubjectPublicKeyInfo

 FROM PKIX1Explicit-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51) }

 OneAsymmetricKey

 FROM AsymmetricKeyPackageModuleV1

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0)

 id-mod-asymmetricKeyPkgV1(50) } ;

--

-- Object Identifiers

--

id-alg-composite OBJECT IDENTIFIER ::= { TBD }

--

-- Public Key

--

pk-Composite PUBLIC-KEY ::= {

 IDENTIFIER id-alg-composite

 KEY CompositePublicKey

 PARAMS ARE absent

 PRIVATE-KEY CompositePrivateKey

}

CompositePublicKey ::= SEQUENCE SIZE (2..MAX) OF SubjectPublicKeyInfo

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey

--

-- Signature Algorithm

--

sa-CompositeSignature SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-alg-composite

 VALUE CompositeSignatureValue

 PARAMS TYPE CompositeParams ARE required

 PUBLIC-KEYS { pk-Composite }

 SMIME-CAPS { IDENTIFIED BY id-alg-composite } }

CompositeParams ::= SEQUENCE SIZE (2..MAX) OF AlgorithmIdentifier

CompositeSignatureValue ::= SEQUENCE SIZE (2..MAX) OF BIT STRING

END

<CODE ENDS>

¶

Appendix E. Intellectual Property Considerations

The following IPR Disclosure relates to this draft:

https://datatracker.ietf.org/ipr/3588/

Appendix F. Contributors and Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

electronic mail and VOIP traffic over the past year in pursuit of

this document:

John Gray (Entrust), Serge Mister (Entrust), Scott Fluhrer (Cisco

Systems), Panos Kampanakis (Cisco Systems), Daniel Van Geest

(ISARA), Tim Hollebeek (Digicert), and Francois Rousseau.

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

F.1. Making contributions

Additional contributions to this draft are welcome. Please see the

working copy of this draft at, as well as open issues at:

https://github.com/EntrustCorporation/draft-ounsworth-composite-sigs

Authors' Addresses

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100

Ottawa, Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Massimiliano Pala

CableLabs

Email: director@openca.org

¶

¶

¶

¶

¶

¶

¶

¶

mailto:mike.ounsworth@entrust.com
mailto:director@openca.org

	Composite Signatures For Use In Internet PKI
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Changes in version -07
	2. Introduction
	2.1. Terminology

	3. Composite Signature Structures
	3.1. Composite Keys
	3.1.1. Key Usage Bits

	3.2. sa-CompositeSignature
	3.3. CompositeSignatureValue
	3.4. Encoding Rules

	4. Algorithm Identifiers
	4.1. id-alg-composite (Generic Composite Signatures)
	4.2. Explicit Composite Signatures

	5. Composite Signature Processes
	5.1. Composite Signature Generation Process
	5.2. Composite Signature Verification Process

	6. Implementation Considerations
	6.1. Backwards Compatibility
	6.1.1. OR modes
	6.1.2. Parallel PKIs

	7. IANA Considerations
	8. Security Considerations
	8.1. Policy for Deprecated and Acceptable Algorithms
	8.2. OR Modes
	8.2.1. Subset Signature Generation
	8.2.2. Subset Signature Verification

	9. References
	9.1. Normative References
	9.2. Informative References

	Appendix A. Work in Progress
	A.1. Combiner modes (KofN)

	Appendix B. Creating explicit combinations
	Appendix C. Examples
	C.1. Generic Composite Signature Examples
	C.2. Explicit Composite Signature Examples

	Appendix D. ASN.1 Module
	Appendix E. Intellectual Property Considerations
	Appendix F. Contributors and Acknowledgements
	F.1. Making contributions

	Authors' Addresses

