
Workgroup: LAMPS

Internet-Draft:

draft-ounsworth-pq-explicit-composite-keys-01

Published: 12 February 2022

Intended Status: Standards Track

Expires: 16 August 2022

Authors: M. Ounsworth

Entrust

S. Mister

Entrust

J. Gray

Entrust

Explicit Pairwise Composite Keys For Use In Internet PKI

Abstract

With the widespread adoption of post-quantum cryptography will come

the need for an entity to possess multiple public keys on different

cryptographic algorithms. Since the trustworthiness of individual

post-quantum algorithms is at question, a multi-key cryptographic

operation will need to be performed in such a way that breaking it

requires breaking each of the component algorithms individually.

This requires defining new structures for holding composite public

keys and composite signature data. This draft defines a structure

generic enough to be useful beyond the post-quantum transition for

any situation where a widely-supported but untrusted algorithm is

being migrated to newer cryptography.

This document defines structures for binding an explicit pair of

cryptographic algorithms together into a single object identifier,

and it provides ASN.1 structures for encoding these pairwise

composite public keys, private keys in wire protocols, as well as

using them in conjunction with composite signatures, encryption and

key transport mechanisms.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 16 August 2022.

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Terminology

2. Composite Structures

2.1. Composite Keys

2.2. Composite Private Key

2.3. Composite Signature

2.3.1. Explicit Signature Params

2.3.2. Explicit Composite Signature Algorithm

2.3.3. Explicit Encryption and Key Exchange Params

2.4. Encoding Rules

3. In Practice

3.1. PEM Storage of Composite Private Keys

3.2. Asymmetric Key Packages (CMS)

3.3. Cryptographic protocols

4. IANA Considerations

5. Security Considerations

5.1. Policy for Deprecated and Acceptable Algorithms

5.2. Protection of Private Keys

5.3. Checking for Compromised Key Reuse

6. Appendices

6.1. ASN.1 Module

6.2. Examples of defining explicit pairs

6.3. Intellectual Property Considerations

7. Contributors and Acknowledgements

8. References

8.1. Normative References

8.2. Informative References

Authors' Addresses

¶

¶

https://trustee.ietf.org/license-info

1. Introduction

During the transition to post-quantum cryptography, there will be

uncertainty as to the strength of cryptographic algorithms; we will

no longer fully trust traditional cryptography such as RSA, Diffie-

Hellman, DSA and their elliptic curve variants, but we will also not

fully trust their post-quantum replacements until they have had

sufficient scrutiny. Unlike previous cryptographic algorithm

migrations, the choice of when to migrate and which algorithms to

migrate to, is not so clear. Even after the migration period, it may

be advantageous for an entity's cryptographic identity to be

composed of multiple public-key algorithms.

The deployment of composite public keys and composite signatures

using post-quantum algorithms will face two challenges

Algorithm strength uncertainty: During the transition period,

some post-quantum signature and encryption algorithms will not be

fully trusted, while also the trust in legacy public key

algorithms will start to erode. A relying party may learn some

time after deployment that a public key algorithm has become

untrustworthy, but in the interim, they may not know which

algorithm an adversary has compromised.

Backwards compatibility: During the transition period, post-

quantum algorithms will not be supported by all clients.

This document provides a mechanism to address algorithm strength

uncertainty by providing formats for encoding multiple public keys

and private keys into existing fields.

This document provides structures to encode explicit composite

algorithm identifiers and parameters for use with composite

signature, encryption, and key transport mechanisms defined in ~~

TODO cite corresponding drafts properly ~~.

This document is intended for general applicability anywhere that

public key or private key structures are used within PKIX protocols.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

The following terms are used in this document:

¶

¶

*

¶

*

¶

¶

¶

¶

¶

¶

ALGORITHM: An information object class for identifying the type of

cryptographic operation to be performed. This document is primarily

concerned with algorithms for producing digital signatures, though

the public key structure could just as easily hold encryption keys.

BER: Basic Encoding Rules (BER) as defined in [X.690].

COMPONENT ALGORITHM: A single basic algorithm which is contained

within a composite algorithm.

COMPOSITE ALGORITHM: An algorithm which is a sequence of one or more

component algorithms, as defined in Section 2.

DER: Distinguished Encoding Rules as defined in [X.690].

EXPLICIT COMPOSITE: Composite structures where the

AlgorithmIdentifier OID explicitly defines the component algorithms.

This case allows simplification and compression of the data

structures.

GENERIC COMPOSITE: Composite structures that are agnostic to the

choice of Algorithms that they carry.

PUBLIC / PRIVATE KEY: The public and private portion of an

asymmetric cryptographic key, making no assumptions about which

algorithm.

PRIMITIVE PUBLIC KEY / SIGNATURE: A public key or signature object

of a non-composite algorithm type.

SIGNATURE: A digital cryptographic signature, making no assumptions

about which algorithm.

2. Composite Structures

In order for public keys and signatures to be composed of pairs of

algorithms, we define encodings consisting of a sequence of public

key and signature primitives (aka "component algorithms") such that

these structures can be used as a drop-in replacement for existing

public key or signature fields such as those found in PKCS#10

[RFC2986], CMP [RFC4210], X.509 [RFC5280], CMS [RFC5652].

This section defines the following structures:

~~ TODO ~~

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

¶

2.1. Composite Keys

A composite key is a single key object that performs an atomic

signature or verification operation, using its encapsulated pair of

component keys.

Explicit pairs can easily be defined by simply providing an OBJECT

IDENTIFIER and two existing PUBLIC-KEY types to the pk-

explicitComposite object class, and assigning an OID to the

resulting structure. See examples of defining explicit pairs in

Section 6.2.

The following ASN.1 object class then automatically generates the

public key structure from the types defined in pk-explicitComposite.

2.2. Composite Private Key

EDNOTE: THIS IS WRONG. (copied from generic draft) we need to do

some work to come up with a private key structure.

The composite private key data is represented by the following

structure:

¶

¶

-- TODO - CERT-KEY-USAGE should contain the intersection of the usages from firstPublicKey, secondPublicKey and the four listed below

-- pk-explicitComposite - Composite public key information object

pk-explicitComposite{OBJECT IDENTIFIER:id, PUBLIC-KEY:firstPublicKey, FirstPublicKeyType, PUBLIC-KEY:secondPublicKey, SecondPublicKeyType} PUBLIC-KEY ::= {

 IDENTIFIER id

 KEY ExplicitCompositePublicKey{firstPublicKey, FirstPublicKeyType, secondPublicKey, SecondPublicKeyType}

 PARAMS ARE absent

 CERT-KEY-USAGE {digitalSignature, nonRepudiation, keyCertSign, cRLSign}

}

¶

¶

-- ExplicitCompositePublicKey - The data structure for a composite public key

-- sec-alg-identifier and SecondPublicKeyType are needed because PUBLIC-KEY contains

-- a set of public key types, not a single type.

-- TODO The parameters should be optional only if they are marked optional in the PUBLIC-KEY

ExplicitCompositePublicKey{PUBLIC-KEY:firstPublicKey, FirstPublicKeyType, PUBLIC-KEY:secondPublicKey, SecondPublicKeyType} ::= SEQUENCE {

 firstPublicKey SEQUENCE {

 params firstPublicKey.&Params OPTIONAL,

 publicKey FirstPublicKeyType

 },

 secondPublicKey SEQUENCE {

 params secondPublicKey.&Params OPTIONAL,

 publicKey SecondPublicKeyType

 }

}

¶

¶

¶

Each element is a OneAsymmetricKey [RFC5958] object for a component

private key.

The corresponding AlgorithmIdentifier for a composite private key

MUST use the id-alg-composite object identifier, and the parameters

field MUST be absent.

A CompositePrivateKey MUST contain at least one component private

key, and they MUST be in the same order as in the corresponding

CompositePublicKey.

2.3. Composite Signature

The structure pk-explicitComposite contains all the necessary

information in order for the ASN.1 compiler to generate composite

signature structures that are explicitely bound to the specified

pair of algorithms.

EDNOTE: Is this helping, or adding complexity for no reason? In

theory, explicit composite public keys can be used with generic

composite signature and encryption structures (ie the SEQUENC OF

model).

2.3.1. Explicit Signature Params

The following ASN.1 object class then automatically generates the

signature params structure from the types defined in pk-

explicitComposite.

EDNOTE: we need some help from the community on the ASN.1 here:

"OPTIONAL" is not really the right semantics here; we really mean

that they params here should be present or absent when the

corresponding params are present or absent in

ExplicitCompositePublicKey, which ought to be enforcable by the ASN.

1 compiler, but we can't figure out the syntax for declaring that.

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey¶

¶

¶

¶

¶

¶

¶

-- ExplicitSignatureParams - The data structure for composite signature parameters

-- TODO firstParams and secondParams should be optional only if they are marked optional

-- in SIGNATURE-ALGORITHM

ExplicitSignatureParams{SIGNATURE-ALGORITHM:firstAlg, SIGNATURE-ALGORITHM:secondAlg} ::= SEQUENCE {

 firstParams firstAlg.&Params OPTIONAL,

 secondParams secondAlg.&Params OPTIONAL

}

¶

¶

2.3.2. Explicit Composite Signature Algorithm

The following ASN.1 object class then automatically generates the

signature algorithm structure from the types defined in pk-

explicitComposite.

2.3.3. Explicit Encryption and Key Exchange Params

~~ TODO ~~ Need analogous structures to the signature ones above.

2.4. Encoding Rules

Many protocol specifications will require that the composite public

key, composite private key, and composite signature data structures

be represented by an octet string.

When an octet string is required, the DER encoding of the composite

data structure SHALL be used directly.

When a bit string is required, the octets of the DER encoded

composite data structure SHALL be used as the bits of the bit

string, with the most significant bit of the first octet becoming

the first bit, and so on, ending with the least significant bit of

the last octet becoming the last bit of the bit string.

In the interests of simplicity and avoiding compatibility issues,

implementations that parse these structures MAY accept both BER and

DER.

3. In Practice

This section addresses practical issues of how this draft affects

other protocols and standards.

~~~ BEGIN EDNOTE 10~~~

EDNOTE 10: Possible topics to address:

The size of these certs and cert chains.

¶

-- TODO - Would it be possible to make these definitions compatible with n signature algorithms instead of 2?  Is it desired?

-- sa-explicitCompositeSignatureAlgorithm - Composite signature algorithm information object

sa-explicitCompositeSignatureAlgorithm{OBJECT IDENTIFIER:algId, SIGNATURE-ALGORITHM:firstAlg, PUBLIC-KEY:firstPublicKey, FirstPublicKeyType, SIGNATURE-ALGORITHM:secondAlg, PUBLIC-KEY:secondPublicKey, SecondPublicKeyType} SIGNATURE-ALGORITHM ::= {

    IDENTIFIER algId

    VALUE ExplicitCompositeSignatureValue{firstAlg.&Value, secondAlg.&Value}

    PARAMS TYPE ExplicitSignatureParams{firstAlg, secondAlg} ARE required

    PUBLIC-KEYS { pk-explicitComposite{algId, firstPublicKey, FirstPublicKeyType, secondPublicKey, SecondPublicKeyType} }

    SMIME-CAPS { IDENTIFIED BY algId }

}

¶

¶

¶

¶

¶

¶

¶

¶

¶

* ¶



In particular, implications for (large) composite keys /

signatures / certs on the handshake stages of TLS and IKEv2.

If a cert in the chain is a composite cert then does the whole

chain need to be of composite Certs?

We could also explain that the root CA cert does not have to be

of the same algorithms. The root cert SHOULD NOT be transferred

in the authentication exchange to save transport overhead and

thus it can be different than the intermediate and leaf certs.

We could talk about overhead (size and processing).

We could also discuss backwards compatibility.

We could include a subsection about implementation

considerations.

~~~ END EDNOTE 10~~~

3.1. PEM Storage of Composite Private Keys

CompositePrivateKeys can be encoded to the PEM format by placing a

CompositePrivateKey into the privateKey field of a PrivateKeyInfo or

OneAsymmetricKey object, and then applying the PEM encoding rules as

defined in [RFC7468] section 10 and 11 for plaintext and encrypted

private keys, respectively.

3.2. Asymmetric Key Packages (CMS)

The Cryptographic Message Syntax (CMS), as defined in [RFC5652], can

be used to digitally sign, digest, authenticate, or encrypt the

asymmetric key format content type.

When encoding composite private keys, the privateKeyAlgorithm in the

OneAsymmetricKey SHALL be set to id-alg-composite.

The parameters of the privateKeyAlgorithm SHALL be a sequence of

AlgorithmIdentifier objects, each of which are encoded according to

the rules defined for each of the different keys in the composite

private key.

The value of the privateKey field in the OneAsymmetricKey SHALL be

set to the DER encoding of the SEQUENCE of private key values that

make up the composite key. The number and order of elements in the

sequence SHALL be the same as identified in the sequence of

parameters in the privateKeyAlgorithm.

The value of the publicKey (if present) SHALL be set to the DER

encoding of the corresponding CompositePublicKey. If this field is

*

¶

*

¶

*

¶

* ¶

* ¶

*

¶

¶

¶

¶

¶

¶

¶

present, the number and order of component keys MUST be the same as

identified in the sequence of parameters in the privateKeyAlgorithm.

The value of the attributes is encoded as usual.

3.3. Cryptographic protocols

This section talks about how protocols like (D)TLS and IKEv2 are

affected by this specifications. It will not attempt to solve all

these problems, but it will explain the rationale, how things will

work and what open problems need to be solved. Obvious issues that

need to be discussed.

How does the protocol declare support for composite signatures?

TLS has hooks for declaring support for specific signature

algorithms, however it would need to be extended, because the

client would need to declare support for both the composite

infrastructure, as well as for the various component signature

algorithms.

How does the protocol use the multiple keys. The obvious way

would be to have the server sign using its composite public key;

is this sufficient.

Overhead; including certificate size, signature processing time,

and size of the signature.

How to deal with crypto protocols that use public key encryption

algorithms; this document only lists how to work with signature

algorithms. Encoding composite public keys is straightforward;

encoding composite ciphertexts is less so - we decided to put

that off to another draft.

4. IANA Considerations

This draft does not define any OIDs, however derivative drafts that

define concrete algorithm pairs will. The authors suggest that IANA

assign OIDs for explicit composite pairs on the id-pkix arc under a

composite() arc.

5. Security Considerations

5.1. Policy for Deprecated and Acceptable Algorithms

Traditionally, a public key, certificate, or signature contains a

single cryptographic algorithm. If and when an algorithm becomes

¶

¶

¶

*

¶

*

¶

*

¶

*

¶

¶

id-alg-composite OBJECT IDENTIFIER ::= {

 iso(1) identified-organization(3) dod(6) internet(1) security(5)

 mechanisms(5) pkix(7) algorithms(6) composite(??) }

¶

deprecated (for example, RSA-512, or SHA1), it is obvious that

structures using that algorithm are implicitly revoked.

In the composite model this is less obvious since a single public

key, certificate, or signature may contain a mixture of deprecated

and non-deprecated algorithms. Moreover, implementers may decide

that certain cryptographic algorithms have complementary security

properties and are acceptable in combination even though neither

algorithm is acceptable by itself.

Specifying a modified verification algorithm to handle these

situations is beyond the scope of this draft, but could be desirable

as the subject of an application profile document, or to be up to

the discretion of implementers.

While intentionally not specified in this document, implementors

should put careful thought into implementing a meaningfull policy

mechinism within the context of their signature verification

engines, for example only algorithms that provide similar security

levels should be combined together.

5.2. Protection of Private Keys

Structures described in this document do not protect private keys in

any way unless combined with a security protocol or encryption

properties of the objects (if any) where the CompositePrivateKey is

used (see next Section).

Protection of the private keys is vital to public key cryptography.

The consequences of disclosure depend on the purpose of the private

key. If a private key is used for signature, then the disclosure

allows unauthorized signing. If a private key is used for key

management, then disclosure allows unauthorized parties to access

the managed keying material. The encryption algorithm used in the

encryption process must be at least as 'strong' as the key it is

protecting.

5.3. Checking for Compromised Key Reuse

CA implementations need to be careful when checking for compromised

key reuse, for example as required by WebTrust regulations; when

checking for compromised keys, you MUST unpack the

CompositePublicKey structure and compare individual component keys.

In other words, when marking a key as revoked for key compromise,

¶

¶

¶

2. Check policy to see whether A1, A2, ..., An constitutes a valid

 combination of algorithms.

 if not checkPolicy(A1, A2, ..., An), then

 output "Invalid signature"

¶

¶

¶

¶

the individual component keys should be marked, not the composite

key as a whole.¶

6. Appendices

6.1. ASN.1 Module

<CODE STARTS>

Composite-Signatures-2019

 { TBD }

DEFINITIONS IMPLICIT TAGS ::= BEGIN

EXPORTS ALL;

IMPORTS

 PUBLIC-KEY, SIGNATURE-ALGORITHM

 FROM AlgorithmInformation-2009 -- RFC 5912 [X509ASN1]

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-algorithmInformation-02(58) }

 SubjectPublicKeyInfo

 FROM PKIX1Explicit-2009

 { iso(1) identified-organization(3) dod(6) internet(1)

 security(5) mechanisms(5) pkix(7) id-mod(0)

 id-mod-pkix1-explicit-02(51) }

 OneAsymmetricKey

 FROM AsymmetricKeyPackageModuleV1

 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1)

 pkcs-9(9) smime(16) modules(0)

 id-mod-asymmetricKeyPkgV1(50) } ;

--

-- Object Identifiers

--

id-alg-composite OBJECT IDENTIFIER ::= { TBD }

--

-- Public Key

--

pk-Composite PUBLIC-KEY ::= {

 IDENTIFIER id-alg-composite

 KEY CompositePublicKey

 PARAMS ARE absent

 CERT-KEY-USAGE

 { digitalSignature, nonRepudiation, keyCertSign, cRLSign }

 PRIVATE-KEY CompositePrivateKey

}

CompositePublicKey ::= SEQUENCE SIZE (2..MAX) OF SubjectPublicKeyInfo

CompositePrivateKey ::= SEQUENCE SIZE (2..MAX) OF OneAsymmetricKey

--

-- Signature Algorithm

--

sa-CompositeSignature SIGNATURE-ALGORITHM ::= {

 IDENTIFIER id-alg-composite

 VALUE CompositeSignatureValue

 PARAMS TYPE CompositeParams ARE required

 PUBLIC-KEYS { pk-Composite }

 SMIME-CAPS { IDENTIFIED BY id-alg-composite } }

CompositeParams ::= SEQUENCE SIZE (2..MAX) OF AlgorithmIdentifier

CompositeSignatureValue ::= SEQUENCE SIZE (2..MAX) OF BIT STRING

END

<CODE ENDS>

¶

6.2. Examples of defining explicit pairs

To add support for a new pair of algorithms, all that is required is

the following two constructs:

TODO: run this through an ASN.1 compiler and list here what the

final generated structures look like.

6.3. Intellectual Property Considerations

The following IPR Disclosure relates to this draft:

https://datatracker.ietf.org/ipr/3588/

7. Contributors and Acknowledgements

This document incorporates contributions and comments from a large

group of experts. The Editors would especially like to acknowledge

the expertise and tireless dedication of the following people, who

attended many long meetings and generated millions of bytes of

electronic mail and VOIP traffic over the past year in pursuit of

this document:

John Gray (Entrust Datacard), Serge Mister (Entrust Datacard), Scott

Fluhrer (Cisco Systems), Panos Kampanakis (Cisco Systems), Daniel

Van Geest (ISARA), and Tim Hollebeek (Digicert).

We are grateful to all, including any contributors who may have been

inadvertently omitted from this list.

This document borrows text from similar documents, including those

referenced below. Thanks go to the authors of those documents.

"Copying always makes things easier and less error prone" -

[RFC8411].

8. References

8.1. Normative References

¶

id-sa-entrust-sha256RSAandECDSA OBJECT IDENTIFIER ::= { 1 2 3 4 }

sa-entrust-sha256RSAandECDSA SIGNATURE-ALGORITHM ::= sa-explicitCompositeSignatureAlgorithm{

 id-sa-entrust-sha256RSAandECDSA,

 sa-sha256WithRSAEncryption,

 pk-rsa,

 RSAPublicKey,

 sa-ecdsaWithSHA256,

 pk-ec,

 ECPoint

}

¶

¶

¶

¶

¶

¶

¶

¶

[RFC1421]

[RFC2119]

[RFC2986]

[RFC4210]

[RFC4648]

[RFC5280]

[RFC5652]

[RFC5958]

[RFC7468]

Linn, J., "Privacy Enhancement for Internet Electronic

Mail: Part I: Message Encryption and Authentication

Procedures", RFC 1421, DOI 10.17487/RFC1421, February

1993, <https://www.rfc-editor.org/info/rfc1421>.

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Nystrom, M. and B. Kaliski, "PKCS #10: Certification

Request Syntax Specification Version 1.7", RFC 2986, DOI

10.17487/RFC2986, November 2000, <https://www.rfc-

editor.org/info/rfc2986>.

Adams, C., Farrell, S., Kause, T., and T. Mononen,

"Internet X.509 Public Key Infrastructure Certificate

Management Protocol (CMP)", RFC 4210, DOI 10.17487/

RFC4210, September 2005, <https://www.rfc-editor.org/

info/rfc4210>.

Josefsson, S., "The Base16, Base32, and Base64 Data

Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,

<https://www.rfc-editor.org/info/rfc4648>.

Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,

Housley, R., and W. Polk, "Internet X.509 Public Key

Infrastructure Certificate and Certificate Revocation

List (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May

2008, <https://www.rfc-editor.org/info/rfc5280>.

Housley, R., "Cryptographic Message Syntax (CMS)", STD

70, RFC 5652, DOI 10.17487/RFC5652, September 2009,

<https://www.rfc-editor.org/info/rfc5652>.

Turner, S., "Asymmetric Key Packages", RFC 5958, DOI

10.17487/RFC5958, August 2010, <https://www.rfc-

editor.org/info/rfc5958>.

Josefsson, S. and S. Leonard, "Textual Encodings of PKIX,

PKCS, and CMS Structures", RFC 7468, DOI 10.17487/

https://www.rfc-editor.org/info/rfc1421
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc2986
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4210
https://www.rfc-editor.org/info/rfc4648
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5652
https://www.rfc-editor.org/info/rfc5958
https://www.rfc-editor.org/info/rfc5958

[RFC8174]

[RFC8411]

[X.690]

[I-D.ounsworth-pq-composite-sigs]

RFC7468, April 2015, <https://www.rfc-editor.org/info/

rfc7468>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Schaad, J. and R. Andrews, "IANA Registration for the

Cryptographic Algorithm Object Identifier Range", RFC

8411, DOI 10.17487/RFC8411, August 2018, <https://

www.rfc-editor.org/info/rfc8411>.

ITU-T, "Information technology - ASN.1 encoding Rules:

Specification of Basic Encoding Rules (BER), Canonical

Encoding Rules (CER) and Distinguished Encoding Rules

(DER)", ISO/IEC 8825-1:2015, November 2015.

8.2. Informative References

Ounsworth, M. and M. Pala,

"Composite Keys and Signatures For Use In Internet PKI",

Work in Progress, Internet-Draft, draft-ounsworth-pq-

composite-sigs-03, 28 July 2020, <http://www.ietf.org/

internet-drafts/draft-ounsworth-pq-composite-

sigs-03.txt>.

Authors' Addresses

Mike Ounsworth

Entrust Limited

2500 Solandt Road -- Suite 100

Ottawa, Ontario K2K 3G5

Canada

Email: mike.ounsworth@entrust.com

Serge Mister

Entrust Limited

1000 Innovation Drive

Ottawa, Ontario K2K 1E3

Canada

Email: serge.mister@entrust.com

John Gray

Entrust Limited

1000 Innovation Drive

Ottawa, Ontario

Canada

https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc7468
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8411
https://www.rfc-editor.org/info/rfc8411
http://www.ietf.org/internet-drafts/draft-ounsworth-pq-composite-sigs-03.txt
http://www.ietf.org/internet-drafts/draft-ounsworth-pq-composite-sigs-03.txt
http://www.ietf.org/internet-drafts/draft-ounsworth-pq-composite-sigs-03.txt
mailto:mike.ounsworth@entrust.com
mailto:serge.mister@entrust.com

Email: john.gray@entrust.com

mailto:john.gray@entrust.com

	Explicit Pairwise Composite Keys For Use In Internet PKI
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Terminology

	2. Composite Structures
	2.1. Composite Keys
	2.2. Composite Private Key
	2.3. Composite Signature
	2.3.1. Explicit Signature Params
	2.3.2. Explicit Composite Signature Algorithm
	2.3.3. Explicit Encryption and Key Exchange Params

	2.4. Encoding Rules

	3. In Practice
	3.1. PEM Storage of Composite Private Keys
	3.2. Asymmetric Key Packages (CMS)
	3.3. Cryptographic protocols

	4. IANA Considerations
	5. Security Considerations
	5.1. Policy for Deprecated and Acceptable Algorithms
	5.2. Protection of Private Keys
	5.3. Checking for Compromised Key Reuse

	6. Appendices
	6.1. ASN.1 Module
	6.2. Examples of defining explicit pairs
	6.3. Intellectual Property Considerations

	7. Contributors and Acknowledgements
	8. References
	8.1. Normative References
	8.2. Informative References

	Authors' Addresses

