
Network Working Group D. Ovsienko
Internet-Draft Yandex
Updates: 6126 (if approved) August 20, 2012
Intended status: Experimental
Expires: February 21, 2013

Babel HMAC Cryptographic Authentication
draft-ovsienko-babel-hmac-authentication-00

Abstract

 This document describes a cryptographic authentication mechanism for
 Babel routing protocol, updating, but not superceding RFC 6126. The
 mechanism allocates two new TLV types for the authentication data,
 uses HMAC and is both optional and backward compatible.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on February 21, 2013.

Copyright Notice

 Copyright (c) 2012 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ovsienko Expires February 21, 2013 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

Table of Contents

1. Introduction . 3
1.1. Requirements Language 4

2. Cryptographic Aspects . 4
2.1. Neutral Use of Hash Algorithms 4
2.2. Padding Constant Specifics 5
2.3. Cryptographic Sequence Number Specifics 6
2.4. Definition of HMAC . 6

3. Updates to Protocol Data Structures 8
3.1. RxAuthRequired . 8
3.2. LocalTS . 8
3.3. LocalPC . 9
3.4. MaxDigestsIn . 9
3.5. MaxDigestsOut . 9
3.6. ANM Table . 9
3.7. ANM Timeout . 11
3.8. Configured Security Associations 11
3.9. Effective Security Associations 13

4. Updates to Protocol Encoding 14
4.1. Justification . 14
4.2. TS/PC TLV . 16
4.3. HMAC TLV . 17

5. Updates to Protocol Operation 17
5.1. Per-interface TS/PC Number Updates 17
5.2. Deriving ESAs from CSAs 19
5.3. Updates to Packet Sending 21
5.4. Updates to Packet Receiving 23
5.5. Authentication-specific Statistics Maintenance 25

6. Implementation Notes . 26
6.1. IPv6 Source Address Selection for Sending 26
6.2. Output Buffer Management 26
6.3. Optimizations of ESAs Deriving 27
6.4. Internal Representation of CSAs 28

7. Network Management Aspects 28
7.1. Backward Compatibility 28
7.2. Multi-Domain Authentication 29
7.3. Migration . 30
7.4. Handling of Authentication Keys Exhaustion 31

8. Security Considerations 32
9. IANA Considerations . 36
10. Acknowledgements . 36
11. References . 36
11.1. Normative References 36
11.2. Informative References 37

Appendix A. Figures . 38
 Author's Address . 41

Ovsienko Expires February 21, 2013 [Page 2]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

1. Introduction

 Comments are solicited and should be addressed to the author.

 Authentication of routing protocol exchanges is a common mean of
 securing computer networks. Use of protocol authentication
 mechanisms helps in ascertaining, that only the intended routers
 participate in routing information exchange, and that the exchanged
 routing information is not modified by a third party.

 [BABEL] ("the original specification") defines data structures,
 encoding, and operation of a basic Babel routing protocol instance
 ("instance of the original protocol"). This document ("this
 specification") defines data structures, encoding, and operation of
 an extension to Babel protocol, an authentication mechanism ("this
 mechanism"). Both the instance of the original protocol and this
 mechanism are mostly self-contained and interact only at coupling
 points defined in this specification.

 A major design goal of this mechanism is such a transparency to an
 operator, that is not affected by implementation and configuration
 specifics. A complying implementation makes all meaningful details
 of authentication-specific processing clear to the operator, even
 when some of the key parameters cannot be changed.

 The currently established (see [RIP2-AUTH], [OSPF2-AUTH],
 [OSPF3-AUTH], and [RFC6039]) approach to authentication mechanism
 design for datagram-based routing protocols such as Babel relies on
 two principal data items embedded into protocol packets, typically as
 two integral parts of a single data structure:

 o A fixed-length unsigned integer number, typically called a
 cryptographic sequence number, used in replay attack protection.

 o A variable-length sequence of octets, a result of the HMAC
 construct (see [RFC2104]) computed on meaningful data items of the
 packet (including the cryptographic sequence number) on one hand
 and a secret key on another, used in proving that both the sender
 and the receiver share the same secret key and that the meaningful
 data was not changed in transmission.

 Depending on the design specifics either all protocol packets are
 authenticated or only those protecting the integrity of protocol
 exchange. This mechanism authenticates all protocol packets.

 This specification defines the use of the cryptographic sequence
 number in details sufficient to make replay attack protection
 strength predictable. That is, an operator can tell the strength

https://datatracker.ietf.org/doc/html/rfc6039
https://datatracker.ietf.org/doc/html/rfc2104

Ovsienko Expires February 21, 2013 [Page 3]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 from the declared characteristics of an implementation and, whereas
 the implementation allows changing relevant parameters, the effect of
 a reconfiguration.

 The HMAC construct can be combined with any cryptographic hash
 algorithm, although the primary focus of [RIP2-AUTH], [OSPF2-AUTH],
 and [OSPF3-AUTH] is either SHA-1 hash algorithm or SHA-2 family of
 hash algorithms, or both. This specification does not mandate or
 suggest a use of any particular hash algorithms. This mechanism can
 be deployed using any appropriate hash algorithms, as long as Babel
 speakers participating in the authenticated exchange are implemented
 and configured consistently.

 This mechanism explicitly allows for multiple HMAC results per an
 authenticated packet. Since meaningful data items of a given packet
 remain the same, each such HMAC result stands for a different secret
 key and/or a different hash algorithm. This enables a simultaneous,
 independent authentication within multiple domains.

 An important concern addressed by this mechanism is limiting the
 amount of HMAC computations done per an authenticated packet,
 independently for sending and receiving. Without these limits the
 number of computations per a packet could be as high as number of
 configured authentication keys (in sending case) or as the number of
 keys multiplied by the number of supplied HMAC results (in receiving
 case).

 These limits establish a basic competition between the configured
 keys and (in receiving case) an additional competition between the
 supplied HMAC results. This specification defines related data
 structures and procedures in a way to make such competition
 transparent and predictable for an operator.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

2. Cryptographic Aspects

2.1. Neutral Use of Hash Algorithms

 The only hash algorithm characteristics meaningful within the scope
 of processing defined herein are digest length and internal block
 size, there is no pre- or post-processing specific to a particular
 hash algorithm. The following generic requirements affect only the

https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119

Ovsienko Expires February 21, 2013 [Page 4]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 set of options available for an implementation.

 A set of hash algorithms available in an implementation MUST be
 clearly stated, MUST include at least one option and SHOULD include
 multiple options. Implementers SHOULD consider strong, well-known
 hash algorithms as implementation options and MUST NOT consider hash
 algorithms for that by the time of implementation meaningful attacks
 exist or that are commonly viewed as deprecated.

 For example, the following hash algorithms meet these requirements at
 the time of this writing:

 o GOST (256-bit hash)

 o RIPEMD-160

 o SHA-224

 o SHA-256

 o SHA-384

 o SHA-512

 o Tiger (192-bit hash)

 o Whirlpool (512-bit hash)

 The final choice of particular hash algorithm(s) is left up to the
 implementer. Whether known weak authentication keys exist for a hash
 algorithm used in an implementation of this mechanism, the
 implementation MUST deny a use of such keys.

2.2. Padding Constant Specifics

 [RIP2-AUTH] established the reference method of HMAC construct
 application housing the computed authentication data inside the
 message being authenticated. This involves pre-allocating necessary
 amount of message data space and pre-filling it with some data a
 receiver can reproduce exactly, typically an arbitrary number known
 as a padding constant. The padding constant used in [RIP2-AUTH] is
 0x878FE1F3 four-octet value.

 Subsequent works (including [OSPF2-AUTH] and [OSPF3-AUTH]) inherited
 both the basic approach and the padding constant. In particular,
 [OSPF3-AUTH] uses a source IPv6 address to set the first 16 octets of
 the padded area and the padding constant to set any subsequent
 octets. This mechanism makes the same use for the source IPv6

Ovsienko Expires February 21, 2013 [Page 5]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 address, but the padding constant size and value are different.

 Since any fixed arbitrary value of a padding constant does not affect
 cryptographic characteristics of a hash algorithm and the HMAC
 construct, and since single-octet padding is more straightforward to
 implement, the padding constant used by this mechanism is 0x00
 single-octet value. This is respectively addressed in sending
 (Section 5.3 item 5) and receiving (Section 5.4 item 6) procedures.

2.3. Cryptographic Sequence Number Specifics

 Operation of this mechanism may involve multiple local and multiple
 remote cryptographic sequence numbers, each essentially being a
 48-bit unsigned integer. This specification uses a term "TS/PC
 number" to avoid confusion with the route's sequence number of the
 original Babel specification (Section 2.5 of [BABEL]) and to stress
 the fact, that there are two distinguished parts of this 48-bit
 number, each handled in its specific way (see Section 5.1):

 0 1 2 3 4
 0 1 2 3 4 5 6 7 8 9 0 // 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-+-+-//+-+
 | TS // | PC |
 +-+-+-+-+-+-+-+-+-+-//+-+
 //

 High-order 32 bits are called "timestamp" (TS) and low-order 16 bits
 are called "packet counter" (PC).

 This mechanism stores, updates, compares and encodes each TS/PC
 number as two independent unsigned integers, TS and PC respectively.
 Such comparison of TS/PC numbers performed in item 3 of Section 5.4
 is algebraically equivalent to comparison of respective 48-bit
 unsigned integers. Any byte order conversion, when required, is
 performed on TS and PC parts independently.

2.4. Definition of HMAC

 The algorithm description below uses the following nomenclature,
 which is consistent with [FIPS-198]:

 Text Is the data on which the HMAC is calculated (note item (b) of
Section 8). In this specification it is the contents of a

 Babel packet ranging from the beginning of the Magic field of
 the Babel packet header to the end of the last octet of the
 Packet Body field, as defined in Section 4.2 of [BABEL].

Ovsienko Expires February 21, 2013 [Page 6]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 H Is the specific hash algorithm (see Section 2.1).

 K Is a sequence of octets of an arbitrary, known length.

 Ko Is the cryptographic key used with the hash algorithm.

 B Is the block size of H, measured in octets rather than bits.
 Note that B is the internal block size, not the digest length.

 L Is the digest length of H, measured in octets rather than
 bits.

 XOR Is the exclusive-or operation.

 Opad Is the hexadecimal value 0x5c repeated B times.

 Ipad Is the hexadecimal value 0x36 repeated B times.

 The algorithm below is the original, unmodified HMAC construct as
 defined in both [RFC2104] and [FIPS-198], hence it is different from
 the algorithms defined in [RIP2-AUTH], [OSPF2-AUTH], and [OSPF3-AUTH]
 in exactly two regards:

 o Algorithm below sets the size of Ko to B, not to L (L is not
 greater than B). This resolves both ambiguity in XOR expressions
 and incompatibility in handling of keys having length greater than
 L but not greater than B.

 o Algorithm below does not change value of Text before or after the
 computation. Both padding of a Babel packet before the
 computation and placing of the result inside the packet are
 performed elsewhere.

 The intent of this is to enable the most straightforward use of
 cryptographic libraries by implementations of this specification. At
 the time of this writing implementations of the original HMAC
 construct coupled with hash algorithms of choice are generally
 available.

 Description of the algorithm:

 1. Preparation of the Key

 In this application, Ko is always B octets long. If K is B
 octets long, then Ko is set to K. If K is more than B octets
 long, then Ko is set to H(K) with zeroes appended to the end of
 H(K), such that Ko is B octets long. If K is less than B octets
 long, then Ko is set to K with zeroes appended to the end of K,

https://datatracker.ietf.org/doc/html/rfc2104

Ovsienko Expires February 21, 2013 [Page 7]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 such that Ko is B octets long.

 2. First-Hash

 A First-Hash, also known as the inner hash, is computed as
 follows:

 First-Hash = H(Ko XOR Ipad || Text)

 3. Second-Hash

 A second hash, also known as the outer hash, is computed as
 follows:

 Second-Hash = H(Ko XOR Opad || First-Hash)

 4. Result

 The resulting Second-Hash becomes the authentication data that is
 returned as the result of HMAC calculation.

3. Updates to Protocol Data Structures

3.1. RxAuthRequired

 RxAuthRequired is a boolean parameter, its default value MUST be
 TRUE. An implementation SHOULD make RxAuthRequired a per-interface
 parameter, but MAY make it specific to the whole protocol instance.
 The conceptual purpose of RxAuthRequired is to enable a smooth
 migration from an unauthenticated to an authenticated Babel packet
 exchange and back (see Section 7.3). Current value of RxAuthRequired
 directly affects the receiving procedure defined in Section 5.4. An
 implementation SHOULD allow the operator changing RxAuthRequired
 value in runtime or by means of Babel speaker restart. An
 implementation MUST allow the operator discovering the effective
 value of RxAuthRequired in runtime or from the system documentation.

3.2. LocalTS

 LocalTS is a 32-bit unsigned integer variable, it is the TS part of a
 per-interface TS/PC number. LocalTS is a strictly per-interface
 variable not intended to be changed by operator. Its initialization
 is explained in Section 5.1.

Ovsienko Expires February 21, 2013 [Page 8]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

3.3. LocalPC

 LocalPC is a 16-bit unsigned integer variable, it is the PC part of a
 per-interface TS/PC number. LocalPC is a strictly per-interface
 variable not intended to be changed by operator. Its initialization
 is explained in Section 5.1.

3.4. MaxDigestsIn

 MaxDigestsIn is an unsigned integer parameter conceptually purposed
 for limiting the amount of CPU time spent processing a received
 authenticated packet. The receiving procedure performs the most CPU-
 intensive operation, the HMAC computation, only at most MaxDigestsIn
 (Section 5.4 item 7) times for a given packet.

 MaxDigestsIn value MUST be at least 2. An implementation SHOULD make
 MaxDigestsIn a per-interface parameter, but MAY make it specific to
 the whole protocol instance. An implementation SHOULD allow the
 operator changing the value of MaxDigestsIn in runtime or by means of
 Babel speaker restart. An implementation MUST allow the operator
 discovering the effective value of MaxDigestsIn in runtime or from
 the system documentation.

3.5. MaxDigestsOut

 MaxDigestsOut is an unsigned integer parameter conceptually purposed
 for limiting the amount of a sent authenticated packet's space spent
 on authentication data. The sending procedure adds at most
 MaxDigestsOut (Section 5.3 item 5) HMAC results to a given packet,
 concurring with the output buffer management explained in

Section 6.2.

 MaxDigestsOut value MUST be at least 2. An implementation SHOULD
 make MaxDigestsOut a per-interface parameter, but MAY make it
 specific to the whole protocol instance. An implementation SHOULD
 allow the operator changing the value of MaxDigestsOut in runtime or
 by means of Babel speaker restart, in a safe range. The maximum safe
 value of MaxDigestsOut is implementation-specific (see Section 6.2).
 An implementation MUST allow the operator discovering the effective
 value of MaxDigestsOut in runtime or from the system documentation.

3.6. ANM Table

 The ANM (Authentic Neighbours Memory) table resembles the neighbour
 table defined in Section 3.2.3 of [BABEL]. Note that the term
 "neighbour table" means the neighbour table of the original Babel
 specification, and term "ANM table" means the table defined herein.
 Indexing of the ANM table is done in exactly the same way as indexing

Ovsienko Expires February 21, 2013 [Page 9]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 of the neighbour table, but purpose, field set and associated
 procedures are different.

 Conceptual purpose of the ANM table is to provide a longer term
 replay attack protection, than it would be possible using the
 neighbour table. Expiry of an inactive entry in the neighbour table
 depends on the last received Hello Interval of the neighbour and
 typically stands for tens to hundreds of seconds (see Appendix A and

Appendix B of [BABEL]). Expiry of an inactive entry in the ANM table
 depends only on the local speaker's configuration. The ANM table
 retains (for at least the amount of seconds set by ANM timeout
 parameter defined in Section 3.7) a copy of TS/PC number advertised
 in authentic packets by each remote Babel speaker.

 The ANM table is indexed by pairs of the form (Interface, Source).
 Every table entry consists of the following fields:

 o Interface

 An implementation specific reference to the local node's interface
 that the authentic packet was received through.

 o Source

 IPv6 source address of the Babel speaker that the authentic packet
 was received from.

 o LastTS

 A 32-bit unsigned integer, the TS part of a remote TS/PC number.

 o LastPC

 A 16-bit unsigned integer, the PC part of a remote TS/PC number.

 Each ANM table entry has an associated aging timer, which is reset by
 the receiving procedure (Section 5.4 item 8). If the timer expires,
 the entry is deleted from the ANM table.

 An implementation SHOULD use a persistent memory (NVRAM) to retain
 the contents of ANM table across restarts of the Babel speaker, but
 only as long as both the Interface field reference and expiry of the
 aging timer remain correct. An implementation MUST make it clear, if
 and how persistent memory is used for ANM table. An implementation
 SHOULD allow retrieving the current contents of ANM table in runtime
 through common management interfaces such as CLI and SNMP. An
 implementation SHOULD provide a mean to remove some or all ANM table
 entries in runtime or by means of Babel speaker restart.

Ovsienko Expires February 21, 2013 [Page 10]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

3.7. ANM Timeout

 ANM timeout is an unsigned integer parameter. An implementation
 SHOULD make ANM timeout a per-interface parameter, but MAY make it
 specific to the whole protocol instance. ANM timeout is conceptually
 purposed for limiting the maximum age (in seconds) of entries in the
 ANM table standing for inactive Babel speakers. The maximum age is
 immediately related to replay attack protection strength. The
 strongest protection is achieved with the maximum possible value of
 ANM timeout set, but it may provide not the best overall result for
 specific network segments and implementations of this mechanism.

 In the first turn, implementations unable to maintain local TS/PC
 number strictly increasing across Babel speaker restarts will reuse
 advertised TS/PC numbers after each restart (see Section 5.1). The
 neighbouring speakers will treat the new packets as replayed and
 discard them until the aging timer of respective ANM table entry
 expires or the new TS/PC number exceeds the one stored in the entry.

 Another possible, but less probable case could be an environment
 involving physical moves of network interfaces hardware between
 routers. Even performed without restarting Babel speakers, these
 would cause random drops of the TS/PC number advertised for a given
 (Interface, Source) index, as viewed by neighbouring speakers, since
 IPv6 link-local addresses are typically derived from interface
 hardware addresses.

 Assuming, that in such cases the operators would prefer using a lower
 ANM timeout value to let the entries expire on their own rather than
 having to manually remove them from ANM table each time, an
 implementation SHOULD set the default value of ANM timeout to a value
 between 30 and 300 seconds.

 At the same time, network segments may exist with every Babel speaker
 having its advertised TS/PC number strictly increasing over the
 deployed lifetime. Assuming, that in such cases the operators would
 prefer using a much higher ANM timeout value, an implementation
 SHOULD allow the operator changing the value of ANM timeout in
 runtime or by means of Babel speaker restart. An implementation MUST
 allow the operator discovering the effective value of ANM timeout in
 runtime or from the system documentation.

3.8. Configured Security Associations

 A Configured Security Association (CSA) is a data structure
 conceptually purposed for associating authentication keys and hash
 algorithms with Babel interfaces. All CSAs are managed in ordered
 lists, one list per each interface. Each interface's list of CSAs is

Ovsienko Expires February 21, 2013 [Page 11]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 an integral part of the Babel speaker configuration. The default
 state of an interface's list of CSAs is empty, which has a special
 meaning of no authentication configured for the interface. The
 sending (Section 5.3 item 1) and the receiving (Section 5.4 item 1)
 procedures address this convention accordingly.

 A single CSA structure consists of the following fields:

 o HashAlgo

 An implementation specific reference to one of the hash algorithms
 supported by this implementation (see Section 2.1).

 o KeyChain

 An ordered list of items representing authentication keys, each
 item being a structure consisting of the following fields:

 * LocalKeyID

 An unsigned integer.

 * AuthKeyOctets

 A sequence of octets of an arbitrary, known length to be used
 as the authentication key.

 * KeyStartAccept

 The time that this Babel speaker will begin considering this
 authentication key for accepting packets with authentication
 data.

 * KeyStartGenerate

 The time that this Babel speaker will begin considering this
 authentication key for generating packet authentication data.

 * KeyStopGenerate

 The time that this Babel speaker will stop considering this
 authentication key for generating packet authentication data.

 * KeyStopAccept

 The time that this Babel speaker will stop considering this
 authentication key for accepting packets with authentication
 data.

Ovsienko Expires February 21, 2013 [Page 12]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 It is possible for the KeyChain list to be empty, although this is
 not the intended way of CSAs use.

 Since there is no limit imposed on number of CSAs per an interface,
 but number of HMAC computations per a sent/received packet is limited
 (through MaxDigestsOut and MaxDigestsIn respectively), only a
 fraction of the associated keys and hash algorithms may appear used
 in the process. Ordering of items within a list of CSAs and within a
 KeyChain list is important to make association selection process
 deterministic and transparent. Once this ordering is deterministic
 at Babel interface level, the intermediate data derived by the
 procedure defined in Section 5.2 will be deterministically ordered as
 well.

 An implementation SHOULD allow an operator to set any arbitrary order
 of items within a given interface's list of CSAs and within the
 KeyChain list of a given CSA. Whenever this requirement cannot be
 met, the implementation MUST provide a mean to discover the actual
 item order used. Whichever order is used by an implementation, it
 MUST be preserved across Babel speaker restarts.

3.9. Effective Security Associations

 An Effective Security Association (ESA) is a data structure
 immediately used in sending (Section 5.3) and receiving (Section 5.4)
 procedures. Its conceptual purpose is to establish a runtime
 interface between those procedures and the deriving procedure defined
 in Section 5.2. All ESAs are managed in ordered, temporary lists,
 which are not intended for any persistent storage. Item ordering
 within a temporary list of ESAs MUST be preserved as long as the list
 exists.

 A single ESA structure consists of the following fields:

 o HashAlgo

 An implementation specific reference to one of the hash algorithms
 supported by this implementation (see Section 2.1).

 o KeyID

 A 16-bit unsigned integer.

 o AuthKeyOctets

 A sequence of octets of an arbitrary, known length to be used as
 the authentication key.

Ovsienko Expires February 21, 2013 [Page 13]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

4. Updates to Protocol Encoding

4.1. Justification

 Choice of encoding is very important in the long term. Protocol
 encoding defines possible options of authentication mechanism design
 and encoding, which in turn define options of future developments of
 the protocol.

 Considering existing implementations of Babel protocol instance
 itself and related modules of packet analysers, current encoding of
 Babel allows for compact and robust decoders. At the same time, this
 encoding allows for future extensions of Babel by three (not
 excluding each other) principal means defined by Section 4.2 and
 Section 4.3 of [BABEL]:

 a. A Babel packet consists of a four-octet header followed by a
 packet body, that is, a sequence of TLVs (see Figure 2). Besides
 the header and the sequence, an actual Babel datagram may have an
 arbitrary amount of trailing data between the end of the packet
 body and the end of the datagram. An instance of the original
 protocol silently ignores such trailing data.

 b. The sequence of TLVs uses a binary format allowing for 256 TLV
 types and imposing no requirements on TLV ordering or number of
 TLVs of a given type in a packet. Only TLV length matters within
 the sequence, TLV body contents is to be interpreted elsewhere.
 This makes an iteration over the sequence possible without a
 knowledge of body structure of each TLV (with the only
 distinction between a Pad1 TLV and any other TLVs). The original
 specification allocates TLV types 0 through 10 and defines TLV
 body structure for each. An instance of the original protocol
 silently ignores any unknown TLV types.

 c. Within each TLV of the sequence there may be some "extra data"
 after the "expected length" of the TLV body. An instance of the
 original protocol silently ignores any such extra data. Note
 that any TLV types without the expected length defined (such as
 PadN TLV) cannot be extended with the extra data.

 Considering each principal extension mean for the specific purpose of
 adding authentication data items to each protocol packet, the
 following arguments can be made:

 o Use of the TLV extra data of some existing TLV type would not be a
 solution, since no particular TLV type is guaranteed to be present
 in a Babel packet.

Ovsienko Expires February 21, 2013 [Page 14]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 o Use of the TLV extra data could also conflict with future
 developments of the protocol encoding.

 o Since the packet trailing data is currently unstructured, using it
 would involve defining an encoding structure and associated
 procedures, adding to the complexity of both specification and
 implementation and increasing the exposure to protocol attacks
 such as fuzzing.

 o A naive use of the packet trailing data would make it unavailable
 to any future extension of Babel. Since this mechanism is
 possibly not the last extension and since some other extensions
 may allow no other embedding means except the packet trailing
 data, the defined encoding structure would have to enable
 multiplexing of data items belonging to different extensions.
 Such a definition is out of scope of this work.

 o Deprecating an extension (or only its protocol encoding) that uses
 purely purpose-allocated TLVs is as simple as deprecating the
 TLVs.

 o Use of purpose-allocated TLVs is transparent to both the original
 protocol and any its future extensions, regardless of the
 embedding mean(s) used by the latter.

 Considering all of the above, this mechanism neither uses the packet
 trailing data nor uses the TLV extra data, but uses two new TLV
 types: type 11 for a TS/PC number and type 12 for a HMAC result.

 With these additional two types the Babel TLV types namespace appears
 as follows:

 +-------+-------------------------+---------------+
 | Value | Code | Reference |
 +-------+-------------------------+---------------+
 | 0 | Pad1 | [BABEL] |
 | 1 | PadN | [BABEL] |
 | 2 | Acknowledgement Request | [BABEL] |
 | 3 | Acknowledgement | [BABEL] |
 | 4 | Hello | [BABEL] |
 | 5 | IHU | [BABEL] |
 | 6 | Router-Id | [BABEL] |
 | 7 | Next Hop | [BABEL] |
 | 8 | Update | [BABEL] |
 | 9 | Route Request | [BABEL] |
 | 10 | Seqno Request | [BABEL] |
 | 11 | TS/PC | this document |

Ovsienko Expires February 21, 2013 [Page 15]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 | 12 | HMAC | this document |
 +-------+-------------------------+---------------+

4.2. TS/PC TLV

 The purpose of a TS/PC TLV is to store a single TS/PC number. There
 is normally exactly one TS/PC TLV in an authenticated Babel packet.
 Any occurences of this TLV except the first are ignored.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 11 | Length | PacketCounter |
 +-+
 | Timestamp |
 +-+

 Fields:

 Type Set to 11 to indicate a TS/PC TLV.

 Length The length of the body, exclusive of the Type and
 Length fields.

 PacketCounter A 16-bit unsigned integer in network byte order, the
 PC part of a TS/PC number stored in this TLV.

 Timestamp A 32-bit unsigned integer in network byte order, the
 TS part of a TS/PC number stored in this TLV.

 Note that ordering of PacketCounter and Timestamp in TLV structure is
 opposite to the ordering of TS and PC in "TS/PC" term and the 48-bit
 equivalent.

 Considering the "expected length" and the "extra data" in the
 definition of Section 4.2 of [BABEL], the expected length of a TS/PC
 TLV body is unambiguously defined as 6 octets. The receiving
 procedure correctly processes any TS/PC TLV with body length not less
 than the expected, ignoring any extra data (Section 5.4 items 3 and
 9). The sending procedure produces a TS/PC TLV with body length
 equal to the expected and Length field set respectively (Section 5.3
 item 3).

 Future Babel extensions (such as sub-TLVs) MAY modify the sending
 procedure to include the extra data after the fixed-size TS/PC TLV
 body defined herein, making necessary adjustments to Length TLV
 field, "Body length" packet header field and output buffer management
 explained in Section 6.2.

Ovsienko Expires February 21, 2013 [Page 16]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

4.3. HMAC TLV

 The purpose of a HMAC TLV is to store a single HMAC result. To
 assist a receiver in reproducing the HMAC computation, LocalKeyID
 modulo 2^16 of the authentication key is also provided in the TLV.
 There is normally at least one HMAC TLV in an authenticated Babel
 packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length | KeyID |
 +-+
 | Digest...
 +-+-+-+-+-+-+-+-+-+-+-+-

 Fields:

 Type Set to 12 to indicate a HMAC TLV.

 Length The length of the body, exclusive of the Type and
 Length fields.

 KeyID A 16-bit unsigned integer in network byte order.

 Digest A variable-length sequence of octets, that MUST be at
 least 16 octets long.

 Considering the "expected length" and the "extra data" in the
 definition of Section 4.2 of [BABEL], the expected length of a HMAC
 TLV body is not defined. The receiving procedure processes every
 octet of the Digest field, deriving the field boundary from the
 Length field value (Section 5.4 item 6). The sending procedure
 produces HMAC TLVs with Length field precisely sizing the Digest
 field to match digest length of the hash algorithm used (Section 5.3
 items 5 and 8).

 HMAC TLV structure defined herein is final, future Babel extensions
 MUST NOT extend it with any extra data.

5. Updates to Protocol Operation

5.1. Per-interface TS/PC Number Updates

 LocalTS and LocalPC interface-specific variables constitute the TS/PC
 number of a Babel interface. This number is advertised in the TS/PC
 TLV of authenticated Babel packets sent from that interface. There

Ovsienko Expires February 21, 2013 [Page 17]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 is only one property mandatory for the advertised TS/PC number: its
 48-bit equivalent MUST be strictly increasing within the scope of a
 given interface of a Babel speaker as long as the speaker is
 continuously operating. This property combined with ANM tables of
 neighbouring Babel speakers provides them with the most basic replay
 attack protection.

 Initialization and increment are two principal updates performed on
 an interface TS/PC number. The initialization is performed when a
 new interface becomes a part of a Babel protocol instance. The
 increment is performed by the sending procedure (Section 5.3 item 2)
 before advertising the TS/PC number in a TS/PC TLV.

 Depending on particular implementation method of these two updates
 the advertised TS/PC number may possess additional properties
 improving the replay attack protection strength. This includes, but
 is not limited to the methods below.

 a. The most straightforward implementation would use LocalTS as a
 plain wrap counter, defining the updates as follows:

 initialization Set LocalPC to 0, set LocalTS to 0.

 increment Increment LocalPC by 1. If LocalPC wraps (0xFFFF
 + 1 = 0x0000), increment LocalTS by 1.

 In this case advertised TS/PC numbers would be reused after each
 Babel speaker restart, making neighbouring speakers reject
 authenticated packets until respective ANM table entries expire
 or the new TS/PC number exceeds the old (see Section 3.6 and

Section 3.7).

 b. A more advanced implementation could make a use of any 32-bit
 unsigned integer timestamp (number of time units since an
 arbitrary epoch) such as the UNIX timestamp, whereas the
 timestamp itself spans a reasonable time range and is guaranteed
 against a decrease (such as one resulting from network time use).
 The updates would be defined as follows:

 initialization Set LocalPC to 0, set LocalTS to 0.

 increment If the current timestamp is greater than LocalTS,
 set LocalTS to the current timestamp and LocalPC
 to 0, then consider the update complete.
 Otherwise increment LocalPC by 1 and, if LocalPC
 wraps, increment LocalTS by 1.

 In this case the advertised TS/PC number would remain unique

Ovsienko Expires February 21, 2013 [Page 18]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 across speaker's deployed lifetime without the need for any
 persistent storage. However, a suitable timestamp source is not
 available in every implementation case.

 c. Another advanced implementation could use LocalTS in a way
 similar to the "wrap/boot counter" suggested in Section 4.1.1 of
 [OSPF3-AUTH], defining the updates as follows:

 initialization Set LocalPC to 0. Whether there is a TS value
 stored in NVRAM for the current interface, set
 LocalTS to that TS value, then increment the
 stored TS value by 1. Otherwise set LocalTS to 0
 and set the stored TS value to 1.

 increment Increment LocalPC by 1. If LocalPC wraps, set
 LocalTS to the TS value stored in NVRAM for the
 current interface, then increment the stored TS
 value by 1.

 In this case the advertised TS/PC number would also remain unique
 across speaker's deployed lifetime, relying on NVRAM for storing
 multiple TS numbers, one per each interface.

 As long as the TS/PC number retains its mandatory property stated
 above, an implementer is free to decide, which TS/PC updates
 implementation methods are available to an operator and whether the
 method can be configured per-interface and/or in runtime. To enable
 the optimal (see Section 3.7) management of ANM timeout in a network
 segment, an implementation MUST allow the operator discovering exact
 matter of the TS/PC update method effective for any interface, either
 in runtime or from the system documentation.

 Note that wrapping (0xFFFFFFFF + 1 = 0x00000000) of LastTS is
 unlikely, but possible, causing the advertised TS/PC number to be
 reused. Resolving this situation requires replacing of all
 authentication keys of the involved interface. In addition to that,
 if the wrap was caused by a timestamp reaching its end of epoch,
 using this mechanism will be impossible for the involved interface
 until some different timestamp or update implementation method is
 used.

5.2. Deriving ESAs from CSAs

 Neither receiving nor sending procedures work with the contents of
 interface's list of CSAs directly, both (Section 5.4 item 4 and

Section 5.3 item 4 respectively) derive a list of ESAs from the list
 of CSAs and use the derived list (see Figure 1). There are two main
 goals achieved through this indirection:

Ovsienko Expires February 21, 2013 [Page 19]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 o Filtering of expired and duplicate security associations. This is
 done earliest possible to keep subsequent procedures focused on
 their respective tasks.

 o Maintenance of particular sort order in the derived list of ESAs.
 The sort order deterministically depends on the sort order of
 interface's list of CSAs and sort order of KeyChain items of each
 CSA. Particular correlation maintained by this procedure
 implements a concept of fair (independent of number of keys used
 by each) competition between CSAs.

 The deriving procedure uses the following input arguments:

 o input list of CSAs

 o direction (sending or receiving)

 o current time (CT)

 Processing of input arguments begins with an empty ordered output
 list of ESAs and consists of the following steps:

 1. Make a temporary copy of the input list of CSAs.

 2. Remove all expired keys from the copy, that is, any keys such
 that:

 * for receiving: KeyStartAccept is greater than CT or
 KeyStopAccept is less than CT

 * for sending: KeyStartGenerate is greater than CT or
 KeyStopGenerate is less than CT

 Note well, that there are no special exceptions. Remove all
 expired keys, even if there are no keys left after that (see

Section 7.4).

 3. Remove all duplicate keys from the copy. A duplicate key (Kd)
 within a list of CSAs is a key, for that another key (Ka) exists
 within the same list of CSAs such that every statement below is
 true:

 * HashAlgo of the CSA containing Kd is equal to HashAlgo of the
 CSA containing Ka.

 * LocalKeyID modulo 2^16 of Kd is equal to LocalKeyID modulo
 2^16 of Ka

Ovsienko Expires February 21, 2013 [Page 20]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 * AuthKeyOctets of Kd is equal to AuthKeyOctets of Ka

 4. Use the copy to populate the output list of ESAs as follows:

 1. Whether the KeyChain list of the first CSA contains at least
 one key, use its first key to produce an ESA with fields set
 as follows:

 HashAlgo Set to HashAlgo of the current CSA.

 KeyID Set to LocalKeyID modulo 2^16 of the current
 key of the current CSA.

 AuthKeyOctets Set to AuthKeyOctets of the current key of the
 current CSA.

 Append this ESA to the end of the output list.

 2. Whether the KeyChain list of the second CSA contains at least
 one key, use its first key the same way and so forth until
 all first keys of the copy are processed.

 3. Whether the KeyChain list of the first CSA contains at least
 two keys, use its second key the same way.

 4. Whether the KeyChain list of the second CSA contains at least
 two keys, use its second key the same way and so forth until
 all second keys of the copy are processed.

 5. And so forth until all keys of all CSAs of the copy are
 processed, exactly one time each.

 The resulting list will contain zero or more unique ESAs, ordered in
 a way deterministically correlated with sort order of CSAs within the
 original input list of CSAs and sort orders of keys within each
 KeyChain list. This ordering maximizes the probability of having
 equal amount of keys per original CSA in any N first items of the
 resulting list. Possible optimizations of this deriving procedure
 are outlined in Section 6.3.

5.3. Updates to Packet Sending

 Perform the following authentication-specific processing after the
 instance of the original protocol considers an outgoing Babel packet
 ready for sending, but before the packet is actually sent (see
 Figure 1). After that send the packet regardless if the
 authentication-specific processing modified the outgoing packet or
 left it intact.

Ovsienko Expires February 21, 2013 [Page 21]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 1. If the current outgoing interface's list of CSAs is empty, finish
 authentication-specific processing and consider the packet ready
 for sending.

 2. Increment TS/PC number of the current outgoing interface as
 explained in Section 5.1.

 3. Append a TS/PC TLV to the packet's sequence of TLVs with fields
 set as follows:

 Type Set to 11.

 Length Set to 6.

 PacketCounter Set to the current value of LocalPC variable of
 the current outgoing interface.

 Timestamp Set to the current value of LocalTS variable of
 the current outgoing interface.

 Note that the current step may involve byte order conversion.

 4. Derive a list of ESAs using procedure defined in Section 5.2 with
 the current interface's list of CSAs as the input list of CSAs,
 current time as CT and "sending" as the direction. Note that
 both the input list of CSAs and the derived list of ESAs are
 sorted. Proceed to the next step even if the derived list is
 empty.

 5. Iterate over the derived list using its sort order. For each ESA
 append a HMAC TLV to the end of the packet's sequence of TLVs
 with fields set as follows:

 Type Set to 12.

 Length Set to 2 plus digest length of HashAlgo of the current
 ESA.

 KeyID Set to KeyID of the current ESA.

 Digest Size exactly to the digest length of HashAlgo of the
 current ESA. Set the first 16 octets to the source IPv6
 address of the current packet (see Section 6.1) and any
 subsequent octets to 0x00 (see Figure 3).

 As soon as there are MaxDigestsOut HMAC TLVs appended to the
 current packet, immediately proceed to the next step.

Ovsienko Expires February 21, 2013 [Page 22]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 Note that the current step may involve byte order conversion.

 6. Update "Body length" field of the current packet header to
 include the total length of TS/PC and HMAC TLVs added to the
 current packet so far.

 Note that the current step may involve byte order conversion.

 7. Make a temporary copy of the current packet.

 8. Iterate over the derived list again, using the same very order
 and amount of items. For each ESA (and respectively for each
 HMAC TLV recently added to the current packet) compute a HMAC
 result (see Section 2.4) using the temporary copy (not the
 original packet) as Text, HashAlgo of the current ESA as H, and
 AuthKeyOctets of the current ESA as K. Write the HMAC result to
 the Digest field of the current HMAC TLV (see Figure 4) of the
 current packet (not the copy).

 9. Since this point, allow no more changes to the current packet and
 consider it ready for sending.

 Note that even if the derived list of ESAs is empty, the packet is
 sent anyway with only a TS/PC TLV appended to its sequence of TLVs.
 Although such a packet is not authenticated, presence of a sole TS/PC
 TLV indicates authentication keys exhaustion to operators of
 neighbouring Babel speakers. See also Section 7.4.

5.4. Updates to Packet Receiving

 Perform the following authentication-specific processing after an
 incoming Babel packet is received from local IPv6 stack, but before
 it is processed by the Babel protocol instance (see Figure 1). The
 final action conceptually depends not only upon the result of the
 authentication-specific processing, but also on the current value of
 RxAuthRequired parameter. Immediately after any processing step
 below accepts or refuses the packet, either deliver the packet to the
 instance of the original protocol (when the packet is accepted or
 RxAuthRequired is FALSE) or discard it (when the packet is refused
 and RxAuthRequired is TRUE).

 1. If the current incoming interface's list of CSAs is empty,
 accept the packet.

 2. If the current packet does not contain a TS/PC TLV, refuse it.

 3. Perform a lookup in the ANM table for an entry having Interface
 equal to the current incoming interface and Source equal to the

Ovsienko Expires February 21, 2013 [Page 23]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 source address of the current packet. If such an entry exists,
 compare its LastTS and LastPC field values with Timestamp and
 PacketCounter values respectively of the first TS/PC TLV of the
 packet. That is, refuse the packet, if at least one of the
 following two conditions is true:

 * Timestamp is less than LastTS

 * Timestamp is equal to LastTS and PacketCounter is not greater
 than LastPC

 Note that the current step may involve byte order conversion.

 4. Derive a list of ESAs using procedure defined in Section 5.2
 with the current interface's list of CSAs as the input list of
 CSAs, current time as CT and "receiving" as the direction. If
 the derived list is empty, refuse the packet.

 5. Make a temporary copy of the current packet.

 6. For every HMAC TLV present in the temporary copy (not the
 original packet) pad all octets of its Digest field using the
 source IPv6 address of the current packet to set the first 16
 octets and 0x00 to set any subsequent octets (see Figure 3).

 7. Iterate over all HMAC TLVs of the original input packet (not the
 copy) using their order of appearance in the packet. For each
 HMAC TLV look up all ESAs in the derived list such that 2 plus
 digest length of HashAlgo of the ESA is equal to Length of the
 TLV and KeyID of the ESA is equal to value of KeyID of the TLV.
 Iterate over these ESAs in the order of their appearance on the
 full list of ESAs. Note that nesting the iterations the
 opposite way (over ESAs, then over HMAC TLVs) is wrong.

 For each of these ESAs compute a HMAC result (see Section 2.4)
 using the temporary copy (not the original packet) as Text,
 HashAlgo of the current ESA as H, and AuthKeyOctets of the
 current ESA as K. If the current HMAC result exactly matches the
 contents of Digest field of the current HMAC TLV, immediately
 proceed to the next step. Otherwise, if number of HMAC
 computations done for the current packet is equal to
 MaxDigestsIn, immediately proceed to the next step. Otherwise
 follow the normal order of iterations.

 Note that the current step may involve byte order conversion.

 8. If none of the HMAC results computed during the previous step
 matched, refuse the input packet.

Ovsienko Expires February 21, 2013 [Page 24]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 9. Modify the ANM table, using the same index as for the entry
 lookup above, to contain an entry with LastTS set to the value
 of Timestamp and LastPC set to the value of PacketCounter fields
 of the first TS/PC TLV of the current packet. That is, either
 add a new ANM table entry or update the existing one, according
 to the result of the entry lookup above. Reset the entry's
 aging timer to the current value of ANM timeout.

 Note that the current step may involve byte order conversion.

 10. Accept the input packet.

 Note that RxAuthRequired affects only the final action, but not the
 defined flow of authentication-specific processing. The purpose of
 this is to preserve authentication-specific processing feedback (such
 as log messages and event counters updates) even with RxAuthRequired
 set to FALSE. This allows an operator to predict the effect of
 changing RxAuthRequired from FALSE to TRUE during a migration
 scenario (Section 7.3) implementation.

5.5. Authentication-specific Statistics Maintenance

 A Babel speaker implementing this mechanism SHOULD maintain a set of
 counters for the following events, per protocol instance and per each
 interface:

 o Sending of an unauthenticated Babel packet through an interface
 having an empty list of CSAs.

 o Sending of an unauthenticated Babel packet with a TS/PC TLV but
 without any HMAC TLVs due to an empty list of ESAs.

 o Sending of an authenticated Babel packet containing both TS/PC and
 HMAC TLVs.

 o Accepting of a Babel packet received through an interface having
 an empty list of CSAs.

 o Refusing of a received Babel packet due to an empty list of ESAs.

 o Refusing of a received Babel packet missing any TS/PC TLVs.

 o Refusing of a received Babel packet due to the first TS/PC TLV
 failing the ANM table check.

 o Refusing of a received Babel packet missing any HMAC TLVs.

Ovsienko Expires February 21, 2013 [Page 25]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 o Refusing of a received Babel packet due to none of the processed
 HMAC TLVs passing the ESA check.

 o Accepting of a received Babel packet having both TS/PC and HMAC
 TLVs.

 o Delivery of a refused packet to the instance of the original
 protocol due to RxAuthRequired parameter set to FALSE.

 Note that terms "accepting" and "refusing" are used in the sense of
 the receiving procedure, that is, "accepting" does not mean a packet
 delivered to the instance of the original protocol purely because of
 RxAuthRequired parameter set to FALSE. Event counters readings
 SHOULD be available in runtime through common management interfaces
 such as CLI and SNMP.

6. Implementation Notes

6.1. IPv6 Source Address Selection for Sending

 Section 3.1 of [BABEL] defines, that Babel datagrams are exchanged
 using IPv6 link-local address as source address. This implies having
 at least one such address assigned to an interface participating in
 the exchange. When the interface has more than one link-local
 addresses assigned, selection of one particular link-local address as
 packet source address is left up to the local IPv6 stack, since this
 choice is not meaningful in the scope of the original protocol.
 However, the sending procedure defined in Section 5.3 requires exact
 knowledge of packet source address for proper padding of HMAC TLVs.

 As long as a Babel interface has more than one IPv6 link-local
 addresses assigned, the Babel speaker SHOULD internally choose one
 particular link-local address for Babel packet sending purposes and
 make this choice to both the sending procedure and local IPv6 stack
 (see Figure 1). Wherever this requirement cannot be met, this
 limitation MUST be clearly stated in the system documentation to
 allow an operator to plan IPv6 address management accordingly.

6.2. Output Buffer Management

 An instance of the original protocol buffers produced TLVs until the
 buffer becomes full or a delay timer has expired or an urgent TLV is
 produced. This is performed independently for each Babel interface
 with each buffer sized according to the interface MTU (see Sections
 3.1 and 4 of [BABEL]).

 Since TS/PC and HMAC TLVs and any other TLVs, in the first place

Ovsienko Expires February 21, 2013 [Page 26]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 those of the original protocol, share the same packet space (see
 Figure 2) and respectively the same buffer space, a particular
 portion of each interface buffer needs to be reserved for 1 TS/PC TLV
 and up to MaxDigestsOut HMAC TLVs. Amount (R) of this reserved
 buffer space is calculated as follows:

 R = St + MaxDigestsOut * Sh =
 = 8 + MaxDigestsOut * (4 + Lmax)

 St Is the size of a TS/PC TLV.

 Sh Is the size of a HMAC TLV.

 Lmax Is the maximum digest length in octets possible for a
 particular interface. It SHOULD be calculated based on
 particular interface's list of CSAs, but MAY be taken as the
 maximum digest length supported by particular implementation.

 An implementation allowing for per-interface value of MaxDigestsOut
 parameter has to account for different value of R across different
 interfaces, even having the same MTU. An implementation allowing for
 runtime change of MaxDigestsOut parameter value has to take care of
 the TLVs already buffered by the time of the change, especially when
 the change increases the value of R.

 The maximum safe value of MaxDigestsOut parameter depends on
 interface MTU and maximum digest length used. In general, at least
 200-300 octets of a Babel packet should be always available to data
 other than TS/PC and HMAC TLVs. An implementation following the
 requirements of Section 4 of [BABEL] would send packets sized 512
 octets or larger. If, for example, the maximum digest length is 64
 octets and MaxDigestsOut value is 4, the value of R would be 280,
 leaving less than a half of a 512-octet packet for any other TLVs.
 As long as interface MTU is larger or digest length is smaller,
 higher values of MaxDigestsOut can be used safely.

6.3. Optimizations of ESAs Deriving

 The following optimizations of the ESAs deriving procedure can reduce
 amount of CPU time consumed by authentication-specific processing,
 preserving implementation's effective behaviour.

 a. The most straightforward implementation would treat the deriving
 procedure as a per-packet action. But since the procedure is
 deterministic (its output depends on its input only), it is
 possible to significantly reduce the number of times the
 procedure is performed.

Ovsienko Expires February 21, 2013 [Page 27]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 The procedure would obviously return the same result for the same
 input arguments (list of CSAs, direction, CT) values. However,
 it is possible to predict, when the result will remain the same
 even for a different input. That is, when the input list of CSAs
 and the direction both remain the same but CT changes, the result
 will remain the same as long as CT's order on the time axis
 (relative to all critical points of the list of CSAs) remains
 unchanged. Here, the critical points are KeyStartAccept and
 KeyStopAccept (for the "receiving" direction) and
 KeyStartGenerate and KeyStopGenerate (for the "sending"
 direction) of all keys of all CSAs of the input list. In other
 words, in this case the result will remain the same as long as
 both none of the active keys expire and none of the inactive keys
 enter into operation.

 An implementation optimized this way would perform the full
 deriving procedure for a given (interface, direction) pair only
 after an operator's change to the interface's list of CSAs or
 after reaching one of the critical points mentioned above.

 b. Considering, that the sending procedure iterates over at most
 MaxDigestsOut items of the ordered list of derived ESAs
 (Section 5.3 item 5), there is little sense in the case of
 "sending" direction in appending ESA items to the end of the
 output list once the list already contains MaxDigestsOut number
 of items. Note that a similar optimization is impossible in the
 case of "receiving" direction, since number of ESAs actually used
 in examining a particular packet cannot be determined in advance.

6.4. Internal Representation of CSAs

 Note that the KeyChain list of the CSA structure is a direct
 equivalent of the "key chain" syntax item of some existing router
 configuration languages. Whereas an implementation already
 implements this syntax item, it is suggested to reuse it, that is, to
 implement a CSA syntax item referring to a key chain item instead of
 reimplementing the latter in full.

7. Network Management Aspects

7.1. Backward Compatibility

 Support of this mechanism is optional, it does not change the default
 behaviour of a Babel speaker and causes no compatibility issues with
 speakers properly implementing the original Babel specification.
 Given two Babel speakers, one implementing this mechanism and
 configured for authenticated exchange (A) and another not not

Ovsienko Expires February 21, 2013 [Page 28]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 implementing it (B), these would not distribute routing information
 uni-directionally or form a routing loop or experience other protocol
 logic issues specific purely to the use of this mechanism.

 Babel design requires a bi-directional neighbour reachability
 condition between two given speakers for a successful exchange of
 routing information. Apparently, in the case above neighbour
 reachability would be uni-directional. Presence of TS/PC and HMAC
 TLVs in Babel packets sent by A would be transparent to B. But lack
 of authentication data in Babel packets send by B would make them
 effectively invisible to the instance of the original protocol of A.
 Uni-directional links are not specific to use of this mechanism, they
 naturally exist on their own and are properly detected and avoided by
 the original protocol (see Section 3.4.2 of [BABEL]).

7.2. Multi-Domain Authentication

 The receiving procedure treats a packet as authentic as soon as one
 of its HMAC TLVs passes the check against the list of ESAs. This
 allows for packet exchange authenticated with multiple (hash
 algorithm, authentication key) pairs simultaneously, in combinations
 as arbitrary as permitted by MaxDigestsIn and MaxDigestsOut.

 For example, consider three Babel speakers with one interface each,
 configured with the following CSAs:

 o speaker A: (hash algorithm H1; key SK1), (hash algorithm H1; key
 SK2)

 o speaker B: (hash algorithm H1; key SK1)

 o speaker C: (hash algorithm H1; key SK2)

 Packets sent by A would contain 2 HMAC TLVs each, packets sent by B
 and C would contain 1 HMAC TLV each. A and B would authenticate the
 exchange between themselves using H1 and SK1; A and C would use H1
 and SK2; B and C would discard each other's packets.

 Consider a similar set of speakers configured with different CSAs:

 o speaker D: (hash algorithm H2; key SK3), (hash algorithm H3; key
 SK4)

 o speaker E: (hash algorithm H2; key SK3), (hash algorithm H4, keys
 SK5 and SK6)

 o speaker F: (hash algorithm H3; keys SK4 and SK7), (hash algorithm
 H5, key SK8)

Ovsienko Expires February 21, 2013 [Page 29]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 Packets sent by D would contain 2 HMAC TLVs each, packets sent by E
 and F would contain 3 HMAC TLVs each. D and E would authenticate the
 exchange between themselves using H2 and SK3; D and F would use H3
 and SK4; E and F would discard each other's packets. The
 simultaneous use of H4, SK5, and SK6 by E, as well as use of SK7, H5,
 and SK8 by F (for their own purposes) would remain insignificant to
 A.

 An operator implementing a multi-domain authentication should keep in
 mind, that values of MaxDigestsIn and MaxDigestsOut may be different
 both within the same Babel speaker and across different speakers.
 Since the minimum value of both parameters is 2 (see Section 3.4 and

Section 3.5), when more than 2 authentication domains are configured
 simultaneously, it is advised to confirm that every involved speaker
 can handle sufficient number of HMAC results for both sending and
 receiving.

 The recommended method of Babel speaker configuration for multi-
 domain authentication is not only using a different authentication
 key for each domain, but also using a separate CSA for each domain,
 even when hash algorithms are the same. This allows for fair
 competition between CSAs and sometimes limits consequences of a
 possible misconfiguration to the scope of one CSA. See also item (e)
 of Section 8.

7.3. Migration

 It is common in practice to consider a migration to authenticated
 exchange of routing information only after the network has already
 been deployed and put to an active use. Performing the migration in
 a way without regular traffic interruption is typically demanded, and
 this specification allows for such a smooth migration using the
 RxAuthRequired interface parameter defined in Section 3.1. This
 measure is similar to the "transition mode" suggested in Section 5 of
 [OSPF3-AUTH].

 An operator performing the migration needs to arrange configuration
 changes as follows:

 1. Decide on particular hash algorithm(s) and key(s) to be used.

 2. Identify all speakers and their involved interfaces that need to
 be migrated to authenticated exchange.

 3. For each of the speakers and the interfaces to be reconfigured
 first set RxAuthRequired parameter to FALSE, then configure
 necessary CSA(s).

Ovsienko Expires February 21, 2013 [Page 30]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 4. Examine the speakers to confirm, that Babel packets are
 successfully authenticated according to the configuration
 (supposedly, through examining ANM table entries and
 authentication-specific statistics, see Figure 1)), and address
 any discrepancies before proceeding further.

 5. For each of the speakers and the reconfigured interfaces set
 RxAuthRequired parameter to TRUE.

 Likewise, temporarily setting RxAuthRequired to FALSE can be used to
 migrate smoothly from authenticated packet exchange back to
 unauthenticated one.

7.4. Handling of Authentication Keys Exhaustion

 This specification employs a common concept of multiple authenticaion
 keys co-existing for a given interface, with two independent lifetime
 ranges associated with each key (one for sending and another for
 receiving). It is typically recommended to configure the keys using
 finite lifetimes, adding new keys before the old keys expire.
 However, it is obviously possible for all keys to expire for a given
 interface (for sending or receiving or both). Possible ways of
 addressing this situation raise their own concerns:

 o Automatic switching to unauthenticated protocol exchange. This
 behaviour invalidates the initial purposes of authentication and
 is commonly viewed as "unacceptable" ([RIP2-AUTH] Section 5.1,
 [OSPF2-AUTH] Section 3.2, [OSPF3-AUTH] Section 3).

 o Stopping routing information exchange over the interface. This
 behaviour is likely to impact regular traffic routing and is
 commonly viewed as "not advisable" (ibid.).

 o Use of the "most recently expired" key over its intended lifetime
 range. This behaviour is commonly recommended for implementation
 (ibid.), although it may become a problem due to an offline
 cryptographic attack (see item (e) of Section 8) or a compromise
 of the key. In addition, telling a recently expired key from a
 key never ever been in a use may be impossible after a router
 restart.

 Design of this mechanism prevents the automatic switching to
 unauthenticated exchange and is consistent with similar
 authentication mechanisms in this regard. But since the best choice
 between two other options depends on local site policy, this decision
 is left up to the operator rather than the implementer (in a way
 resembling the "fail secure" configuration knob described in Section

5.1 of [RIP2-AUTH]).

Ovsienko Expires February 21, 2013 [Page 31]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 Although the deriving procedure does not allow for any exceptions in
 expired keys filtering (Section 5.2 item 2), the operator can
 trivially enforce one of the two remaining behaviour options through
 local key management procedures. In particular, when using the key
 over its intended lifetime is more preferred than regular traffic
 disruption, the operator would explicitly leave the old key expiry
 time open until the new key is added to the router configuration. In
 the opposite case the operator would always configure the old key
 with a finite lifetime and bear associated risks.

8. Security Considerations

 Use of this mechanism implies requirements common to a use of shared
 authentication keys, including, but not limited to:

 o holding the keys secret,

 o including sufficient amount of random bits into each key,

 o rekeying on a regular basis, and

 o never reusing a used key for a different purpose

 That said, proper design and implementation of a key management
 policy is out of scope of this work. Many publications on this
 subject exist and should be used for this purpose.

 Considering particular attacks being in-scope or out of scope on one
 hand and measures taken to protect against particular in-scope
 attacks on the other, the original Babel protocol and this
 authentication mechanism are in line with similar datagram-based
 routing protocols and their respective mechanisms. In particular,
 the primary concerns addressed are:

 a. Peer Entity Authentication

 Babel speaker authentication mechanism defined herein is believed
 to be as strong as is the class itself that it belongs to. This
 specification is built on the fundamental concepts implemented
 for authentication of similar routing protocols: per-packet
 authentication, use of HMAC construct, use of shared keys.
 Although this design approach does not address all possible
 concerns, it is so far known to be sufficient for most practical
 cases.

Ovsienko Expires February 21, 2013 [Page 32]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 b. Data Integrity

 Meaningful parts of a Babel datagram are the contents of the
 Babel packet (in the definition of Section 4.2 of [BABEL]) and
 IPv6 source address of the datagram (ibid. Section 3.5.3). This
 mechanism authenticates both parts using a HMAC construct, so
 that making any meaningful change to an authenticated packet
 after it has been emitted by the sender should be as hard as
 attacking the hash algorithm itself or successfully recovering
 the authentication key.

 Note well, that any trailing data of the Babel datagram is not
 meaningful in the scope of the original specification and does
 not belong to the Babel packet. Integrity of the trailing data
 is respectively not protected by this mechanism. At the same
 time, although any TLV extra data is also not meaningful in the
 same scope, its integrity is protected, since this extra data is
 a part of the Babel packet (see Figure 2).

 c. Replay Attacks

 This specification establishes a basic replay protection measure
 (see Section 3.6), defines a timeout parameter affecting its
 strength (see Section 3.7), and outlines implementation methods
 also affecting protection strength in several ways (see

Section 5.1). Implementer's choice of the timeout value and
 particular implementation methods may be suboptimal due to, for
 example, insufficient hardware resources of the Babel speaker.
 Furthermore, it may be possible, that an operator configures the
 timeout and the methods to address particular local specifics and
 this further weakens the protection. An operator concerned about
 replay attack protection strength should understand these factors
 and their meaning in a given network segment.

 d. Denial of Service

 Proper deploy of this mechanism in a Babel network significantly
 increases the efforts required for an attacker to feed arbitrary
 Babel PDUs into protocol exchange (with an intent of attacking a
 particular Babel speaker or disrupting exchange of regular
 traffic in a routing domain). It also protects the neighbour
 table from being flooded with forged speaker entries.

 At the same time, this protection comes for a price of CPU time
 being spent on HMAC computations. This may be a concern for low-
 performance CPUs combined with high-speed interfaces, as
 sometimes is seen in embedded systems and hardware routers. The
 MaxDigestsIn parameter, which is purposed to limit the maximum

Ovsienko Expires February 21, 2013 [Page 33]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 amount of CPU time spent on a single received Babel packet,
 addresses this concern to some extent.

 The following in-scope concerns are not addressed:

 e. Offline Cryptographic Attacks

 This mechanism is an obvious subject to offline cryptographic
 attacks. As soon as an attacker has obtained a copy of an
 authenticated Babel packet of interest (which gets easier to do
 in wireless networks), he has got all the parameters of the
 authentication-specific processing performed by the sender,
 except authentication key(s) and choice of particular hash
 algorithm(s). Since digest lengths of common hash algorithms are
 well-known and can be matched with those seen in the packet,
 complexity of this attack is essentially that of the
 authentication key attack.

 Viewing cryptographic strength of particular hash algorithms as a
 concern of its own, the main practical means of resisting offline
 cryptographic attacks on this mechanism are periodic rekeying and
 use of strong keys with sufficient amount of random bits.

 It is important to understand, that in the case of multiple keys
 being used within single interface (for a multi-domain
 authentication or during a key rollover) strength of the combined
 configuration would be that of the weakest key, since only one
 successful HMAC test is required for an authentic packet.
 Operators concerned about offline cryptographic attacks should
 enforce the same strength policy for all keys used for a given
 interface.

 Note that a special pathological case is possible with this
 mechanism. Whenever two or more authentication keys are
 configured for a given interface such that all keys share the
 same AuthKeyOctets and the same HashAlgo, but LocalKeyID modulo
 2^16 is different for each key, these keys will not be treated as
 duplicate (Section 5.2 item 3), but a HMAC result computed for a
 given packet will be the same for each of these keys. In the
 case of sending procedure this can produce multiple HMAC TLVs
 with exactly the same value of the Digest field, but different
 value of KeyID field. In this case the attacker will see that
 the keys are the same, even without the knowledge of the key
 itself. Reuse of authentication keys is not the intended use
 case of this mechanism and should be strongly avoided.

Ovsienko Expires February 21, 2013 [Page 34]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 f. Non-repudiation

 This specification relies on a use of shared keys. There is no
 timestamp infrastructure and no key revocation mechanism defined
 to address a shared key compromise. Establishing the time that a
 particular authentic Babel packet was generated is thus not
 possible. Proving, that a particular Babel speaker had actually
 sent a given authentic packet is also impossible as soon as the
 shared key is claimed compromised. Even with the shared key not
 being compromised, reliably identifying the speaker that had
 actually sent a given authentic Babel packet is not possible any
 better than proving the speaker to belong to the group sharing
 the key (any of the speakers sharing a key can impose any other
 speaker sharing the same key).

 g. Confidentiality Violations

 The original Babel protocol does not encrypt any of the
 information contained in its packets. Contents of a Babel packet
 is trivial to decode, revealing network topology details. This
 mechanism does not improve this situation in any way. Since
 routing protocol messages are not the only kind of information
 subject to confidentiality concerns, a complete solution to this
 problem is likely to include measures based on the channel
 security model, such as IPSec and WPA2 at the time of this
 writing.

 h. Key Management

 Any authentication key exchange/distribution concerns are left
 out of scope. However, the internal representation of
 authentication keys (see Section 3.8) allows for diverse key
 management means, manual configuration in the first place.

 i. Message Deletion

 Any message deletion attacks are left out of scope. Since a
 datagram deleted by an attacker cannot be distinguished from a
 datagram naturally lost in transmission and since datagram-based
 routing protocols are designed to withstand a certain loss of
 packets, the currently established practice is treating
 authentication purely as a per-packet function without any added
 detection of lost packets.

Ovsienko Expires February 21, 2013 [Page 35]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

9. IANA Considerations

 [RFC Editor: please do not remove this section.]

 At the time of this publication Babel TLV Types namespace did not
 have an IANA registry. TLV types 11 and 12 were assigned to the
 TS/PC and HMAC TLV types by Juliusz Chroboczek, designer of the
 original Babel protocol. Therefore, this document has no IANA
 actions.

10. Acknowledgements

 Thanks to Ran Atkinson and Matthew Fanto for their comprehensive work
 on [RIP2-AUTH] that initiated a series of publications on routing
 protocols authentication, including this one. This specification
 adopts many concepts belonging to the whole series.

 Thanks to Juliusz Chroboczek for his works on mesh networking in
 general and Babel routing protocol in particular, and also for
 feedback on early revisions of this document. This work would not be
 possible without prior works on Babel.

 Thank to Jim Gettys and Dave Taht for developing CeroWrt wireless
 router project and collaborating on many integration issues. A
 practical need for Babel authentication emerged during a research
 based on CeroWrt that eventually became the very first use case of
 this mechanism.

 Thanks to Kunihiro Ishiguro and Paul Jakma for establishing GNU Zebra
 and Quagga routing software projects respectively. Thanks to Werner
 Koch, the author of Libgcrypt. The very first implementation of this
 mechanism was made on base of Quagga and Libgcrypt.

 This document was produced using the xml2rfc ([RFC2629]) authoring
 tool.

11. References

11.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Ovsienko Expires February 21, 2013 [Page 36]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 [FIPS-198]
 US National Institute of Standards & Technology, "The
 Keyed-Hash Message Authentication Code (HMAC)", FIPS PUB
 198 , March 2002.

 [BABEL] Chroboczek, J., "The Babel Routing Protocol", RFC 6126,
 April 2011.

11.2. Informative References

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

 [RIP2-AUTH]
 Atkinson, R. and M. Fanto, "RIPv2 Cryptographic
 Authentication", RFC 4822, February 2007.

 [OSPF2-AUTH]
 Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
 Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
 Authentication", RFC 5709, October 2009.

 [RFC6039] Manral, V., Bhatia, M., Jaeggli, J., and R. White, "Issues
 with Existing Cryptographic Protection Methods for Routing
 Protocols", RFC 6039, October 2010.

 [OSPF3-AUTH]
 Bhatia, M., Manral, V., and A. Lindem, "Supporting
 Authentication Trailer for OSPFv3", RFC 6506,
 February 2012.

https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/rfc4822
https://datatracker.ietf.org/doc/html/rfc5709
https://datatracker.ietf.org/doc/html/rfc6039
https://datatracker.ietf.org/doc/html/rfc6506

Ovsienko Expires February 21, 2013 [Page 37]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

Appendix A. Figures

 +---+
 | authentication-specific statistics |
 +---+
 ^ | ^
 | v |
 | +---+ |
 | | system operator | |
 | +---+ |
 | ^ | ^ | ^ | |
 | | v | v | v |
 +---+ +----------------+ +---------+ +----------------+ +---+
 | | | MaxDigestsIn | | | | MaxDigestsOut | | |
 | |<-| ANM timeout | | CSAs | | |->| |
 | R | | RxAuthRequired | | | | | | T |
 | x | +----------------+ +---------+ +----------------+ | x |
 | | | | | |
 | p | v v | p |
 | r | +---------------------+ +---------------------+ | r |
 | o |<-| Rx ESAs (temporary) | | Tx ESAs (temporary) |->| o |
 | c | +---------------------+ +---------------------+ | c |
 | e | +---------------------+ +---------------------+ | e |
 | s |->| ANM | | LocalTS |->| s |
 | s |<-| table | | LocalPC |<-| s |
 | i | +---------------------+ +---------------------+ | i |
 | n | +------------------------------+----------------+ | n |
 | g | | instance of | output buffers |=>| g |
 | |=>| the original +----------------+ | |
 | | | protocol | source address |->| |
 +---+ +------------------------------+----------------+ +---+
 /\ | ||
 || v \/
 +---+
 | IPv6 stack |
 +---+
 /\ || /\ || /\ || /\ ||
 || \/ || \/ || \/ || \/
 +---------+ +---------+ +---------+ +---------+
 | speaker | | speaker | ... | speaker | | speaker |
 +---------+ +---------+ +---------+ +---------+

 Flow of Babel datagrams: ===> Flow of contol data: --->

 Figure 1: Interaction Diagram

Ovsienko Expires February 21, 2013 [Page 38]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 The diagram below depicts structure of two Babel datagrams. The left
 datagram contains an unauthenticated Babel packet and an optional
 trailing data block. The right datagram, besides these, contains
 authentication-specific TLVs in the Babel packet body.

 +-------------------+ ------- ------- +-------------------+
 | Babel packet | ^ ^ | Babel packet |
 | header | | | | header |
 +-------------------+ -- | | -- +-------------------+
 | other TLV | ^ | | ^ | other TLV |
 +-------------------+ | | | | +-------------------+
 | other TLV | | | P | | | other TLV |
 +-------------------+ | | | | +-------------------+
 | (...) | | B | | | | (...) |
 +-------------------+ | | | | +-------------------+
 | other TLV | | | P | | | other TLV |
 +-------------------+ | | | | +-------------------+
 | other TLV | v v | B | | other TLV |
 +-------------------+ ------- | | +-------------------+
 | optional trailing | | | | TS/PC TLV |
 | data block | | | +-------------------+
 +-------------------+ | | | HMAC TLV |
 | | +-------------------+
 | | | (...) |
 | | +-------------------+
 P: Babel packet v v | HMAC TLV |
 B: Babel packet body ------- +-------------------+
 | optional trailing |
 | data block |
 +-------------------+

 Figure 2: Babel Datagram Structure

Ovsienko Expires February 21, 2013 [Page 39]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

 The diagram below depicts a sample HMAC TLV corresponding to a hash
 algorithm with digest length of 20 octets (such as RIPEMD-160). Its
 Digest field is fully padded using IPv6 address
 fe80::0a11:96ff:fe1c:10c8 for the first 16 octets and 0x00 for the
 subsequent octets.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length = 22 | KeyID = 12345 |
 +-+
 | Digest = 0xFE 80 00 00 |
 +-+
 | 00 00 00 00 |
 +-+
 | 0A 11 96 FF |
 +-+
 | FE 1C 10 C8 |
 +-+
 | 00 00 00 00 |
 +-+

 Figure 3: A Padded HMAC TLV

 The diagram below depicts the same HMAC TLV with all 20 octets of a
 sample HMAC result written to the Digest field.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length = 22 | KeyID = 12345 |
 +-+
 | Digest = 0x4F C8 C8 9D |
 +-+
 | 57 83 91 9B |
 +-+
 | 81 B0 90 47 |
 +-+
 | B4 2F E3 37 |
 +-+
 | A7 BE 93 83 |
 +-+

 Figure 4: A HMAC TLV with a HMAC Result

Ovsienko Expires February 21, 2013 [Page 40]

Internet-Draft Babel HMAC Cryptographic Authentication August 2012

Author's Address

 Denis Ovsienko
 Yandex
 16, Leo Tolstoy St.
 Moscow, 119021
 Russia

 Email: infrastation@yandex.ru

Ovsienko Expires February 21, 2013 [Page 41]

