
Network Working Group D. Ovsienko
Internet-Draft Yandex
Updates: 6126 (if approved) October 18, 2013
Intended status: Experimental
Expires: April 21, 2014

Babel HMAC Cryptographic Authentication
draft-ovsienko-babel-hmac-authentication-05

Abstract

 This document describes a cryptographic authentication mechanism for
 Babel routing protocol, updating, but not superceding RFC 6126. The
 mechanism allocates two new TLV types for the authentication data,
 uses HMAC and is both optional and backward compatible.

Status of this Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2014.

Copyright Notice

 Copyright (c) 2013 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Ovsienko Expires April 21, 2014 [Page 1]

https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

Table of Contents

1. Introduction . 4
1.1. Requirements Language 5

2. Cryptographic Aspects . 5
2.1. Mandatory-to-Implement and Optional Hash Algorithms . . . 5
2.2. Definition of Padding 7
2.3. Cryptographic Sequence Number Specifics 8
2.4. Definition of HMAC . 9

3. Updates to Protocol Data Structures 11
3.1. RxAuthRequired . 11
3.2. LocalTS . 11
3.3. LocalPC . 11
3.4. MaxDigestsIn . 12
3.5. MaxDigestsOut . 12
3.6. ANM Table . 12
3.7. ANM Timeout . 13
3.8. Configured Security Associations 14
3.9. Effective Security Associations 16

4. Updates to Protocol Encoding 17
4.1. Justification . 17
4.2. TS/PC TLV . 19
4.3. HMAC TLV . 20

5. Updates to Protocol Operation 20
5.1. Per-Interface TS/PC Number Updates 20
5.2. Deriving ESAs from CSAs 22
5.3. Updates to Packet Sending 24
5.4. Updates to Packet Receiving 27
5.5. Authentication-Specific Statistics Maintenance 29

6. Implementation Notes . 30
6.1. Source Address Selection for Sending 30
6.2. Output Buffer Management 30
6.3. Optimisations of ESAs Deriving 31
6.4. Security Associations Duplication 32

7. Network Management Aspects 33
7.1. Backward Compatibility 33
7.2. Multi-Domain Authentication 34
7.3. Migration to and from Authenticated Exchange 35
7.4. Handling of Authentication Keys Exhaustion 36

8. Implementation Status . 37
9. Security Considerations 38
10. IANA Considerations . 42
11. Acknowledgements . 42
12. References . 43
12.1. Normative References 43
12.2. Informative References 43

Appendix A. Figures and Tables 46
Appendix B. Test Vectors . 50

Ovsienko Expires April 21, 2014 [Page 2]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 Author's Address . 53

Ovsienko Expires April 21, 2014 [Page 3]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

1. Introduction

 [RFC Editor: before publication please remove the sentence below.]
 Comments are solicited and should be addressed to the author.

 Authentication of routing protocol exchanges is a common mean of
 securing computer networks. Use of protocol authentication
 mechanisms helps in ascertaining that only the intended routers
 participate in routing information exchange, and that the exchanged
 routing information is not modified by a third party.

 [BABEL] ("the original specification") defines data structures,
 encoding, and the operation of a basic Babel routing protocol
 instance ("instance of the original protocol"). This document ("this
 specification") defines data structures, encoding, and the operation
 of an extension to the Babel protocol, an authentication mechanism
 ("this mechanism"). Both the instance of the original protocol and
 this mechanism are mostly self-contained and interact only at
 coupling points defined in this specification.

 A major design goal of this mechanism is transparency to operators
 that is not affected by implementation and configuration specifics.
 A complying implementation makes all meaningful details of
 authentication-specific processing clear to the operator, even when
 some of the operational parameters cannot be changed.

 The currently established (see [RIP2-AUTH], [OSPF2-AUTH],
 [OSPF3-AUTH], [ISIS-AUTH-A], and [RFC6039]) approach to
 authentication mechanism design for datagram-based routing protocols
 such as Babel relies on two principal data items embedded into
 protocol packets, typically as two integral parts of a single data
 structure:

 o A fixed-length unsigned integer, typically called a cryptographic
 sequence number, used in replay attack protection.

 o A variable-length sequence of octets, a result of the HMAC
 construct (see [RFC2104]) computed on meaningful data items of the
 packet (including the cryptographic sequence number) on one hand
 and a secret key on the other, used in proving that both the
 sender and the receiver share the same secret key and that the
 meaningful data was not changed in transmission.

 Depending on the design specifics either all protocol packets are
 authenticated or only those protecting the integrity of protocol
 exchange. This mechanism authenticates all protocol packets.

 This specification defines the use of the cryptographic sequence

https://datatracker.ietf.org/doc/html/rfc6039
https://datatracker.ietf.org/doc/html/rfc2104

Ovsienko Expires April 21, 2014 [Page 4]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 number in details sufficient to make replay attack protection
 strength predictable. That is, an operator can tell the strength
 from the declared characteristics of an implementation and, whereas
 the implementation allows to change relevant parameters, the effect
 of a reconfiguration.

 This mechanism explicitly allows for multiple HMAC results per
 authenticated packet. Since meaningful data items of a given packet
 remain the same, each such HMAC result stands for a different secret
 key and/or a different hash algorithm. This enables a simultaneous,
 independent authentication within multiple domains. This
 specification is not novel in this regard, e.g., L2TPv3 allows for 1
 or 2 results per authenticated packet ([RFC3931] Section 5.4.1).

 An important concern addressed by this mechanism is limiting the
 amount of HMAC computations done per authenticated packet,
 independently for sending and receiving. Without these limits the
 number of computations per packet could be as high as the number of
 configured authentication keys (in the sending case) or as the number
 of keys multiplied by the number of supplied HMAC results (in the
 receiving case).

 These limits establish a basic competition between the configured
 keys and (in the receiving case) an additional competition between
 the supplied HMAC results. This specification defines related data
 structures and procedures in a way to make such competition
 transparent and predictable for an operator.

 Wherever this specification mentions the operator reading or changing
 a particular data structure, variable, parameter, or event counter
 "at runtime", it is up to the implementor how this is to be done.
 For example, the implementation can employ an interactive CLI, or a
 management protocol such as SNMP, or an inter-process communication
 mean such as a local socket, or a combination of these.

1.1. Requirements Language

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in BCP 14 [RFC2119].

2. Cryptographic Aspects

2.1. Mandatory-to-Implement and Optional Hash Algorithms

 [RFC2104] defines HMAC as a construct that can use any cryptographic
 hash algorithm with a known digest length and internal block size.

https://datatracker.ietf.org/doc/html/rfc3931#section-5.4.1
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119

Ovsienko Expires April 21, 2014 [Page 5]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 This specification preserves this property of HMAC by defining data
 processing that itself does not depend on any particular hash
 algorithm either. However, since this mechanism is a protocol
 extension case, there are relevant design considerations to take into
 account.

Section 4.5 of [RFC6709] suggests selecting one hash algorithm as
 mandatory-to-implement for the purpose of global interoperability
 (Section 3.2 ibid.) and selecting another of distinct lineage as
 recommended for implementation for the purpose of cryptographic
 agility. This specification makes the latter property guaranteed,
 rather than probable, through an elevation of the requirement level.
 There are two hash algorithms mandatory-to-implement, unambiguously
 defined and generally available in multiple implementations each.

 An implementation of this mechanism MUST include support for two hash
 algorithms:

 o RIPEMD-160 (160-bit digest)

 o SHA-1 (160-bit digest)

 Besides that, an implementation of this mechanism MAY include support
 for additional hash algorithms, provided each such algorithm is
 publicly and openly specified and its digest length is 128 bits or
 more (to meet the constraint implied in Section 2.2). Implementors
 SHOULD consider strong, well-known hash algorithms as additional
 implementation options and MUST NOT consider hash algorithms for that
 by the time of implementation meaningful attacks exist or that are
 commonly viewed as deprecated.

 In the latter case it is important to take into account
 considerations both common (such as those made in [RFC4270]) and
 specific to the HMAC application of the hash algorithm. E.g.,
 [RFC6151] considers MD5 collisions and concludes that new protocol
 designs should not use HMAC-MD5, while [RFC6194] includes a
 comparable analysis of SHA-1 that finds HMAC-SHA-1 secure for the
 same purpose.

 For example, the following hash algorithms meet these requirements at
 the time of this writing (in alphabetical order):

 o GOST R 34.11-94 (256-bit digest)

 o SHA-224 (224-bit digest, SHA-2 family)

 o SHA-256 (256-bit digest, SHA-2 family)

https://datatracker.ietf.org/doc/html/rfc6709#section-4.5
https://datatracker.ietf.org/doc/html/rfc4270
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc6194

Ovsienko Expires April 21, 2014 [Page 6]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 o SHA-384 (384-bit digest, SHA-2 family)

 o SHA-512 (512-bit digest, SHA-2 family)

 o Tiger (192-bit digest)

 o Whirlpool (512-bit digest, 2nd rev., 2003)

 The set of hash algorithms available in an implementation MUST be
 clearly stated. When known weak authentication keys exist for a hash
 algorithm used in the HMAC construct, an implementation MUST deny a
 use of such keys.

2.2. Definition of Padding

 Many practical applications of HMAC for authentication of datagram-
 based network protocols (including routing protocols) involve the
 padding procedure, a design-specific conditioning of the message that
 both the sender and the receiver perform before the HMAC computation.
 Specific padding procedure of this mechanism addresses the following
 needs:

 o Data Initialization

 A design that places the HMAC result(s) computed for a message
 inside the same message after the computation has to allocate in
 the message some data unit(s) purposed for the result(s) (in this
 mechanism it is the HMAC TLV(s), see Section 4.3). The padding
 procedure sets respective octets of the data unit(s), in the
 simplest case to a fixed value known as the padding constant.

 Particular value of the constant is specific to each design. For
 instance, in [RIP2-AUTH] as well as works derived from it
 ([ISIS-AUTH-B], [OSPF2-AUTH], and [OSPF3-AUTH]) the value is
 0x878FE1F3. In many other designs (for instance, [RFC3315],
 [RFC3931], [RFC4030], [RFC4302], [RFC5176], and [ISIS-AUTH-A]) the
 value is 0x00.

 However, the HMAC construct is defined on the base of a
 cryptographic hash algorithm, that is, an algorithm meeting
 particular set of requirements made for any input message. Thus
 any padding constant values, whether single- or multiple-octet, as
 well as any other message conditioning methods, don't affect
 cryptographic characteristics of the hash algorithm and the HMAC
 construct respectively.

 o Source Address Protection

https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3931
https://datatracker.ietf.org/doc/html/rfc4030
https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc5176

Ovsienko Expires April 21, 2014 [Page 7]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 In the specific case of datagram-based routing protocols the
 protocol packet (that is, the message being authenticated) often
 does not include network layer addresses, although the source and
 (to a lesser extent) the destination address of the datagram may
 be meaningful in the scope of the protocol instance.

 In Babel the source address may be used as a prefix hext hop (see
 Section 3.5.3 of [BABEL]). A well-known (see Section 2.3 of
 [OSPF3-AUTH]) solution to the source address protection problem is
 to set the first respective octets of the data unit(s) above to
 the source address (yet setting the rest of the octets to the
 padding constant). This procedure adapts this solution to the
 specifics of Babel, which allows for exchange of protocol packets
 using both IPv4 and IPv6 datagrams (see Section 4 of [BABEL]).
 Even though in the case of IPv6 exchange a Babel speaker currently
 uses only link-local source addresses (Section 3.1 ibid.), this
 procedure protects all octets of an arbitrary given source address
 for the reasons of future extensibility. The procedure implies
 that future Babel extensions will never use an IPv4-mapped IPv6
 address as a packet source address.

 This procedure does not protect the destination address, which is
 currently considered meaningless (ibid.) in the same scope. A
 future extension that looks to add such protection would likely
 use a new TLV or sub-TLV to include the destination address into
 the protocol packet (see Section 4.1).

 Description of the padding procedure:

 1. Set the first 16 octets of the Digest field of the given HMAC TLV
 to:

 * the given source address, if it is an IPv6 address, or

 * the IPv4-mapped IPv6 address (per Section 2.5.5.2 of
 [RFC4291]) holding the given source address, if it is an IPv4
 address.

 2. Set the remaining (TLV Length - 18) octets of the Digest field of
 the given HMAC TLV to 0x00.

 For an example of a Babel packet with padded HMAC TLVs see Table 3.

2.3. Cryptographic Sequence Number Specifics

 Operation of this mechanism may involve multiple local and multiple
 remote cryptographic sequence numbers, each essentially being a
 48-bit unsigned integer. This specification uses a term "TS/PC

https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2

Ovsienko Expires April 21, 2014 [Page 8]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 number" to avoid confusion with the route's (Section 2.5 of [BABEL])
 or node's (Section 3.2.1 ibid.) sequence numbers of the original
 Babel specification and to stress the fact that there are two
 distinguished parts of this 48-bit number, each handled in its
 specific way (see Section 5.1):

 0 1 2 3 4
 0 1 2 3 4 5 6 7 8 9 0 // 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7
 +-+-+-+-+-+-+-+-+-+-+-//+-+
 | TS // | PC |
 +-+-+-+-+-+-+-+-+-+-//+-+
 //

 The high-order 32 bits are called "timestamp" (TS) and the low-order
 16 bits are called "packet counter" (PC).

 This mechanism stores, updates, compares, and encodes each TS/PC
 number as two independent unsigned integers, TS and PC respectively.
 Such comparison of TS/PC numbers performed in item 3 of Section 5.4
 is algebraically equivalent to comparison of respective 48-bit
 unsigned integers. Any byte order conversion, when required, is
 performed on TS and PC parts independently.

2.4. Definition of HMAC

 The algorithm description below uses the following nomenclature,
 which is consistent with [FIPS-198]:

 Text Is the data on which the HMAC is calculated (note item (b) of
Section 9). In this specification it is the contents of a

 Babel packet ranging from the beginning of the Magic field of
 the Babel packet header to the end of the last octet of the
 Packet Body field, as defined in Section 4.2 of [BABEL] (see
 Figure 2).

 H Is the specific hash algorithm (see Section 2.1).

 K Is a sequence of octets of an arbitrary, known length.

 Ko Is the cryptographic key used with the hash algorithm.

 B Is the block size of H, measured in octets rather than bits.
 Note that B is the internal block size, not the digest length.

 L Is the digest length of H, measured in octets rather than
 bits.

Ovsienko Expires April 21, 2014 [Page 9]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 XOR Is the bitwise exclusive-or operation.

 Opad Is the hexadecimal value 0x5C repeated B times.

 Ipad Is the hexadecimal value 0x36 repeated B times.

 The algorithm below is the original, unmodified HMAC construct as
 defined in both [RFC2104] and [FIPS-198], hence it is different from
 the algorithms defined in [RIP2-AUTH], [ISIS-AUTH-B], [OSPF2-AUTH],
 and [OSPF3-AUTH] in exactly two regards:

 o The algorithm below sets the size of Ko to B, not to L (L is not
 greater than B). This resolves both ambiguity in XOR expressions
 and incompatibility in handling of keys that have length greater
 than L but not greater than B.

 o The algorithm below does not change value of Text before or after
 the computation. Both padding of a Babel packet before the
 computation and placing of the result inside the packet are
 performed elsewhere.

 The intent of this is to enable the most straightforward use of
 cryptographic libraries by implementations of this specification. At
 the time of this writing implementations of the original HMAC
 construct coupled with hash algorithms of choice are generally
 available.

 Description of the algorithm:

 1. Preparation of the Key

 In this application, Ko is always B octets long. If K is B
 octets long, then Ko is set to K. If K is more than B octets
 long, then Ko is set to H(K) with the necessary amount of zeroes
 appended to the end of H(K), such that Ko is B octets long. If K
 is less than B octets long, then Ko is set to K with zeroes
 appended to the end of K, such that Ko is B octets long.

 2. First-Hash

 A First-Hash, also known as the inner hash, is computed as
 follows:

 First-Hash = H(Ko XOR Ipad || Text)

 3. Second-Hash

https://datatracker.ietf.org/doc/html/rfc2104

Ovsienko Expires April 21, 2014 [Page 10]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 A second hash, also known as the outer hash, is computed as
 follows:

 Second-Hash = H(Ko XOR Opad || First-Hash)

 4. Result

 The resulting Second-Hash becomes the authentication data that is
 returned as the result of HMAC calculation.

 Note that in the case of Babel the Text parameter will never exceed a
 few thousands of octets in length. In this specific case the
 optimization discussed in Section 6 of [FIPS-198] applies, namely,
 for a given K that is more than B octets long the following
 associated intermediate results may be precomputed only once: Ko,
 (Ko XOR Ipad), and (Ko XOR Opad).

3. Updates to Protocol Data Structures

3.1. RxAuthRequired

 RxAuthRequired is a boolean parameter, its default value MUST be
 TRUE. An implementation SHOULD make RxAuthRequired a per-interface
 parameter, but MAY make it specific to the whole protocol instance.
 The conceptual purpose of RxAuthRequired is to enable a smooth
 migration from an unauthenticated to an authenticated Babel packet
 exchange and back (see Section 7.3). Current value of RxAuthRequired
 directly affects the receiving procedure defined in Section 5.4. An
 implementation SHOULD allow the operator to change RxAuthRequired
 value at runtime or by means of Babel speaker restart. An
 implementation MUST allow the operator to discover the effective
 value of RxAuthRequired at runtime or from the system documentation.

3.2. LocalTS

 LocalTS is a 32-bit unsigned integer variable, it is the TS part of a
 per-interface TS/PC number. LocalTS is a strictly per-interface
 variable not intended to be changed by the operator. Its
 initialization is explained in Section 5.1.

3.3. LocalPC

 LocalPC is a 16-bit unsigned integer variable, it is the PC part of a
 per-interface TS/PC number. LocalPC is a strictly per-interface
 variable not intended to be changed by the operator. Its
 initialization is explained in Section 5.1.

Ovsienko Expires April 21, 2014 [Page 11]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

3.4. MaxDigestsIn

 MaxDigestsIn is an unsigned integer parameter conceptually purposed
 for limiting the amount of CPU time spent processing a received
 authenticated packet. The receiving procedure performs the most CPU-
 intensive operation, the HMAC computation, only at most MaxDigestsIn
 (Section 5.4 item 7) times for a given packet.

 MaxDigestsIn value MUST be at least 2. An implementation SHOULD make
 MaxDigestsIn a per-interface parameter, but MAY make it specific to
 the whole protocol instance. An implementation SHOULD allow the
 operator to change the value of MaxDigestsIn at runtime or by means
 of Babel speaker restart. An implementation MUST allow the operator
 to discover the effective value of MaxDigestsIn at runtime or from
 the system documentation.

3.5. MaxDigestsOut

 MaxDigestsOut is an unsigned integer parameter conceptually purposed
 for limiting the amount of a sent authenticated packet's space spent
 on authentication data. The sending procedure adds at most
 MaxDigestsOut (Section 5.3 item 5) HMAC results to a given packet,
 concurring with the output buffer management explained in

Section 6.2.

 The MaxDigestsOut value MUST be at least 2. An implementation SHOULD
 make MaxDigestsOut a per-interface parameter, but MAY make it
 specific to the whole protocol instance. An implementation SHOULD
 allow the operator to change the value of MaxDigestsOut at runtime or
 by means of Babel speaker restart, in a safe range. The maximum safe
 value of MaxDigestsOut is implementation-specific (see Section 6.2).
 An implementation MUST allow the operator to discover the effective
 value of MaxDigestsOut at runtime or from the system documentation.

3.6. ANM Table

 The ANM (Authentic Neighbours Memory) table resembles the neighbour
 table defined in Section 3.2.3 of [BABEL]. Note that the term
 "neighbour table" means the neighbour table of the original Babel
 specification, and the term "ANM table" means the table defined
 herein. Indexing of the ANM table is done in exactly the same way as
 indexing of the neighbour table, but purpose, field set and
 associated procedures are different.

 The conceptual purpose of the ANM table is to provide longer term
 replay attack protection than it would be possible using the
 neighbour table. Expiry of an inactive entry in the neighbour table
 depends on the last received Hello Interval of the neighbour and

Ovsienko Expires April 21, 2014 [Page 12]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 typically stands for tens to hundreds of seconds (see Appendix A and
Appendix B of [BABEL]). Expiry of an inactive entry in the ANM table

 depends only on the local speaker's configuration. The ANM table
 retains (for at least the amount of seconds set by ANM timeout
 parameter defined in Section 3.7) a copy of TS/PC number advertised
 in authentic packets by each remote Babel speaker.

 The ANM table is indexed by pairs of the form (Interface, Source).
 Every table entry consists of the following fields:

 o Interface

 An implementation-specific reference to the local node's interface
 that the authentic packet was received through.

 o Source

 The source address of the Babel speaker that the authentic packet
 was received from.

 o LastTS

 A 32-bit unsigned integer, the TS part of a remote TS/PC number.

 o LastPC

 A 16-bit unsigned integer, the PC part of a remote TS/PC number.

 Each ANM table entry has an associated aging timer, which is reset by
 the receiving procedure (Section 5.4 item 9). If the timer expires,
 the entry is deleted from the ANM table.

 An implementation SHOULD use a persistent memory (NVRAM) to retain
 the contents of ANM table across restarts of the Babel speaker, but
 only as long as both the Interface field reference and expiry of the
 aging timer remain correct. An implementation MUST make it clear, if
 and how persistent memory is used for ANM table. An implementation
 SHOULD allow the operator to retrieve the current contents of ANM
 table at runtime. An implementation SHOULD allow the operator to
 remove some or all of ANM table entries at runtime or by means of
 Babel speaker restart.

3.7. ANM Timeout

 ANM timeout is an unsigned integer parameter. An implementation
 SHOULD make ANM timeout a per-interface parameter, but MAY make it
 specific to the whole protocol instance. ANM timeout is conceptually
 purposed for limiting the maximum age (in seconds) of entries in the

Ovsienko Expires April 21, 2014 [Page 13]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 ANM table standing for inactive Babel speakers. The maximum age is
 immediately related to replay attack protection strength. The
 strongest protection is achieved with the maximum possible value of
 ANM timeout set, but it may not provide the best overall result for
 specific network segments and implementations of this mechanism.

 In the first turn, implementations unable to maintain local TS/PC
 number strictly increasing across Babel speaker restarts will reuse
 the advertised TS/PC numbers after each restart (see Section 5.1).
 The neighbouring speakers will treat the new packets as replayed and
 discard them until the aging timer of respective ANM table entry
 expires or the new TS/PC number exceeds the one stored in the entry.

 Another possible, but less probable, case could be an environment
 using IPv6 for Babel datagrams exchange and involving physical moves
 of network interfaces hardware between Babel speakers. Even
 performed without restarting the speakers, these would cause random
 drops of the TS/PC number advertised for a given (Interface, Source)
 index, as viewed by neighbouring speakers, since IPv6 link-local
 addresses are typically derived from interface hardware addresses.

 Assuming that in such cases the operators would prefer to use a lower
 ANM timeout value to let the entries expire on their own rather than
 having to manually remove them from the ANM table each time, an
 implementation SHOULD set the default value of ANM timeout to a value
 between 30 and 300 seconds.

 At the same time, network segments may exist with every Babel speaker
 having its advertised TS/PC number strictly increasing over the
 deployed lifetime. Assuming that in such cases the operators would
 prefer using a much higher ANM timeout value, an implementation
 SHOULD allow the operator to change the value of ANM timeout at
 runtime or by means of Babel speaker restart. An implementation MUST
 allow the operator to discover the effective value of ANM timeout at
 runtime or from the system documentation.

3.8. Configured Security Associations

 A Configured Security Association (CSA) is a data structure
 conceptually purposed for associating authentication keys and hash
 algorithms with Babel interfaces. All CSAs are managed in finite
 sequences, one sequence per interface ("interface's sequence of CSAs"
 hereafter). Each interface's sequence of CSAs, as an integral part
 of the Babel speaker configuration, MAY be intended for a persistent
 storage as long as this conforms with the implementation's key
 management policy. The default state of an interface's sequence of
 CSAs is empty, which has a special meaning of no authentication
 configured for the interface. The sending (Section 5.3 item 1) and

Ovsienko Expires April 21, 2014 [Page 14]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 the receiving (Section 5.4 item 1) procedures address this convention
 accordingly.

 A single CSA structure consists of the following fields:

 o HashAlgo

 An implementation-specific reference to one of the hash algorithms
 supported by this implementation (see Section 2.1).

 o KeyChain

 A finite sequence of elements ("KeyChain sequence" hereafter)
 representing authentication keys, each element being a structure
 consisting of the following fields:

 * LocalKeyID

 An unsigned integer of an implementation-specific bit length.

 * AuthKeyOctets

 A sequence of octets of an arbitrary, known length to be used
 as the authentication key.

 * KeyStartAccept

 The time that this Babel speaker will begin considering this
 authentication key for accepting packets with authentication
 data.

 * KeyStartGenerate

 The time that this Babel speaker will begin considering this
 authentication key for generating packet authentication data.

 * KeyStopGenerate

 The time that this Babel speaker will stop considering this
 authentication key for generating packet authentication data.

 * KeyStopAccept

 The time that this Babel speaker will stop considering this
 authentication key for accepting packets with authentication
 data.

 Since there is no limit imposed on the number of CSAs per interface,

Ovsienko Expires April 21, 2014 [Page 15]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 but the number of HMAC computations per sent/received packet is
 limited (through MaxDigestsOut and MaxDigestsIn respectively), only a
 fraction of the associated keys and hash algorithms may appear used
 in the process. The ordering of elements within a sequence of CSAs
 and within a KeyChain sequence is important to make the association
 selection process deterministic and transparent. Once this ordering
 is deterministic at the Babel interface level, the intermediate data
 derived by the procedure defined in Section 5.2 will be
 deterministically ordered as well.

 An implementation SHOULD allow an operator to set any arbitrary order
 of elements within a given interface's sequence of CSAs and within
 the KeyChain sequence of a given CSA. Regardless if this requirement
 is or isn't met, the implementation MUST provide a mean to discover
 the actual element order used. Whichever order is used by an
 implementation, it MUST be preserved across Babel speaker restarts.

 Note that none of the CSA structure fields is constrained to contain
 unique values. Section 6.4 explains this in more detail. It is
 possible for the KeyChain sequence to be empty, although this is not
 the intended manner of CSAs use.

 The KeyChain sequence has a direct prototype, which is the "key
 chain" syntax item of some existing router configuration languages.
 Whereas an implementation already implements this syntax item, it is
 suggested to reuse it, that is, to implement a CSA syntax item
 referring to a key chain item instead of reimplementing the latter in
 full.

3.9. Effective Security Associations

 An Effective Security Association (ESA) is a data structure
 immediately used in sending (Section 5.3) and receiving (Section 5.4)
 procedures. Its conceptual purpose is to determine a runtime
 interface between those procedures and the deriving procedure defined
 in Section 5.2. All ESAs are temporary data units managed as
 elements of finite sequences that are not intended for a persistent
 storage. Element ordering within each such finite sequence
 ("sequence of ESAs" hereafter) MUST be preserved as long as the
 sequence exists.

 A single ESA structure consists of the following fields:

 o HashAlgo

 An implementation-specific reference to one of the hash algorithms
 supported by this implementation (see Section 2.1).

Ovsienko Expires April 21, 2014 [Page 16]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 o KeyID

 A 16-bit unsigned integer.

 o AuthKeyOctets

 A sequence of octets of an arbitrary, known length to be used as
 the authentication key.

 Note that among the protocol data structures introduced by this
 mechanism ESA is the only one not directly interfaced with the system
 operator (see Figure 1), it is not immediately present in the
 protocol encoding either. However, ESA is not just a possible
 implementation technique, but an integral part of this specification:
 the deriving (Section 5.2), the sending (Section 5.3), and the
 receiving (Section 5.4) procedures are defined in terms of the ESA
 structure and its semantics provided herein. ESA is as meaningful
 for a correct implementation as the other protocol data structures.

4. Updates to Protocol Encoding

4.1. Justification

 Choice of encoding is very important in the long term. The protocol
 encoding limits various authentication mechanism designs and
 encodings, which in turn limit future developments of the protocol.

 Considering existing implementations of Babel protocol instance
 itself and related modules of packet analysers, the current encoding
 of Babel allows for compact and robust decoders. At the same time,
 this encoding allows for future extensions of Babel by three (not
 excluding each other) principal means defined by Section 4.2 and
 Section 4.3 of [BABEL] and further discussed in
 [I-D.chroboczek-babel-extension-mechanism]:

 a. A Babel packet consists of a four-octet header followed by a
 packet body, that is, a sequence of TLVs (see Figure 2). Besides
 the header and the body, an actual Babel datagram may have an
 arbitrary amount of trailing data between the end of the packet
 body and the end of the datagram. An instance of the original
 protocol silently ignores such trailing data.

 b. The packet body uses a binary format allowing for 256 TLV types
 and imposing no requirements on TLV ordering or number of TLVs of
 a given type in a packet. [BABEL] allocates TLV types 0 through
 10 (see Table 1), defines TLV body structure for each and
 establishes the requirement for a Babel protocol instance to

Ovsienko Expires April 21, 2014 [Page 17]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 ignore any unknown TLV types silently. This makes it possible to
 examine a packet body (to validate the framing and/or to pick
 particular TLVs for further processing) considering only the type
 (to distinguish between a Pad1 TLV and any other TLV) and the
 length of each TLV, regardless if and how many additional TLV
 types are eventually deployed.

 c. Within each TLV of the packet body there may be some "extra data"
 after the "expected length" of the TLV body. An instance of the
 original protocol silently ignores any such extra data. Note
 that any TLV types without the expected length defined (such as
 PadN TLV) cannot be extended with the extra data.

 Considering each principal extension mean for the specific purpose of
 adding authentication data items to each protocol packet, the
 following arguments can be made:

 o Use of the TLV extra data of some existing TLV type would not be a
 solution, since no particular TLV type is guaranteed to be present
 in a Babel packet.

 o Use of the TLV extra data could also conflict with future
 developments of the protocol encoding.

 o Since the packet trailing data is currently unstructured, using it
 would involve defining an encoding structure and associated
 procedures, adding to the complexity of both specification and
 implementation and increasing the exposure to protocol attacks
 such as fuzzing.

 o A naive use of the packet trailing data would make it unavailable
 to any future extension of Babel. Since this mechanism is
 possibly not the last extension and since some other extensions
 may allow no other embedding means except the packet trailing
 data, the defined encoding structure would have to enable
 multiplexing of data items belonging to different extensions.
 Such a definition is out of the scope of this work.

 o Deprecating an extension (or only its protocol encoding) that uses
 purely purpose-allocated TLVs is as simple as deprecating the
 TLVs.

 o Use of purpose-allocated TLVs is transparent for both the original
 protocol and any its future extensions, regardless of the
 embedding mean(s) used by the latter.

 Considering all of the above, this mechanism neither uses the packet
 trailing data nor uses the TLV extra data, but uses two new TLV

Ovsienko Expires April 21, 2014 [Page 18]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 types: type 11 for a TS/PC number and type 12 for an HMAC result (see
 Table 1).

4.2. TS/PC TLV

 The purpose of a TS/PC TLV is to store a single TS/PC number. There
 is exactly one TS/PC TLV in an authenticated Babel packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 11 | Length | PacketCounter |
 +-+
 | Timestamp |
 +-+

 Fields:

 Type Set to 11 to indicate a TS/PC TLV.

 Length The length of the body, exclusive of the Type and
 Length fields.

 PacketCounter A 16-bit unsigned integer in network byte order, the
 PC part of a TS/PC number stored in this TLV.

 Timestamp A 32-bit unsigned integer in network byte order, the
 TS part of a TS/PC number stored in this TLV.

 Note that the ordering of PacketCounter and Timestamp in the TLV
 structure is opposite to the ordering of TS and PC in "TS/PC" term
 and the 48-bit equivalent (see Section 2.3).

 Considering the "expected length" and the "extra data" in the
 definition of Section 4.3 of [BABEL], the expected length of a TS/PC
 TLV body is unambiguously defined as 6 octets. The receiving
 procedure correctly processes any TS/PC TLV with body length not less
 than the expected, ignoring any extra data (Section 5.4 items 3 and
 9). The sending procedure produces a TS/PC TLV with body length
 equal to the expected and Length field set respectively (Section 5.3
 item 3).

 Future Babel extensions (such as sub-TLVs) MAY modify the sending
 procedure to include the extra data after the fixed-size TS/PC TLV
 body defined herein, making necessary adjustments to Length TLV
 field, "Body length" packet header field and output buffer management
 explained in Section 6.2.

Ovsienko Expires April 21, 2014 [Page 19]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

4.3. HMAC TLV

 The purpose of an HMAC TLV is to store a single HMAC result. To
 assist a receiver in reproducing the HMAC computation, LocalKeyID
 modulo 2^16 of the authentication key is also provided in the TLV.
 There is at least one HMAC TLV in an authenticated Babel packet.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Type = 12 | Length | KeyID |
 +-+
 | Digest...
 +-+-+-+-+-+-+-+-+-+-+-+-

 Fields:

 Type Set to 12 to indicate an HMAC TLV.

 Length The length of the body, exclusive of the Type and
 Length fields.

 KeyID A 16-bit unsigned integer in network byte order.

 Digest A variable-length sequence of octets, which is at
 least 16 octets long (see Section 2.2).

 Considering the "expected length" and the "extra data" in the
 definition of Section 4.3 of [BABEL], the expected length of an HMAC
 TLV body is not defined. The receiving and the padding procedures
 process every octet of the Digest field, deriving the field boundary
 from the Length field value (Section 5.4 item 7 and Section 2.2
 respectively). The sending procedure produces HMAC TLVs with Length
 field precisely sizing the Digest field to match digest length of the
 hash algorithm used (Section 5.3 items 5 and 8).

 The HMAC TLV structure defined herein is final, future Babel
 extensions MUST NOT extend it with any extra data.

5. Updates to Protocol Operation

5.1. Per-Interface TS/PC Number Updates

 The LocalTS and LocalPC interface-specific variables constitute the
 TS/PC number of a Babel interface. This number is advertised in the
 TS/PC TLV of authenticated Babel packets sent from that interface.
 There is only one property mandatory for the advertised TS/PC number:

Ovsienko Expires April 21, 2014 [Page 20]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 its 48-bit equivalent (see Section 2.3) MUST be strictly increasing
 within the scope of a given interface of a Babel speaker as long as
 the protocol instance is continuously operating. This property
 combined with ANM tables of neighbouring Babel speakers provides them
 with the most basic replay attack protection.

 Initialization and increment are two principal updates performed on
 an interface TS/PC number. The initialization is performed when a
 new interface becomes a part of a Babel protocol instance. The
 increment is performed by the sending procedure (Section 5.3 item 2)
 before advertising the TS/PC number in a TS/PC TLV.

 Depending on particular implementation method of these two updates
 the advertised TS/PC number may possess additional properties
 improving the replay attack protection strength. This includes, but
 is not limited to the methods below.

 a. The most straightforward implementation would use LocalTS as a
 plain wrap counter, defining the updates as follows:

 initialization Set LocalPC to 0, set LocalTS to 0.

 increment Increment LocalPC by 1. If LocalPC wraps (0xFFFF
 + 1 = 0x0000), increment LocalTS by 1.

 In this case the advertised TS/PC numbers would be reused after
 each Babel protocol instance restart, making neighbouring
 speakers reject authenticated packets until the respective ANM
 table entries expire or the new TS/PC number exceeds the old (see

Section 3.6 and Section 3.7).

 b. A more advanced implementation could make a use of any 32-bit
 unsigned integer timestamp (number of time units since an
 arbitrary epoch) such as the UNIX timestamp, whereas the
 timestamp itself spans a reasonable time range and is guaranteed
 against a decrease (such as one resulting from network time use).
 The updates would be defined as follows:

 initialization Set LocalPC to 0, set LocalTS to 0.

 increment If the current timestamp is greater than LocalTS,
 set LocalTS to the current timestamp and LocalPC
 to 0, then consider the update complete.
 Otherwise increment LocalPC by 1 and, if LocalPC
 wraps, increment LocalTS by 1.

 In this case the advertised TS/PC number would remain unique
 across the speaker's deployed lifetime without the need for any

Ovsienko Expires April 21, 2014 [Page 21]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 persistent storage. However, a suitable timestamp source is not
 available in every implementation case.

 c. Another advanced implementation could use LocalTS in a way
 similar to the "wrap/boot counter" suggested in Section 4.1.1 of
 [OSPF3-AUTH], defining the updates as follows:

 initialization Set LocalPC to 0. If there is a TS value stored
 in NVRAM for the current interface, set LocalTS
 to the stored TS value, then increment the stored
 TS value by 1. Otherwise set LocalTS to 0 and
 set the stored TS value to 1.

 increment Increment LocalPC by 1. If LocalPC wraps, set
 LocalTS to the TS value stored in NVRAM for the
 current interface, then increment the stored TS
 value by 1.

 In this case the advertised TS/PC number would also remain unique
 across the speaker's deployed lifetime, relying on NVRAM for
 storing multiple TS numbers, one per interface.

 As long as the TS/PC number retains its mandatory property stated
 above, it is up to the implementor, which TS/PC number updates
 methods are available and if the operator can configure the method
 per-interface and/or at runtime. However, an implementation MUST
 disclose the essence of each update method it includes, in a
 comprehensible form such as natural language description, pseudocode,
 or source code. An implementation MUST allow the operator to
 discover, which update method is effective for any given interface,
 either at runtime or from the system documentation. These
 requirements are necessary to enable the optimal (see Section 3.7)
 management of ANM timeout in a network segment.

 Note that wrapping (0xFFFFFFFF + 1 = 0x00000000) of LastTS is
 unlikely, but possible, causing the advertised TS/PC number to be
 reused. Resolving this situation requires replacing all
 authentication keys of the involved interface. In addition to that,
 if the wrap was caused by a timestamp reaching its end of epoch,
 using this mechanism will be impossible for the involved interface
 until some different timestamp or update implementation method is
 used.

5.2. Deriving ESAs from CSAs

 Neither receiving nor sending procedures work with the contents of
 interface's sequence of CSAs directly, both (Section 5.4 item 4 and

Section 5.3 item 4 respectively) derive a sequence of ESAs from the

Ovsienko Expires April 21, 2014 [Page 22]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 sequence of CSAs and use the derived sequence (see Figure 1). There
 are two main goals achieved through this indirection:

 o Elimination of expired authentication keys and deduplication of
 security associations. This is done as early as possible to keep
 subsequent procedures focused on their respective tasks.

 o Maintenance of particular ordering within the derived sequence of
 ESAs. The ordering deterministically depends on the ordering
 within the interface's sequence of CSAs and the ordering within
 KeyChain sequence of each CSA. The particular correlation
 maintained by this procedure implements a concept of fair
 (independent of number of keys contained by each) competition
 between CSAs.

 The deriving procedure uses the following input arguments:

 o input sequence of CSAs

 o direction (sending or receiving)

 o current time (CT)

 The processing of input arguments begins with an empty output
 sequence of ESAs and consists of the following steps:

 1. Make a temporary copy of the input sequence of CSAs.

 2. Remove all expired authentication keys from each KeyChain
 sequence of the copy, that is, any keys such that:

 * for receiving: KeyStartAccept is greater than CT or
 KeyStopAccept is less than CT

 * for sending: KeyStartGenerate is greater than CT or
 KeyStopGenerate is less than CT

 Note well that there are no special exceptions. Remove all
 expired keys, even if there are no keys left after that (see

Section 7.4).

 3. Use the copy to populate the output sequence of ESAs as follows:

 1. When the KeyChain sequence of the first CSA contains at least
 one key, use its first key to produce an ESA with fields set
 as follows:

Ovsienko Expires April 21, 2014 [Page 23]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 HashAlgo Set to HashAlgo of the current CSA.

 KeyID Set to LocalKeyID modulo 2^16 of the current
 key of the current CSA.

 AuthKeyOctets Set to AuthKeyOctets of the current key of the
 current CSA.

 Append this ESA to the end of the output sequence.

 2. When the KeyChain sequence of the second CSA contains at
 least one key, use its first key the same way and so forth
 until all first keys of the copy are processed.

 3. When the KeyChain sequence of the first CSA contains at least
 two keys, use its second key the same way.

 4. When the KeyChain sequence of the second CSA contains at
 least two keys, use its second key the same way and so forth
 until all second keys of the copy are processed.

 5. And so forth until all keys of all CSAs of the copy are
 processed, exactly once each.

 In the description above the ordinals ("first", "second", and so
 on) with regard to keys stand for an element position after the
 removal of expired keys, not before. For example, if a KeyChain
 sequence was { Ka, Kb, Kc, Kd } before the removal and became
 { Ka, Kd } after, then Ka would be the "first" element and Kd
 would be the "second".

 4. Deduplicate the ESAs in the output sequence, that is, wherever
 two or more ESAs exist that share the same (HashAlgo, KeyID,
 AuthKeyOctets) triplet value, remove all of these ESAs except the
 one closest to the beginning of the sequence.

 The resulting sequence will contain zero or more unique ESAs, ordered
 in a way deterministically correlated with ordering of CSAs within
 the original input sequence of CSAs and ordering of keys within each
 KeyChain sequence. This ordering maximizes the probability of having
 equal amount of keys per original CSA in any N first elements of the
 resulting sequence. Possible optimisations of this deriving
 procedure are outlined in Section 6.3.

5.3. Updates to Packet Sending

 Perform the following authentication-specific processing after the
 instance of the original protocol considers an outgoing Babel packet

Ovsienko Expires April 21, 2014 [Page 24]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 ready for sending, but before the packet is actually sent (see
 Figure 1). After that send the packet regardless if the
 authentication-specific processing modified the outgoing packet or
 left it intact.

 1. If the current outgoing interface's sequence of CSAs is empty,
 finish authentication-specific processing and consider the packet
 ready for sending.

 2. Increment TS/PC number of the current outgoing interface as
 explained in Section 5.1.

 3. Add to the packet body (see the note at the end of this section)
 a TS/PC TLV with fields set as follows:

 Type Set to 11.

 Length Set to 6.

 PacketCounter Set to the current value of LocalPC variable of
 the current outgoing interface.

 Timestamp Set to the current value of LocalTS variable of
 the current outgoing interface.

 Note that the current step may involve byte order conversion.

 4. Derive a sequence of ESAs using procedure defined in Section 5.2
 with the current interface's sequence of CSAs as the input
 sequence of CSAs, the current time as CT and "sending" as the
 direction. Proceed to the next step even if the derived sequence
 is empty.

 5. Iterate over the derived sequence using its ordering. For each
 ESA add to the packet body (see the note at the end of this
 section) an HMAC TLV with fields set as follows:

 Type Set to 12.

 Length Set to 2 plus digest length of HashAlgo of the current
 ESA.

 KeyID Set to KeyID of the current ESA.

 Digest Size exactly equal to the digest length of HashAlgo of
 the current ESA. Pad (see Section 2.2) using the source
 address of the current packet (see Section 6.1).

Ovsienko Expires April 21, 2014 [Page 25]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 As soon as there are MaxDigestsOut HMAC TLVs added to the current
 packet body, immediately proceed to the next step.

 Note that the current step may involve byte order conversion.

 6. Increment the "Body length" field value of the current packet
 header by the total length of TS/PC and HMAC TLVs appended to the
 current packet body so far.

 Note that the current step may involve byte order conversion.

 7. Make a temporary copy of the current packet.

 8. Iterate over the derived sequence again, using the same order and
 number of elements. For each ESA (and respectively for each HMAC
 TLV recently appended to the current packet body) compute an HMAC
 result (see Section 2.4) using the temporary copy (not the
 original packet) as Text, HashAlgo of the current ESA as H, and
 AuthKeyOctets of the current ESA as K. Write the HMAC result to
 the Digest field of the current HMAC TLV (see Table 4) of the
 current packet (not the copy).

 9. After this point, allow no more changes to the current packet
 header and body and consider it ready for sending.

 Note that even when the derived sequence of ESAs is empty, the packet
 is sent anyway with only a TS/PC TLV appended to its body. Although
 such a packet would not be authenticated, the presence of the sole
 TS/PC TLV would indicate authentication key exhaustion to operators
 of neighbouring Babel speakers. See also Section 7.4.

 Also note that it is possible to place the authentication-specific
 TLVs in the packet's sequence of TLVs in a number of different valid
 ways so long as there is exactly one TS/PC TLV in the sequence and
 the ordering of HMAC TLVs relative to each other, as produced in step
 5 above, is preserved.

 For example, see Figure 2. The diagrams represent a Babel packet
 without (D1) and with (D2, D3, D4) authentication-specific TLVs. The
 optional trailing data block that is present in D1 is preserved in
 D2, D3, and D4. Indexing (1, 2, ..., n) of the HMAC TLVs means the
 order in which the sending procedure produced them (and respectively
 the HMAC results). In D2 the added TLVs are appended: the previously
 existing TLVs are followed by the TS/PC TLV, which is followed by the
 HMAC TLVs. In D3 the added TLVs are prepended: the TS/PC TLV is the
 first and is followed by the HMAC TLVs, which are followed by the
 previously existing TLVs. In D4 the added TLVs are intermixed with
 the previously existing TLVs and the TS/PC TLV is placed after the

Ovsienko Expires April 21, 2014 [Page 26]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 HMAC TLVs. All three packets meet the requirements above.

 Implementors SHOULD use appending (D2) for adding the authentication-
 specific TLVs to the sequence, this is expected to result in more
 straightforward implementation and troubleshooting in most use cases.

5.4. Updates to Packet Receiving

 Perform the following authentication-specific processing after an
 incoming Babel packet is received from the local network stack, but
 before it is processed by the Babel protocol instance (see Figure 1).
 The final action conceptually depends not only upon the result of the
 authentication-specific processing, but also on the current value of
 RxAuthRequired parameter. Immediately after any processing step
 below accepts or refuses the packet, either deliver the packet to the
 instance of the original protocol (when the packet is accepted or
 RxAuthRequired is FALSE) or discard it (when the packet is refused
 and RxAuthRequired is TRUE).

 1. If the current incoming interface's sequence of CSAs is empty,
 accept the packet.

 2. If the current packet does not contain exactly one TS/PC TLV,
 refuse it.

 3. Perform a lookup in the ANM table for an entry having Interface
 equal to the current incoming interface and Source equal to the
 source address of the current packet. If such an entry does not
 exist, immediately proceed to the next step. Otherwise, compare
 the entry's LastTS and LastPC field values with Timestamp and
 PacketCounter values respectively of the TS/PC TLV of the
 packet. That is, refuse the packet, if at least one of the
 following two conditions is true:

 * Timestamp is less than LastTS

 * Timestamp is equal to LastTS and PacketCounter is not greater
 than LastPC

 Note that the current step may involve byte order conversion.

 4. Derive a sequence of ESAs using procedure defined in Section 5.2
 with the current interface's sequence of CSAs as the input
 sequence of CSAs, current time as CT and "receiving" as the
 direction. If the derived sequence is empty, refuse the packet.

 5. Make a temporary copy of the current packet.

Ovsienko Expires April 21, 2014 [Page 27]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 6. Pad (see Section 2.2) every HMAC TLV present in the temporary
 copy (not the original packet) using the source address of the
 original packet.

 7. Iterate over all the HMAC TLVs of the original input packet (not
 the copy) using their order of appearance in the packet. For
 each HMAC TLV look up all ESAs in the derived sequence such that
 2 plus digest length of HashAlgo of the ESA is equal to Length
 of the TLV and KeyID of the ESA is equal to value of KeyID of
 the TLV. Iterate over these ESAs in the relative order of their
 appearance on the full sequence of ESAs. Note that nesting the
 iterations the opposite way (over ESAs, then over HMAC TLVs)
 would be wrong.

 For each of these ESAs compute an HMAC result (see Section 2.4)
 using the temporary copy (not the original packet) as Text,
 HashAlgo of the current ESA as H, and AuthKeyOctets of the
 current ESA as K. If the current HMAC result exactly matches the
 contents of Digest field of the current HMAC TLV, immediately
 proceed to the next step. Otherwise, if the number of HMAC
 computations done for the current packet so far is equal to
 MaxDigestsIn, immediately proceed to the next step. Otherwise
 follow the normal order of iterations.

 Note that the current step may involve byte order conversion.

 8. Refuse the input packet unless there was a matching HMAC result
 in the previous step.

 9. Modify the ANM table, using the same index as for the entry
 lookup above, to contain an entry with LastTS set to the value
 of Timestamp and LastPC set to the value of PacketCounter fields
 of the TS/PC TLV of the current packet. That is, either add a
 new ANM table entry or update the existing one, depending on the
 result of the entry lookup above. Reset the entry's aging timer
 to the current value of ANM timeout.

 Note that the current step may involve byte order conversion.

 10. Accept the input packet.

 Note that RxAuthRequired affects only the final action, but not the
 defined flow of authentication-specific processing. The purpose of
 this is to preserve authentication-specific processing feedback (such
 as log messages and event counters updates) even with RxAuthRequired
 set to FALSE. This allows an operator to predict the effect of
 changing RxAuthRequired from FALSE to TRUE during a migration
 scenario (Section 7.3) implementation.

Ovsienko Expires April 21, 2014 [Page 28]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

5.5. Authentication-Specific Statistics Maintenance

 A Babel speaker implementing this mechanism SHOULD maintain a set of
 counters for the following events, per protocol instance and per
 interface:

 o Sending of an unauthenticated Babel packet through an interface
 having an empty sequence of CSAs (Section 5.3 item 1).

 o Sending of an unauthenticated Babel packet with a TS/PC TLV but
 without any HMAC TLVs due to an empty derived sequence of ESAs
 (Section 5.3 item 4).

 o Sending of an authenticated Babel packet containing both TS/PC and
 HMAC TLVs (Section 5.3 item 9).

 o Accepting of a Babel packet received through an interface having
 an empty sequence of CSAs (Section 5.4 item 1).

 o Refusing of a received Babel packet due to an empty derived
 sequence of ESAs (Section 5.4 item 4).

 o Refusing of a received Babel packet that does not contain exactly
 one TS/PC TLV (Section 5.4 item 2).

 o Refusing of a received Babel packet due to the TS/PC TLV failing
 the ANM table check (Section 5.4 item 3). In the view of future
 extensions this event SHOULD leave out some small amount, per
 current (Interface, Source, LastTS, LastPC) tuple, of the packets
 refused due to Timestamp value being equal to LastTS and
 PacketCounter value being equal to LastPC.

 o Refusing of a received Babel packet missing any HMAC TLVs
 (Section 5.4 item 8).

 o Refusing of a received Babel packet due to none of the processed
 HMAC TLVs passing the ESA check (Section 5.4 item 8).

 o Accepting of a received Babel packet having both TS/PC and HMAC
 TLVs (Section 5.4 item 10).

 o Delivery of a refused packet to the instance of the original
 protocol due to RxAuthRequired parameter set to FALSE.

 Note that terms "accepting" and "refusing" are used in the sense of
 the receiving procedure, that is, "accepting" does not mean a packet
 delivered to the instance of the original protocol purely because the
 RxAuthRequired parameter is set to FALSE. Event counters readings

Ovsienko Expires April 21, 2014 [Page 29]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 SHOULD be available to the operator at runtime.

6. Implementation Notes

6.1. Source Address Selection for Sending

 Section 3.1 of [BABEL] allows for exchange of protocol datagrams
 using IPv4 or IPv6 or both. The source address of the datagram is a
 unicast (link-local in the case of IPv6) address. Within an address
 family used by a Babel speaker there may be more than one addresses
 eligible for the exchange and assigned to the same network interface.
 The original specification considers this case out of scope and
 leaves it up to the speaker's network stack to select one particular
 address as the datagram source address. But the sending procedure
 requires (Section 5.3 item 5) exact knowledge of packet source
 address for proper padding of HMAC TLVs.

 As long as a network interface has more than one addresses eligible
 for the exchange within the same address family, the Babel speaker
 SHOULD internally choose one of those addresses for Babel packet
 sending purposes and make this choice to both the sending procedure
 and the network stack (see Figure 1). Wherever this requirement
 cannot be met, this limitation MUST be clearly stated in the system
 documentation to allow an operator to plan network address management
 accordingly.

6.2. Output Buffer Management

 An instance of the original protocol buffers produced TLVs until the
 buffer becomes full or a delay timer has expired. This is performed
 independently for each Babel interface with each buffer sized
 according to the interface MTU (see Sections 3.1 and 4 of [BABEL]).

 Since TS/PC and HMAC TLVs and any other TLVs, in the first place
 those of the original protocol, share the same packet space (see
 Figure 2) and respectively the same buffer space, a particular
 portion of each interface buffer needs to be reserved for 1 TS/PC TLV
 and up to MaxDigestsOut HMAC TLVs. The amount (R) of this reserved
 buffer space is calculated as follows:

 R = St + MaxDigestsOut * Sh =
 = 8 + MaxDigestsOut * (4 + Lmax)

Ovsienko Expires April 21, 2014 [Page 30]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 St Is the size of a TS/PC TLV.

 Sh Is the size of an HMAC TLV.

 Lmax Is the maximum digest length in octets possible for a
 particular interface. It SHOULD be calculated based on
 particular interface's sequence of CSAs, but MAY be taken as
 the maximum digest length supported by particular
 implementation.

 An implementation allowing for per-interface value of MaxDigestsOut
 or Lmax has to account for different value of R across different
 interfaces, even having the same MTU. An implementation allowing for
 runtime change of the value of R (due to MaxDigestsOut or Lmax) has
 to take care of the TLVs already buffered by the time of the change,
 especially when the value of R increases.

 The maximum safe value of MaxDigestsOut parameter depends on the
 interface MTU and maximum digest length used. In general, at least
 200-300 octets of a Babel packet should be always available to data
 other than TS/PC and HMAC TLVs. An implementation following the
 requirements of Section 4 of [BABEL] would send packets sized 512
 octets or larger. If, for example, the maximum digest length is 64
 octets and MaxDigestsOut value is 4, the value of R would be 280,
 leaving less than a half of a 512-octet packet for any other TLVs.
 As long as the interface MTU is larger or digest length is smaller,
 higher values of MaxDigestsOut can be used safely.

6.3. Optimisations of ESAs Deriving

 The following optimisations of the ESAs deriving procedure can reduce
 amount of CPU time consumed by authentication-specific processing,
 preserving an implementation's effective behaviour.

 a. The most straightforward implementation would treat the deriving
 procedure as a per-packet action. But since the procedure is
 deterministic (its output depends on its input only), it is
 possible to significantly reduce the number of times the
 procedure is performed.

 The procedure would obviously return the same result for the same
 input arguments (sequence of CSAs, direction, CT) values.
 However, it is possible to predict when the result will remain
 the same even for a different input. That is, when the input
 sequence of CSAs and the direction both remain the same but CT
 changes, the result will remain the same as long as CT's order on
 the time axis (relative to all critical points of the sequence of
 CSAs) remains unchanged. Here, the critical points are

Ovsienko Expires April 21, 2014 [Page 31]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 KeyStartAccept and KeyStopAccept (for the "receiving" direction)
 and KeyStartGenerate and KeyStopGenerate (for the "sending"
 direction) of all keys of all CSAs of the input sequence. In
 other words, in this case the result will remain the same as long
 as both none of the active keys expire and none of the inactive
 keys enter into operation.

 An implementation optimised this way would perform the full
 deriving procedure for a given (interface, direction) pair only
 after an operator's change to the interface's sequence of CSAs or
 after reaching one of the critical points mentioned above.

 b. Considering that the sending procedure iterates over at most
 MaxDigestsOut elements of the derived sequence of ESAs
 (Section 5.3 item 5), there would be little sense in the case of
 "sending" direction in returning more than MaxDigestsOut unique
 ESAs in the derived sequence. Note that a similar optimisation
 is impossible in the case of "receiving" direction, since number
 of ESAs actually used in examining a particular packet cannot be
 determined in advance.

6.4. Security Associations Duplication

 This specification defines three data structures as finite sequences:
 a KeyChain sequence, an interface's sequence of CSAs, and a sequence
 of ESAs. There are associated semantics to take into account during
 implementation, in that the same element can appear multiple times at
 different positions of the sequence. In particular, none of CSA
 structure fields (including HashAlgo, LocalKeyID, and AuthKeyOctets)
 alone or in a combination has to be unique within a given CSA, or
 within a given sequence of CSAs, or within all sequences of CSAs of a
 Babel speaker.

 In the CSA space defined this way, for any two authentication keys
 their one field (in)equality would not imply their another field
 (in)equality. In other words, it is acceptable to have more than one
 authentication key with the same LocalKeyID or the same AuthKeyOctets
 or both at a time. It is a conscious design decision that CSA
 semantics allow for duplication of security associations.
 Consequently, ESA semantics allow for duplication of intermediate
 ESAs in the sequence until the explicit deduplication (Section 5.2
 item 4).

 One of the intentions of this is to define the security association
 management in a way that allows the addressing of some specifics of
 Babel as a mesh routing protocol. For example, a system operator
 configuring a Babel speaker to participate in more than one
 administrative domain could find each domain using its own

Ovsienko Expires April 21, 2014 [Page 32]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 authentication key (AuthKeyOctets) under the same LocalKeyID value,
 e.g., a "well-known" or "default" value like 0 or 1. Since
 reconfiguring the domains to use distinct LocalKeyID values isn't
 always feasible, the multi-domain Babel speaker using several
 distinct authentication keys under the same LocalKeyID would make a
 valid use case for such duplication.

 Furthermore, if in this situation the operator decided to migrate one
 of the domains to a different LocalKeyID value in a seamless way,
 respective Babel speakers would use the same authentication key
 (AuthKeyOctets) under two different LocalKeyID values for the time of
 the transition (see also item (e) of Section 9). This would make a
 similar use case.

 Another intention of this design decision is to decouple security
 association management from authentication key management as much as
 possible, so that the latter, be it manual keying or a key management
 protocol, could be designed and implemented independently. This way
 the additional key management constraints, if any, would remain out
 of scope of this authentication mechanism. A similar thinking
 justifies LocalKeyID field having bit length in ESA structure
 definition, but not in that of CSA.

7. Network Management Aspects

7.1. Backward Compatibility

 Support of this mechanism is optional, it does not change the default
 behaviour of a Babel speaker and causes no compatibility issues with
 speakers properly implementing the original Babel specification.
 Given two Babel speakers, one implementing this mechanism and
 configured for authenticated exchange (A) and another not
 implementing it (B), these would not distribute routing information
 uni-directionally or form a routing loop or experience other protocol
 logic issues specific purely to the use of this mechanism.

 The Babel design requires a bi-directional neighbour reachability
 condition between two given speakers for a successful exchange of
 routing information. Apparently, in the case above neighbour
 reachability would be uni-directional. Presence of TS/PC and HMAC
 TLVs in Babel packets sent by A would be transparent to B. But lack
 of authentication data in Babel packets send by B would make them
 effectively invisible to the instance of the original protocol of A.
 Uni-directional links are not specific to use of this mechanism, they
 naturally exist on their own and are properly detected and coped with
 by the original protocol (see Section 3.4.2 of [BABEL]).

Ovsienko Expires April 21, 2014 [Page 33]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

7.2. Multi-Domain Authentication

 The receiving procedure treats a packet as authentic as soon as one
 of its HMAC TLVs passes the check against the derived sequence of
 ESAs. This allows for packet exchange authenticated with multiple
 (hash algorithm, authentication key) pairs simultaneously, in
 combinations as arbitrary as permitted by MaxDigestsIn and
 MaxDigestsOut.

 For example, consider three Babel speakers with one interface each,
 configured with the following CSAs:

 o speaker A: (hash algorithm H1; key SK1), (hash algorithm H1; key
 SK2)

 o speaker B: (hash algorithm H1; key SK1)

 o speaker C: (hash algorithm H1; key SK2)

 Packets sent by A would contain 2 HMAC TLVs each, packets sent by B
 and C would contain 1 HMAC TLV each. A and B would authenticate the
 exchange between themselves using H1 and SK1; A and C would use H1
 and SK2; B and C would discard each other's packets.

 Consider a similar set of speakers configured with different CSAs:

 o speaker D: (hash algorithm H2; key SK3), (hash algorithm H3; key
 SK4)

 o speaker E: (hash algorithm H2; key SK3), (hash algorithm H4, keys
 SK5 and SK6)

 o speaker F: (hash algorithm H3; keys SK4 and SK7), (hash algorithm
 H5, key SK8)

 Packets sent by D would contain 2 HMAC TLVs each, packets sent by E
 and F would contain 3 HMAC TLVs each. D and E would authenticate the
 exchange between themselves using H2 and SK3; D and F would use H3
 and SK4; E and F would discard each other's packets. The
 simultaneous use of H4, SK5, and SK6 by E, as well as use of SK7, H5,
 and SK8 by F (for their own purposes) would remain insignificant to
 A.

 An operator implementing a multi-domain authentication should keep in
 mind that values of MaxDigestsIn and MaxDigestsOut may be different
 both within the same Babel speaker and across different speakers.
 Since the minimum value of both parameters is 2 (see Section 3.4 and

Section 3.5), when more than 2 authentication domains are configured

Ovsienko Expires April 21, 2014 [Page 34]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 simultaneously it is advised to confirm that every involved speaker
 can handle sufficient number of HMAC results for both sending and
 receiving.

 The recommended method of Babel speaker configuration for multi-
 domain authentication is not only using a different authentication
 key for each domain, but also using a separate CSA for each domain,
 even when hash algorithms are the same. This allows for fair
 competition between CSAs and sometimes limits the consequences of a
 possible misconfiguration to the scope of one CSA. See also item (e)
 of Section 9.

7.3. Migration to and from Authenticated Exchange

 It is common in practice to consider a migration to authenticated
 exchange of routing information only after the network has already
 been deployed and put to an active use. Performing the migration in
 a way without regular traffic interruption is typically demanded, and
 this specification allows a smooth migration using the RxAuthRequired
 interface parameter defined in Section 3.1. This measure is similar
 to the "transition mode" suggested in Section 5 of [OSPF3-AUTH].

 An operator performing the migration needs to arrange configuration
 changes as follows:

 1. Decide on particular hash algorithm(s) and key(s) to be used.

 2. Identify all speakers and their involved interfaces that need to
 be migrated to authenticated exchange.

 3. For each of the speakers and the interfaces to be reconfigured
 first set RxAuthRequired parameter to FALSE, then configure
 necessary CSA(s).

 4. Examine the speakers to confirm that Babel packets are
 successfully authenticated according to the configuration
 (supposedly, through examining ANM table entries and
 authentication-specific statistics, see Figure 1) and address any
 discrepancies before proceeding further.

 5. For each of the speakers and the reconfigured interfaces set the
 RxAuthRequired parameter to TRUE.

 Likewise, temporarily setting RxAuthRequired to FALSE can be used to
 migrate smoothly from an authenticated packet exchange back to
 unauthenticated one.

Ovsienko Expires April 21, 2014 [Page 35]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

7.4. Handling of Authentication Keys Exhaustion

 This specification employs a common concept of multiple authenticaion
 keys co-existing for a given interface, with two independent lifetime
 ranges associated with each key (one for sending and another for
 receiving). It is typically recommended to configure the keys using
 finite lifetimes, adding new keys before the old keys expire.
 However, it is obviously possible for all keys to expire for a given
 interface (for sending or receiving or both). Possible ways of
 addressing this situation raise their own concerns:

 o Automatic switching to unauthenticated protocol exchange. This
 behaviour invalidates the initial purposes of authentication and
 is commonly viewed as "unacceptable" ([RIP2-AUTH] Section 5.1,
 [OSPF2-AUTH] Section 3.2, [OSPF3-AUTH] Section 3).

 o Stopping routing information exchange over the interface. This
 behaviour is likely to impact regular traffic routing and is
 commonly viewed as "not advisable" (ibid.).

 o Use of the "most recently expired" key over its intended lifetime
 range. This behaviour is commonly recommended for implementation
 (ibid.), although it may become a problem due to an offline
 cryptographic attack (see item (e) of Section 9) or a compromise
 of the key. In addition, telling a recently expired key from a
 key never ever been in a use may be impossible after a router
 restart.

 Design of this mechanism prevents the automatic switching to
 unauthenticated exchange and is consistent with similar
 authentication mechanisms in this regard. But since the best choice
 between two other options depends on local site policy, this decision
 is left up to the operator rather than the implementor (in a way
 resembling the "fail secure" configuration knob described in Section

5.1 of [RIP2-AUTH]).

 Although the deriving procedure does not allow for any exceptions in
 expired keys filtering (Section 5.2 item 2), the operator can
 trivially enforce one of the two remaining behaviour options through
 local key management procedures. In particular, when using the key
 over its intended lifetime is more preferred than regular traffic
 disruption, the operator would explicitly leave the old key expiry
 time open until the new key is added to the router configuration. In
 the opposite case the operator would always configure the old key
 with a finite lifetime and bear associated risks.

Ovsienko Expires April 21, 2014 [Page 36]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

8. Implementation Status

 [RFC Editor: before publication please remove this section and the
 reference to [RFC6982], along the offered experiment of which this
 section exists to assist document reviewers.]

 At the time of this writing the original Babel protocol is available
 in two free, production-quality implementations, both of which
 support IPv4 and IPv6 routing but exchange Babel packets using IPv6
 only:

 o The "standalone" babeld, a BSD-licensed software with source code
 publicly available [1].

 That implementation does not support this authentication
 mechanism.

 o The integrated babeld component of Quagga-RE, a work derived from
 Quagga routing protocol suite, a GPL-lisensed software with source
 code publicly available [2].

 That implementation supports this authentication mechanism as
 defined in revision 05 of this document. It supports both
 mandatory-to-implement hash algorithms (RIPEMD-160 and SHA-1) and
 a few additional algorithms (SHA-224, SHA-256, SHA-384, SHA-512
 and Whirlpool). It does not support more than one link-local IPv6
 address per interface. It implements authentication-specific
 parameters, data structures and methods as follows (whether a
 parameter can be "changed at runtime", it is done by means of CLI
 and can also be set in a configuration file):

 * MaxDigestsIn value is fixed to 4.

 * MaxDigestsOut value is fixed to 4.

 * RxAuthRequired value is specific to each interface and can be
 changed at runtime.

 * ANM Table contents is not retained across speaker restarts, can
 be retrieved and reset (all entries at once) by means of CLI.

 * ANM Timeout value is specific to the whole protocol instance,
 has a default value of 300 seconds and can be changed at
 runtime.

 * Ordering of elements within each interface's sequence of CSAs
 is arbitrary as set by operator at runtime. CSAs are
 implemented to refer to existing key chain syntax items.

https://datatracker.ietf.org/doc/html/rfc6982

Ovsienko Expires April 21, 2014 [Page 37]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 Elements of an interface's sequence of CSAs are constrained to
 be unique reference-wise, but not contents-wise, that is, it is
 possible to duplicate security associations using a different
 key chain name to contain the same keys.

 * Ordering of elements within each KeyChain sequence is fixed to
 the sort order of LocalKeyID. LocalKeyID is constrained to be
 unique within each KeyChain sequence.

 * TS/PC number updates method can be configured at runtime for
 the whole protocol instance to one of two methods standing for
 items (a) and (b) of Section 5.1. The default method is (b).

 * Most of the authentication-specific statistics counters listed
 in Section 5.5 are implemented (per protocol instance and per
 each interface) and their readings are available by means of
 CLI with an option to log respective events into a file.

 No other implementations of this authentication mechanism are
 known to exist, thus interoperability can only be assessed on
 paper. The only existing implementation has been tested to be
 fully compatible with itself regardless of a speaker CPU
 endianness.

9. Security Considerations

 Use of this mechanism implies requirements common to a use of shared
 authentication keys, including, but not limited to:

 o holding the keys secret,

 o including sufficient amounts of random bits into each key,

 o rekeying on a regular basis, and

 o never reusing a used key for a different purpose

 That said, proper design and implementation of a key management
 policy is out of scope of this work. Many publications on this
 subject exist and should be used for this purpose (BCP 107 [RFC4107],

BCP 132 [RFC4962], and [RFC6039] may be suggested as starting
 points).

 Considering particular attacks being in-scope or out of scope on one
 hand and measures taken to protect against particular in-scope
 attacks on the other, the original Babel protocol and this
 authentication mechanism are in line with similar datagram-based

https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc6039

Ovsienko Expires April 21, 2014 [Page 38]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 routing protocols and their respective mechanisms. In particular,
 the primary concerns addressed are:

 a. Peer Entity Authentication

 The Babel speaker authentication mechanism defined herein is
 believed to be as strong as is the class itself that it belongs
 to. This specification is built on fundamental concepts
 implemented for authentication of similar routing protocols: per-
 packet authentication, use of HMAC construct, use of shared keys.
 Although this design approach does not address all possible
 concerns, it is so far known to be sufficient for most practical
 cases.

 b. Data Integrity

 Meaningful parts of a Babel datagram are the contents of the
 Babel packet (in the definition of Section 4.2 of [BABEL]) and
 the source address of the datagram (Section 3.5.3 ibid.). This
 mechanism authenticates both parts using the HMAC construct, so
 that making any meaningful change to an authenticated packet
 after it has been emitted by the sender should be as hard as
 attacking the HMAC construct itself or successfully recovering
 the authentication key.

 Note well that any trailing data of the Babel datagram is not
 meaningful in the scope of the original specification and does
 not belong to the Babel packet. Integrity of the trailing data
 is respectively not protected by this mechanism. At the same
 time, although any TLV extra data is also not meaningful in the
 same scope, its integrity is protected, since this extra data is
 a part of the Babel packet (see Figure 2).

 c. Replay Attacks

 This specification establishes a basic replay protection measure
 (see Section 3.6), defines a timeout parameter affecting its
 strength (see Section 3.7), and outlines implementation methods
 also affecting protection strength in several ways (see

Section 5.1). The implementor's choice of the timeout value and
 particular implementation methods may be suboptimal due to, for
 example, insufficient hardware resources of the Babel speaker.
 Furthermore, it may be possible that an operator configures the
 timeout and the methods to address particular local specifics and
 this further weakens the protection. An operator concerned about
 replay attack protection strength should understand these factors
 and their meaning in a given network segment.

Ovsienko Expires April 21, 2014 [Page 39]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 d. Denial of Service

 Proper deployment of this mechanism in a Babel network
 significantly increases the efforts required for an attacker to
 feed arbitrary Babel PDUs into protocol exchange (with an intent
 of attacking a particular Babel speaker or disrupting exchange of
 regular traffic in a routing domain). It also protects the
 neighbour table from being flooded with forged speaker entries.

 At the same time, this protection comes with a price of CPU time
 being spent on HMAC computations. This may be a concern for low-
 performance CPUs combined with high-speed interfaces, as
 sometimes seen in embedded systems and hardware routers. The
 MaxDigestsIn parameter, which is used to limit the maximum amount
 of CPU time spent on a single received Babel packet, addresses
 this concern to some extent.

 The following in-scope concerns are not addressed:

 e. Offline Cryptographic Attacks

 This mechanism is obviously subject to offline cryptographic
 attacks. As soon as an attacker has obtained a copy of an
 authenticated Babel packet of interest (which gets easier to do
 in wireless networks), he has got all the parameters of the
 authentication-specific processing performed by the sender,
 except authentication key(s) and choice of particular hash
 algorithm(s). Since digest lengths of common hash algorithms are
 well-known and can be matched with those seen in the packet,
 complexity of this attack is essentially that of the
 authentication key attack.

 Viewing the cryptographic strength of particular hash algorithms
 as a concern of its own, the main practical means of resisting
 offline cryptographic attacks on this mechanism are periodic
 rekeying and use of strong keys with a sufficient number of
 random bits.

 It is important to understand that in the case of multiple keys
 being used within single interface (for a multi-domain
 authentication or during a key rollover) the strength of the
 combined configuration would be that of the weakest key, since
 only one successful HMAC test is required for an authentic
 packet. Operators concerned about offline cryptographic attacks
 should enforce the same strength policy for all keys used for a
 given interface.

 Note that a special pathological case is possible with this

Ovsienko Expires April 21, 2014 [Page 40]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 mechanism. Whenever two or more authentication keys are
 configured for a given interface such that all keys share the
 same AuthKeyOctets and the same HashAlgo, but LocalKeyID modulo
 2^16 is different for each key, these keys will not be treated as
 duplicate (Section 5.2 item 4), but an HMAC result computed for a
 given packet will be the same for each of these keys. In the
 case of sending procedure this can produce multiple HMAC TLVs
 with exactly the same value of the Digest field, but different
 values of KeyID field. In this case the attacker will see that
 the keys are the same, even without the knowledge of the key
 itself. Reuse of authentication keys is not the intended use
 case of this mechanism and should be strongly avoided.

 f. Non-repudiation

 This specification relies on a use of shared keys. There is no
 timestamp infrastructure and no key revocation mechanism defined
 to address a shared key compromise. Establishing the time that a
 particular authentic Babel packet was generated is thus not
 possible. Proving that a particular Babel speaker had actually
 sent a given authentic packet is also impossible as soon as the
 shared key is claimed compromised. Even with the shared key not
 being compromised, reliably identifying the speaker that had
 actually sent a given authentic Babel packet is not possible any
 better than proving the speaker belongs to the group sharing the
 key (any of the speakers sharing a key can impose any other
 speaker sharing the same key).

 g. Confidentiality Violations

 The original Babel protocol does not encrypt any of the
 information contained in its packets. The contents of a Babel
 packet is trivial to decode, revealing network topology details.
 This mechanism does not improve this situation in any way. Since
 routing protocol messages are not the only kind of information
 subject to confidentiality concerns, a complete solution to this
 problem is likely to include measures based on the channel
 security model, such as IPSec and WPA2 at the time of this
 writing.

 h. Key Management

 Any authentication key exchange/distribution concerns are left
 out of scope. However, the internal representation of
 authentication keys (see Section 3.8) allows for diverse key
 management means, manual configuration in the first place.

Ovsienko Expires April 21, 2014 [Page 41]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 i. Message Deletion

 Any message deletion attacks are left out of scope. Since a
 datagram deleted by an attacker cannot be distinguished from a
 datagram naturally lost in transmission and since datagram-based
 routing protocols are designed to withstand a certain loss of
 packets, the currently established practice is treating
 authentication purely as a per-packet function without any added
 detection of lost packets.

10. IANA Considerations

 [RFC Editor: please do not remove this section.]

 At the time of this publication Babel TLV Types namespace did not
 have an IANA registry. TLV types 11 and 12 were assigned (see
 Table 1) to the TS/PC and HMAC TLV types by Juliusz Chroboczek,
 designer of the original Babel protocol. Therefore, this document
 has no IANA actions.

11. Acknowledgements

 Thanks to Randall Atkinson and Matthew Fanto for their comprehensive
 work on [RIP2-AUTH] that initiated a series of publications on
 routing protocols authentication, including this one. This
 specification adopts many concepts belonging to the whole series.

 Thanks to Juliusz Chroboczek, Gabriel Kerneis, and Matthieu Boutier.
 This document incorporates many technical and editorial corrections
 based on their feedback. Thanks to all contributors to Babel,
 because this work would not be possible without the prior works.
 Thanks to Dominic Mulligan for editorial proofreading of this
 document. Thanks to Riku Hietamaki for suggesting the test vectors
 section.

 Thanks to Jim Gettys and Dave Taht for developing CeroWrt wireless
 router project and collaborating on many integration issues. A
 practical need for Babel authentication emerged during a research
 based on CeroWrt that eventually became the very first use case of
 this mechanism.

 Thanks to Kunihiro Ishiguro and Paul Jakma for establishing GNU Zebra
 and Quagga routing software projects respectively. Thanks to Werner
 Koch, the author of Libgcrypt. The very first implementation of this
 mechanism was made on base of Quagga and Libgcrypt.

Ovsienko Expires April 21, 2014 [Page 42]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 This document was produced using the xml2rfc ([RFC2629]) authoring
 tool.

12. References

12.1. Normative References

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 February 1997.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC4291] Hinden, R. and S. Deering, "IP Version 6 Addressing
 Architecture", RFC 4291, February 2006.

 [FIPS-198]
 US National Institute of Standards & Technology, "The
 Keyed-Hash Message Authentication Code (HMAC)", FIPS
 PUB 198-1, July 2008.

 [BABEL] Chroboczek, J., "The Babel Routing Protocol", RFC 6126,
 April 2011.

12.2. Informative References

 [RFC2629] Rose, M., "Writing I-Ds and RFCs using XML", RFC 2629,
 June 1999.

 [RFC3315] Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C.,
 and M. Carney, "Dynamic Host Configuration Protocol for
 IPv6 (DHCPv6)", RFC 3315, July 2003.

 [RFC3931] Lau, J., Townsley, M., and I. Goyret, "Layer Two Tunneling
 Protocol - Version 3 (L2TPv3)", RFC 3931, March 2005.

 [RFC4030] Stapp, M. and T. Lemon, "The Authentication Suboption for
 the Dynamic Host Configuration Protocol (DHCP) Relay Agent
 Option", RFC 4030, March 2005.

 [RFC4107] Bellovin, S. and R. Housley, "Guidelines for Cryptographic
 Key Management", BCP 107, RFC 4107, June 2005.

 [RFC4270] Hoffman, P. and B. Schneier, "Attacks on Cryptographic
 Hashes in Internet Protocols", RFC 4270, November 2005.

https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/rfc2104
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc4291
https://datatracker.ietf.org/doc/html/rfc6126
https://datatracker.ietf.org/doc/html/rfc2629
https://datatracker.ietf.org/doc/html/rfc3315
https://datatracker.ietf.org/doc/html/rfc3931
https://datatracker.ietf.org/doc/html/rfc4030
https://datatracker.ietf.org/doc/html/bcp107
https://datatracker.ietf.org/doc/html/rfc4107
https://datatracker.ietf.org/doc/html/rfc4270

Ovsienko Expires April 21, 2014 [Page 43]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 [RFC4302] Kent, S., "IP Authentication Header", RFC 4302,
 December 2005.

 [RIP2-AUTH]
 Atkinson, R. and M. Fanto, "RIPv2 Cryptographic
 Authentication", RFC 4822, February 2007.

 [RFC4962] Housley, R. and B. Aboba, "Guidance for Authentication,
 Authorization, and Accounting (AAA) Key Management",

BCP 132, RFC 4962, July 2007.

 [RFC5176] Chiba, M., Dommety, G., Eklund, M., Mitton, D., and B.
 Aboba, "Dynamic Authorization Extensions to Remote
 Authentication Dial In User Service (RADIUS)", RFC 5176,
 January 2008.

 [ISIS-AUTH-A]
 Li, T. and R. Atkinson, "IS-IS Cryptographic
 Authentication", RFC 5304, October 2008.

 [ISIS-AUTH-B]
 Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R.,
 and M. Fanto, "IS-IS Generic Cryptographic
 Authentication", RFC 5310, February 2009.

 [OSPF2-AUTH]
 Bhatia, M., Manral, V., Fanto, M., White, R., Barnes, M.,
 Li, T., and R. Atkinson, "OSPFv2 HMAC-SHA Cryptographic
 Authentication", RFC 5709, October 2009.

 [RFC6039] Manral, V., Bhatia, M., Jaeggli, J., and R. White, "Issues
 with Existing Cryptographic Protection Methods for Routing
 Protocols", RFC 6039, October 2010.

 [RFC6151] Turner, S. and L. Chen, "Updated Security Considerations
 for the MD5 Message-Digest and the HMAC-MD5 Algorithms",

RFC 6151, March 2011.

 [RFC6194] Polk, T., Chen, L., Turner, S., and P. Hoffman, "Security
 Considerations for the SHA-0 and SHA-1 Message-Digest
 Algorithms", RFC 6194, March 2011.

 [OSPF3-AUTH]
 Bhatia, M., Manral, V., and A. Lindem, "Supporting
 Authentication Trailer for OSPFv3", RFC 6506,
 February 2012.

 [RFC6709] Carpenter, B., Aboba, B., and S. Cheshire, "Design

https://datatracker.ietf.org/doc/html/rfc4302
https://datatracker.ietf.org/doc/html/rfc4822
https://datatracker.ietf.org/doc/html/bcp132
https://datatracker.ietf.org/doc/html/rfc4962
https://datatracker.ietf.org/doc/html/rfc5176
https://datatracker.ietf.org/doc/html/rfc5304
https://datatracker.ietf.org/doc/html/rfc5310
https://datatracker.ietf.org/doc/html/rfc5709
https://datatracker.ietf.org/doc/html/rfc6039
https://datatracker.ietf.org/doc/html/rfc6151
https://datatracker.ietf.org/doc/html/rfc6194
https://datatracker.ietf.org/doc/html/rfc6506

Ovsienko Expires April 21, 2014 [Page 44]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 Considerations for Protocol Extensions", RFC 6709,
 September 2012.

 [RFC6982] Sheffer, Y. and A. Farrel, "Improving Awareness of Running
 Code: The Implementation Status Section", RFC 6982,
 July 2013.

 [I-D.chroboczek-babel-extension-mechanism]
 Chroboczek, J., "Extension Mechanism for the Babel Routing
 Protocol", draft-chroboczek-babel-extension-mechanism-00
 (work in progress), June 2013.

URIs

 [1] <https://github.com/jech/babeld>

 [2] <https://github.com/Quagga-RE/quagga-RE>

https://datatracker.ietf.org/doc/html/rfc6709
https://datatracker.ietf.org/doc/html/rfc6982
https://datatracker.ietf.org/doc/html/draft-chroboczek-babel-extension-mechanism-00
https://github.com/jech/babeld
https://github.com/Quagga-RE/quagga-RE

Ovsienko Expires April 21, 2014 [Page 45]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

Appendix A. Figures and Tables

 +---+
 | authentication-specific statistics |
 +---+
 ^ | ^
 | v |
 | +---+ |
 | | system operator | |
 | +---+ |
 | ^ | ^ | ^ | ^ | ^ | |
 | | v | | | | | | | v |
 +---+ +---------+ | | | | | | +---------+ +---+
 | |->| ANM | | | | | | | | LocalTS |->| |
 | R |<-| table | | | | | | | | LocalPC |<-| T |
 | x | +---------+ | v | v | v +---------+ | x |
 | | +----------------+ +---------+ +----------------+ | |
 | p | | MaxDigestsIn | | | | MaxDigestsOut | | p |
 | r |<-| ANM timeout | | CSAs | | |->| r |
 | o | | RxAuthRequired | | | | | | o |
 | c | +----------------+ +---------+ +----------------+ | c |
 | e | +-------------+ | | +-------------+ | e |
 | s | | Rx ESAs | | | | Tx ESAs | | s |
 | s |<-| (temporary) |<----+ +---->| (temporary) |->| s |
 | i | +-------------+ +-------------+ | i |
 | n | +------------------------------+----------------+ | n |
 | g | | instance of | output buffers |=>| g |
 | |=>| the original +----------------+ | |
 | | | protocol | source address |->| |
 +---+ +------------------------------+----------------+ +---+
 /\ | ||
 || v \/
 +---+
 | network stack |
 +---+
 /\ || /\ || /\ || /\ ||
 || \/ || \/ || \/ || \/
 +---------+ +---------+ +---------+ +---------+
 | speaker | | speaker | ... | speaker | | speaker |
 +---------+ +---------+ +---------+ +---------+

 Flow of control data : --->
 Flow of Babel datagrams/packets: ===>

 Figure 1: Interaction Diagram

Ovsienko Expires April 21, 2014 [Page 46]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 P
 |<---------------------------->| (D1)
 | B |
 | |<------------------------->|
 | | |
 +--+-----+-----+...+-----+-----+--+ P: Babel packet
 |H |some |some | |some |some |T | H: Babel packet header
 | |TLV |TLV | |TLV |TLV | | B: Babel packet body
 | | | | | | | | T: optional trailing data block
 +--+-----+-----+...+-----+-----+--+

 P
 |<--->| (D2)
 | B |
 | |<-->|
 | | |
 +--+-----+-----+...+-----+-----+------+------+...+------+--+
H	some	some		some	some	TS/PC	HMAC		HMAC	T
	TLV	TLV		TLV	TLV	TLV	TLV 1		TLV n	
 +--+-----+-----+...+-----+-----+------+------+...+------+--+

 P
 |<--->| (D3)
 | B |
 | |<-->|
 | | |
 +--+------+------+...+------+-----+-----+...+-----+-----+--+
H	TS/PC	HMAC		HMAC	some	some		some	some	T
	TLV	TLV 1		TLV n	TLV	TLV		TLV	TLV	
 +--+------+------+...+------+-----+-----+...+-----+-----+--+

 P
 |<-->| (D4)
 | B |
 | |<--->|
 | | |
 +--+-----+------+-----+------+...+-----+------+...+------+-----+--+
H	some	HMAC	some	HMAC		some	HMAC		TS/PC	some	T
	TLV	TLV 1	TLV	TLV 2		TLV	TLV n		TLV	TLV	
 +--+-----+------+-----+------+...+-----+------+...+------+-----+--+

 Figure 2: Babel Datagram Structure

Ovsienko Expires April 21, 2014 [Page 47]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 +-------+-------------------------+---------------+
 | Value | Name | Reference |
 +-------+-------------------------+---------------+
 | 0 | Pad1 | [BABEL] |
 | 1 | PadN | [BABEL] |
 | 2 | Acknowledgement Request | [BABEL] |
 | 3 | Acknowledgement | [BABEL] |
 | 4 | Hello | [BABEL] |
 | 5 | IHU | [BABEL] |
 | 6 | Router-Id | [BABEL] |
 | 7 | Next Hop | [BABEL] |
 | 8 | Update | [BABEL] |
 | 9 | Route Request | [BABEL] |
 | 10 | Seqno Request | [BABEL] |
 | 11 | TS/PC | this document |
 | 12 | HMAC | this document |
 +-------+-------------------------+---------------+

 Table 1: Babel TLV Types Namespace

 +--------------+-----------------------------+-------------------+
 | Packet field | Packet octets (hexadecimal) | Meaning (decimal) |
 +--------------+-----------------------------+-------------------+
 | Magic | 2a | 42 |
 | Version | 02 | version 2 |
 | Body length | 00:14 | 20 octets |
 | [TLV] Type | 04 | 4 (Hello) |
 | [TLV] Length | 06 | 6 octets |
 | Reserved | 00:00 | no meaning |
 | Seqno | 09:25 | 2341 |
 | Interval | 01:90 | 400 (40.0 s) |
 | [TLV] Type | 08 | 8 (Update) |
 | [TLV] Length | 0a | 10 octets |
 | AE | 00 | 0 (wildcard) |
 | Flags | 40 | default router-id |
 | Plen | 00 | 0 bits |
 | Omitted | 00 | 0 bits |
 | Interval | ff:ff | infinity |
 | Seqno | 68:21 | 26657 |
 | Metric | ff:ff | infinity |
 +--------------+-----------------------------+-------------------+

 Table 2: A Babel Packet without Authentication TLVs

Ovsienko Expires April 21, 2014 [Page 48]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 +---------------+-------------------------------+-------------------+
 | Packet field | Packet octets (hexadecimal) | Meaning (decimal) |
 +---------------+-------------------------------+-------------------+
Magic	2a	42
Version	02	version 2
Body length	00:4c	76 octets
[TLV] Type	04	4 (Hello)
[TLV] Length	06	6 octets
Reserved	00:00	no meaning
Seqno	09:25	2341
Interval	01:90	400 (40.0 s)
[TLV] Type	08	8 (Update)
[TLV] Length	0a	10 octets
AE	00	0 (wildcard)
Flags	40	default router-id
Plen	00	0 bits
Omitted	00	0 bits
Interval	ff:ff	infinity
Seqno	68:21	26657
Metric	ff:ff	infinity
[TLV] Type	0b	11 (TS/PC)
[TLV] Length	06	6 octets
PacketCounter	00:01	1
Timestamp	52:1d:7e:8b	1377664651
[TLV] Type	0c	12 (HMAC)
[TLV] Length	16	22 octets
KeyID	00:c8	200
Digest	fe:80:00:00:00:00:00:00:0a:11	padding
	96:ff:fe:1c:10:c8:00:00:00:00	
[TLV] Type	0c	12 (HMAC)
[TLV] Length	16	22 octets
KeyID	00:64	100
Digest	fe:80:00:00:00:00:00:00:0a:11	padding
	96:ff:fe:1c:10:c8:00:00:00:00	
 +---------------+-------------------------------+-------------------+

 Table 3: A Babel Packet with Each HMAC TLV Padded Using IPv6 Address
 fe80::0a11:96ff:fe1c:10c8

Ovsienko Expires April 21, 2014 [Page 49]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 +---------------+-------------------------------+-------------------+
 | Packet field | Packet octets (hexadecimal) | Meaning (decimal) |
 +---------------+-------------------------------+-------------------+
Magic	2a	42
Version	02	version 2
Body length	00:4c	76 octets
[TLV] Type	04	4 (Hello)
[TLV] Length	06	6 octets
Reserved	00:00	no meaning
Seqno	09:25	2341
Interval	01:90	400 (40.0 s)
[TLV] Type	08	8 (Update)
[TLV] Length	0a	10 octets
AE	00	0 (wildcard)
Flags	40	default router-id
Plen	00	0 bits
Omitted	00	0 bits
Interval	ff:ff	infinity
Seqno	68:21	26657
Metric	ff:ff	infinity
[TLV] Type	0b	11 (TS/PC)
[TLV] Length	06	6 octets
PacketCounter	00:01	1
Timestamp	52:1d:7e:8b	1377664651
[TLV] Type	0c	12 (HMAC)
[TLV] Length	16	22 octets
KeyID	00:c8	200
Digest	c6:f1:06:13:30:3c:fa:f3:eb:5d	HMAC result
	60:3a:ed:fd:06:55:83:f7:ee:79	
[TLV] Type	0c	12 (HMAC)
[TLV] Length	16	22 octets
KeyID	00:64	100
Digest	df:32:16:5e:d8:63:16:e5:a6:4d	HMAC result
	c7:73:e0:b5:22:82:ce:fe:e2:3c	
 +---------------+-------------------------------+-------------------+

 Table 4: A Babel Packet with Each HMAC TLV Containing an HMAC Result

Appendix B. Test Vectors

 The test vectors below may be used to verify the correctness of some
 procedures performed by an implementation of this mechanism, namely:

 o appending of TS/PC and HMAC TLVs to the Babel packet body,

 o padding of the HMAC TLV(s),

Ovsienko Expires April 21, 2014 [Page 50]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 o computation of the HMAC result(s), and

 o placement of the result(s) in the TLV(s).

 This verification isn't exhaustive, there are other important
 implementation aspects that would require testing methods of their
 own.

 The test vectors were produced as follows.

 1. A Babel speaker with a network interface with IPv6 link-local
 address fe80::0a11:96ff:fe1c:10c8 was configured to use two CSAs
 for the interface:

 * CSA1={HashAlgo=RIPEMD-160, KeyChain={{LocalKeyID=200,
 AuthKeyOctets=Key26}}}

 * CSA2={HashAlgo=SHA-1, KeyChain={{LocalKeyId=100,
 AuthKeyOctets=Key70}}}

 The authentication keys above are:

 * Key26 in ASCII:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 * Key26 in hexadecimal:

 41:42:43:44:45:46:47:48:49:4a:4b:4c:4d:4e:4f:50
 51:52:53:54:55:56:57:58:59:5a

 * Key70 in ASCII:

 This=key=is=exactly=70=octets=long.=ABCDEFGHIJKLMNOPQRSTUVWXYZ01234567

 * Key70 in hexadecimal:

 54:68:69:73:3d:6b:65:79:3d:69:73:3d:65:78:61:63
 74:6c:79:3d:37:30:3d:6f:63:74:65:74:73:3d:6c:6f
 6e:67:2e:3d:41:42:43:44:45:46:47:48:49:4a:4b:4c
 4d:4e:4f:50:51:52:53:54:55:56:57:58:59:5a:30:31
 32:33:34:35:36:37

 The length of each key was picked to relate (in the terms of
Section 2.4) with the properties of respective hash algorithm as

 follows:

Ovsienko Expires April 21, 2014 [Page 51]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 * the digest length (L) of both RIPEMD-160 and SHA-1 is 20
 octets,

 * the internal block size (B) of both RIPEMD-160 and SHA-1 is 64
 octets,

 * the length of Key26 (26) is greater than L but less than B,
 and

 * the length of Key70 (70) is greater than B (and thus greater
 than L).

 KeyStartAccept, KeyStopAccept, KeyStartGenerate and
 KeyStopGenerate were set to make both authentication keys valid.

 2. The instance of the original protocol of the speaker produced a
 Babel packet (PktO) to be sent from the interface. Table 2
 provides a decoding of PktO, contents of which is below:

 2a:02:00:14:04:06:00:00:09:25:01:90:08:0a:00:40
 00:00:ff:ff:68:21:ff:ff

 3. The authentication mechanism appended one TS/PC TLV and two HMAC
 TLVs to the packet body, updated the "Body length" packet header
 field and padded the Digest field of the HMAC TLVs using the
 link-local IPv6 address of the interface and necessary amount of
 zeroes. Table 3 provides a decoding of the resulting temporary
 packet (PktT), contents of which is below:

 2a:02:00:4c:04:06:00:00:09:25:01:90:08:0a:00:40
 00:00:ff:ff:68:21:ff:ff:0b:06:00:01:52:1d:7e:8b
 0c:16:00:c8:fe:80:00:00:00:00:00:00:0a:11:96:ff
 fe:1c:10:c8:00:00:00:00:0c:16:00:64:fe:80:00:00
 00:00:00:00:0a:11:96:ff:fe:1c:10:c8:00:00:00:00

 4. The authentication mechanism produced two HMAC results,
 performing the computations as follows:

 * For H=RIPEMD-160, K=Key26, and Text=PktT the HMAC result is:

 c6:f1:06:13:30:3c:fa:f3:eb:5d:60:3a:ed:fd:06:55
 83:f7:ee:79

 * For H=SHA-1, K=Key70, and Text=PktT the HMAC result is:

 df:32:16:5e:d8:63:16:e5:a6:4d:c7:73:e0:b5:22:82
 ce:fe:e2:3c

Ovsienko Expires April 21, 2014 [Page 52]

Internet-Draft Babel HMAC Cryptographic Authentication October 2013

 5. The authentication mechanism placed each HMAC result into
 respective HMAC TLV, producing the final authenticated Babel
 packet (PktA), which was eventually sent from the interface.
 Table 4 provides a decoding of PktA, contents of which is below:

 2a:02:00:4c:04:06:00:00:09:25:01:90:08:0a:00:40
 00:00:ff:ff:68:21:ff:ff:0b:06:00:01:52:1d:7e:8b
 0c:16:00:c8:c6:f1:06:13:30:3c:fa:f3:eb:5d:60:3a
 ed:fd:06:55:83:f7:ee:79:0c:16:00:64:df:32:16:5e
 d8:63:16:e5:a6:4d:c7:73:e0:b5:22:82:ce:fe:e2:3c

 Interpretation of this process is to be done in the view of Figure 1,
 differently for the sending and the receiving directions.

 For the sending direction, given a Babel speaker configured using the
 IPv6 address and the sequence of CSAs as described above, the
 implementation SHOULD (see notes in Section 5.3) produce exactly the
 temporary packet PktT if the original protocol instance produces
 exactly the packet PktO to be sent from the interface. If the
 temporary packet exactly matches PktT, the HMAC results computed
 afterwards MUST exactly match respective results above and the final
 authenticated packet MUST exactly match the PktA above.

 For the receiving direction, given a Babel speaker configured using
 the sequence of CSAs as described above (but a different IPv6
 address), the implementation MUST (assuming the TS/PC check didn't
 fail) produce exactly the temporary packet PktT above if its network
 stack receives through the interface exactly the packet PktA above
 from the source IPv6 address above. The first HMAC result computed
 afterwards MUST match the first result above. The receiving
 procedure doesn't compute the second HMAC result in this case, but if
 the implementor decides to compute it anyway for the verification
 purpose, it MUST exactly match the second result above.

Author's Address

 Denis Ovsienko
 Yandex
 16, Leo Tolstoy St.
 Moscow, 119021
 Russia

 Email: infrastation@yandex.ru

Ovsienko Expires April 21, 2014 [Page 53]

