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Abstract

   Multipath TCP (MPTCP), described in [3], is an extension to TCP to
   provide the ability to simultaneously use multiple paths between
   hosts.

   MPTCP currently specifies a single authentication mechanism, using
   keys that are initially exchanged in the clear.  There are
   application-layer protocols that may have better information as to
   the identity of the parties and so is able to better provide keying
   material that could be used for the authentication of future
   subflows.

   This document specifies "application layer authentication" for
   Multipath TCP, an alternatively negotiated keying mechanism for
   MPTCP.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on November 28, 2016.
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1.  Introduction

   The MPTCP handshake serves multiple purposes.  First, hosts discover
   their peer's support of MPTCP.  Second, each host announces a key
   that will be tied to this MPTCP session.  The key also serves
   multiple purposes.  First, the derivate of the key is being used as a
   token-identifier for the MPTCP connection.  This derivate is a
   truncated hash of the key.  Second, another truncated hash of the key
   serves as the initial data sequence number.  And third, the key
   itself is used as an authenticator to prove that the host behind the
   IP-address used to establish new subflows is indeed the one that
   participated in the handshake of the initial subflow.

   In the following we explain the shortcomings of this exchange and how
   they impact the deployment of MPTCP.
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1.1.  Key in plaintext

   The key-exchange happens during the handshake of the initial subflow.
RFC 6824 specifies that this exchange happens in plaintext.  As has

   been noted in RFC 7430, an eavesdropper on the initial handshake is
   thus able to learn the keys used in this MPTCP session.  This allows
   him to generate the session's tokens and data sequence numbers,
   enabling him to effectively hijack the MPTCP session by creating a
   subflow with a different IP-address.  The attacker will be able to
   generate a valid HMAC as he has full knowledge of the keys of this
   MPTCP session.

   To enhance MPTCP's security, it would be beneficial to not reveal
   MPTCP's keys in plaintext on the wire.

1.2.  Token generation

   The token is a truncation of the 32 most significant bits of the
   SHA-1 of the key.  The key must be a random number of sufficient
   entropy to be used as part of the authentication mechanism, and thus
   a host has no control over the token as it is generating the key for
   the MPTCP-session.  This has some implications on the deployability
   of MPTCP, outlined hereafter.

1.2.1.  Hash collision

   Due to the nature of the token-generation, the 32-bit token might
   collide with another already existing MPTCP session.  While a 32-bit
   token collision should be very rare on client devices, a busy server
   (with potentially tens of millions of active MPTCP connections) will
   have a very high probability of a token collision.

   Upon such a collision, the server needs to generate a new
   cryptographically secure 64-bit key, and derive the token through a
   SHA-1 computation upon which he finally can verify the uniqueness of
   the token.  If a collision happened again, the server has to start
   anew.  This process imposes a computation overhead and complexity
   upon the server and impacts the scalability compared to regular TCP.
   Allowing a server to generate a token in such a way that uniqueness
   can be achieved easily would be beneficial for the scalability and
   deployment of MPTCP.

1.2.2.  Derive information from the token

   As the token is a truncated hash of the key, it is entirely of a
   random nature.  As has been shown in [5], this brings several
   deployment challenges in large server farms.  In particular, the
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   layer-4 load balancers in front of this server farm need to maintain
   MPTCP-specific state in order to map a token to the server.

   The token can be looked at as a route-identifier, as it allows the
   server to associate the incoming SYN+MP_JOIN with an existing MPTCP-
   session.  However, the random nature of the token does not allow a
   load balancer in the middle to do the same without having to maintain
   MPTCP-specific state.

   If the token can be generated in such a way that it carries the
   required routing information in such a way that it can be deciphered
   by all the trusted parties in the server farm deployment, large-scale
   deployment of MPTCP would be simplified.

   In the following we suggest an alternative handshake that allows
   MPTCP to increase its security by leveraging an external key-exchange
   and thus benefit from the security provided by protocols like TLS.
   As a side-effect of this approach, the token also can be exchanged in
   a more flexible way, addressing the above identified issues with the
   token generation.

2.  Proposed Technical Changes

2.1.  MP_CAPABLE Changes

   To resolve the issues identified in the previous section, this
   proposal separates the key handling for security (i.e. the method for
   protecting new subflow exchanges) from the token exchange.  This
   means that:

   o  Key exchange is handled in the application layer

   o  Meaning can be exchanged in the token, and a custom generation
      method can be used, as it is decoupled from keying material

   This specification allocates the 'G' bit from the flags of MP_CAPABLE
   as an alternative security mechanism - "handled by application
   layer".  In this case, the MP_CAPABLE exchange will send and receive
   tokens rather than keys.

   When the 'G' bit is set to 1, this implies support for this new
   mechanism, and the MP_CAPABLE exchange will operate as follows.  The
   tokens take the place of the keys in the MP_CAPABLE exchange, but
   otherwise the exchange remains very similar.  This exchange still
   maintains support for stateless servers.  Note that this now means
   that tokens are 64 bits in length.
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                           1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +---------------+---------------+-------+-------+---------------+
      |     Kind      |    Length     |Subtype|Version|A|B|C|D|E|F|G|H|
      +---------------+---------------+-------+-------+---------------+
      |                  Option Sender's Token (64 bits)              |
      |                      (if option Length > 4)                   |
      |                                                               |
      +---------------------------------------------------------------+
      |                 Option Receiver's Token (64 bits)             |
      |                      (if option Length > 12)                  |
      |                                                               |
      +-------------------------------+-------------------------------+
      |  Data-Level Length (16 bits)  |  Checksum (16 bits, optional) |
      +-------------------------------+-------------------------------+

         Figure 1: Proposed Multipath Capable (MP_CAPABLE) Option

   The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK packets
   that start the first subflow of an MPTCP connection, as well as the
   first packet that carries data, if the initiator wishes to send
   first.  The data carried by each option is as follows, where A =
   initiator and B = listener.

   o  SYN (A->B): only the first four octets (Length = 4).

   o  SYN/ACK (B->A): B's token for this connection (Length = 12).

   o  ACK (no data) (A->B): A's token followed by B's token (Length =
      20).

   o  ACK (with first data) (A->B): A's key followed by B's key followed
      by Data-Level Length, and optional Checksum (Length = 22 or 24).

   The contents of the option is determined by the SYN and ACK flags of
   the packet, along with the option's length field.  For the diagram
   shown in Figure 1, "sender" and "receiver" refer to the sender or
   receiver of the TCP packet (which can be either host).

   If the sender of the initial SYN supports both SHA-1 (as specified in
   [3]) and application-layer, it can set both G and H bits to "1".  The
   sender of the SYN/ACK can then make a decision as to which mode to
   support, and selects only one of those bits in the SYN/ACK.
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2.2.  MP_JOIN Changes

   The MP_JOIN exchange remains almost the same:

              Host A                                  Host B
     ------------------------                       ----------
     Address A1    Address A2                       Address B1
     ----------    ----------                       ----------
         |             |                                |
         |             |   SYN + MP_JOIN(Token-B, R-A)  |
         |             |------------------------------->|
         |             |<-------------------------------|
         |             | SYN/ACK + MP_JOIN(HMAC-B, R-B) |
         |             |                                |
         |             |     ACK + MP_JOIN(HMAC-A)      |
         |             |------------------------------->|
         |             |<-------------------------------|
         |             |             ACK                |

   HMAC-A = HMAC(Key=(Key-A+Key-B), Msg=(R-A+R-B))
   HMAC-B = HMAC(Key=(Key-B+Key-A), Msg=(R-B+R-A))

                     Figure 2: Example Use of MP_JOIN

   However, the token presented is now 64 bits.  The key used in the
   HMAC exchange here is provided by the application layer.  Otherwise,
   there are no other changes to the handshake.  Note, however, that an
   MP_JOIN message cannot be sent until the application layer protocol
   has determined that the key exchange has completed.

   Depending on the key-exchange protocol that is in use at the
   application layer, it may be that the client already knows the key,
   while the server is not yet aware of it.  In that case the server
   might receive SYN+MP_JOIN with a valid token, but the MPTCP-state on
   the server has not yet been populated with the key.  The server must
   silently drop in that case the SYN+MP_JOIN.  The client will
   retransmit its SYN+MP_JOIN and eventually the application on the
   server will have populated the MPTCP-state with the key.

2.3.  Data Sequence Number Changes

   The Initial Data Sequence Number for each host involved in an MPTCP
   connection is, by [3], derived from the SHA-1 hash of the key.  If
   application-layer authentication is selected, the IDSN MUST instead
   be derived from the most-significant 64 bits of the SHA-1 hash of the
   token.
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2.4.  MP_FASTCLOSE Changes

   MP_FASTCLOSE is the other method that uses the key in [3].  Given
   there is no knowledge as to a potential key's sensitivity, it can no
   longer be said that a key should be sent here.  Instead, a truncation
   of the 64 most-significant bits of the SHA-1 hash [4] of the key
   should be used.

3.  Security Considerations

   This draft is proposing a mechanism that would allow an application-
   layer protocol to provide security, rather than relying on a
   cleartext exchange of the keys.  As such, this document itself does
   not introduce any additional security concerns, but provides a
   mechanism by which additional security could be added to the MPTCP
   handshake, depending on the authentication method used at the
   application layer.

4.  IANA Considerations

   This document would update the "MPTCP Handshake Algorithms" sub-
   registry under the "Transmission Control Protocol (TCP) Parameters"
   registry, based on the flags in MP_CAPABLE, to add the following
   algorithm:

      +----------+----------------------------------+---------------+
      | Flag Bit |             Meaning              |   Reference   |
      +----------+----------------------------------+---------------+
      |    G     | Application-layer Authentication | This document |
      +----------+----------------------------------+---------------+

                    Table 1: MPTCP Handshake Algorithms

5.  References

5.1.  Normative References

   [1]        Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

   [2]        Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119, March 1997.

   [3]        Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
              Paasch, "TCP Extensions for Multipath Operation with
              Multiple Addresses", draft-ietf-mptcp-rfc6824bis-05 (work
              in progress), January 2016.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-05


Paasch & Ford           Expires November 28, 2016               [Page 7]



Internet-Draft        MPTCP Application Layer Auth              May 2016

   [4]        National Institute of Science and Technology, "Secure Hash
              Standard", Federal Information Processing Standard (FIPS)
              180-3, October 2008,
              <http://csrc.nist.gov/publications/fips/fips180-3/

fips180-3_final.pdf>.

5.2.  Informative References

   [5]        Paasch, C., Greenway, G., and A. Ford, "Multipath TCP
              behind Layer-4 loadbalancers", draft-paasch-mptcp-

loadbalancer-00 (work in progress), September 2015.

Authors' Addresses

   Christoph Paasch
   Apple, Inc.
   Cupertino
   US

   EMail: cpaasch@apple.com

   Alan Ford
   Pexip

   EMail: alan.ford@gmail.com

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-loadbalancer-00
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-loadbalancer-00


Paasch & Ford           Expires November 28, 2016               [Page 8]


