
Internet Engineering Task Force C. Paasch
Internet-Draft Apple, Inc.
Intended status: Experimental A. Ford
Expires: November 28, 2016 Pexip
 May 27, 2016

Application Layer Authentication for MPTCP
draft-paasch-mptcp-application-authentication-00

Abstract

 Multipath TCP (MPTCP), described in [3], is an extension to TCP to
 provide the ability to simultaneously use multiple paths between
 hosts.

 MPTCP currently specifies a single authentication mechanism, using
 keys that are initially exchanged in the clear. There are
 application-layer protocols that may have better information as to
 the identity of the parties and so is able to better provide keying
 material that could be used for the authentication of future
 subflows.

 This document specifies "application layer authentication" for
 Multipath TCP, an alternatively negotiated keying mechanism for
 MPTCP.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on November 28, 2016.

Paasch & Ford Expires November 28, 2016 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
http://datatracker.ietf.org/drafts/current/

Internet-Draft MPTCP Application Layer Auth May 2016

Copyright Notice

 Copyright (c) 2016 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

1. Introduction . 2
1.1. Key in plaintext . 3
1.2. Token generation . 3
1.2.1. Hash collision 3
1.2.2. Derive information from the token 3

2. Proposed Technical Changes 4
2.1. MP_CAPABLE Changes 4
2.2. MP_JOIN Changes . 6
2.3. Data Sequence Number Changes 6
2.4. MP_FASTCLOSE Changes 7

3. Security Considerations 7
4. IANA Considerations . 7
5. References . 7
5.1. Normative References 7
5.2. Informative References 8

1. Introduction

 The MPTCP handshake serves multiple purposes. First, hosts discover
 their peer's support of MPTCP. Second, each host announces a key
 that will be tied to this MPTCP session. The key also serves
 multiple purposes. First, the derivate of the key is being used as a
 token-identifier for the MPTCP connection. This derivate is a
 truncated hash of the key. Second, another truncated hash of the key
 serves as the initial data sequence number. And third, the key
 itself is used as an authenticator to prove that the host behind the
 IP-address used to establish new subflows is indeed the one that
 participated in the handshake of the initial subflow.

 In the following we explain the shortcomings of this exchange and how
 they impact the deployment of MPTCP.

https://datatracker.ietf.org/doc/html/bcp78
http://trustee.ietf.org/license-info

Paasch & Ford Expires November 28, 2016 [Page 2]

Internet-Draft MPTCP Application Layer Auth May 2016

1.1. Key in plaintext

 The key-exchange happens during the handshake of the initial subflow.
RFC 6824 specifies that this exchange happens in plaintext. As has

 been noted in RFC 7430, an eavesdropper on the initial handshake is
 thus able to learn the keys used in this MPTCP session. This allows
 him to generate the session's tokens and data sequence numbers,
 enabling him to effectively hijack the MPTCP session by creating a
 subflow with a different IP-address. The attacker will be able to
 generate a valid HMAC as he has full knowledge of the keys of this
 MPTCP session.

 To enhance MPTCP's security, it would be beneficial to not reveal
 MPTCP's keys in plaintext on the wire.

1.2. Token generation

 The token is a truncation of the 32 most significant bits of the
 SHA-1 of the key. The key must be a random number of sufficient
 entropy to be used as part of the authentication mechanism, and thus
 a host has no control over the token as it is generating the key for
 the MPTCP-session. This has some implications on the deployability
 of MPTCP, outlined hereafter.

1.2.1. Hash collision

 Due to the nature of the token-generation, the 32-bit token might
 collide with another already existing MPTCP session. While a 32-bit
 token collision should be very rare on client devices, a busy server
 (with potentially tens of millions of active MPTCP connections) will
 have a very high probability of a token collision.

 Upon such a collision, the server needs to generate a new
 cryptographically secure 64-bit key, and derive the token through a
 SHA-1 computation upon which he finally can verify the uniqueness of
 the token. If a collision happened again, the server has to start
 anew. This process imposes a computation overhead and complexity
 upon the server and impacts the scalability compared to regular TCP.
 Allowing a server to generate a token in such a way that uniqueness
 can be achieved easily would be beneficial for the scalability and
 deployment of MPTCP.

1.2.2. Derive information from the token

 As the token is a truncated hash of the key, it is entirely of a
 random nature. As has been shown in [5], this brings several
 deployment challenges in large server farms. In particular, the

https://datatracker.ietf.org/doc/html/rfc6824
https://datatracker.ietf.org/doc/html/rfc7430

Paasch & Ford Expires November 28, 2016 [Page 3]

Internet-Draft MPTCP Application Layer Auth May 2016

 layer-4 load balancers in front of this server farm need to maintain
 MPTCP-specific state in order to map a token to the server.

 The token can be looked at as a route-identifier, as it allows the
 server to associate the incoming SYN+MP_JOIN with an existing MPTCP-
 session. However, the random nature of the token does not allow a
 load balancer in the middle to do the same without having to maintain
 MPTCP-specific state.

 If the token can be generated in such a way that it carries the
 required routing information in such a way that it can be deciphered
 by all the trusted parties in the server farm deployment, large-scale
 deployment of MPTCP would be simplified.

 In the following we suggest an alternative handshake that allows
 MPTCP to increase its security by leveraging an external key-exchange
 and thus benefit from the security provided by protocols like TLS.
 As a side-effect of this approach, the token also can be exchanged in
 a more flexible way, addressing the above identified issues with the
 token generation.

2. Proposed Technical Changes

2.1. MP_CAPABLE Changes

 To resolve the issues identified in the previous section, this
 proposal separates the key handling for security (i.e. the method for
 protecting new subflow exchanges) from the token exchange. This
 means that:

 o Key exchange is handled in the application layer

 o Meaning can be exchanged in the token, and a custom generation
 method can be used, as it is decoupled from keying material

 This specification allocates the 'G' bit from the flags of MP_CAPABLE
 as an alternative security mechanism - "handled by application
 layer". In this case, the MP_CAPABLE exchange will send and receive
 tokens rather than keys.

 When the 'G' bit is set to 1, this implies support for this new
 mechanism, and the MP_CAPABLE exchange will operate as follows. The
 tokens take the place of the keys in the MP_CAPABLE exchange, but
 otherwise the exchange remains very similar. This exchange still
 maintains support for stateless servers. Note that this now means
 that tokens are 64 bits in length.

Paasch & Ford Expires November 28, 2016 [Page 4]

Internet-Draft MPTCP Application Layer Auth May 2016

 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+---------------+-------+-------+---------------+
 | Kind | Length |Subtype|Version|A|B|C|D|E|F|G|H|
 +---------------+---------------+-------+-------+---------------+
 | Option Sender's Token (64 bits) |
 | (if option Length > 4) |
 | |
 +---+
 | Option Receiver's Token (64 bits) |
 | (if option Length > 12) |
 | |
 +-------------------------------+-------------------------------+
 | Data-Level Length (16 bits) | Checksum (16 bits, optional) |
 +-------------------------------+-------------------------------+

 Figure 1: Proposed Multipath Capable (MP_CAPABLE) Option

 The MP_CAPABLE option is carried on the SYN, SYN/ACK, and ACK packets
 that start the first subflow of an MPTCP connection, as well as the
 first packet that carries data, if the initiator wishes to send
 first. The data carried by each option is as follows, where A =
 initiator and B = listener.

 o SYN (A->B): only the first four octets (Length = 4).

 o SYN/ACK (B->A): B's token for this connection (Length = 12).

 o ACK (no data) (A->B): A's token followed by B's token (Length =
 20).

 o ACK (with first data) (A->B): A's key followed by B's key followed
 by Data-Level Length, and optional Checksum (Length = 22 or 24).

 The contents of the option is determined by the SYN and ACK flags of
 the packet, along with the option's length field. For the diagram
 shown in Figure 1, "sender" and "receiver" refer to the sender or
 receiver of the TCP packet (which can be either host).

 If the sender of the initial SYN supports both SHA-1 (as specified in
 [3]) and application-layer, it can set both G and H bits to "1". The
 sender of the SYN/ACK can then make a decision as to which mode to
 support, and selects only one of those bits in the SYN/ACK.

Paasch & Ford Expires November 28, 2016 [Page 5]

Internet-Draft MPTCP Application Layer Auth May 2016

2.2. MP_JOIN Changes

 The MP_JOIN exchange remains almost the same:

 Host A Host B
 ------------------------ ----------
 Address A1 Address A2 Address B1
 ---------- ---------- ----------
 | | |
 | | SYN + MP_JOIN(Token-B, R-A) |
 | |------------------------------->|
 | |<-------------------------------|
 | | SYN/ACK + MP_JOIN(HMAC-B, R-B) |
 | | |
 | | ACK + MP_JOIN(HMAC-A) |
 | |------------------------------->|
 | |<-------------------------------|
 | | ACK |

 HMAC-A = HMAC(Key=(Key-A+Key-B), Msg=(R-A+R-B))
 HMAC-B = HMAC(Key=(Key-B+Key-A), Msg=(R-B+R-A))

 Figure 2: Example Use of MP_JOIN

 However, the token presented is now 64 bits. The key used in the
 HMAC exchange here is provided by the application layer. Otherwise,
 there are no other changes to the handshake. Note, however, that an
 MP_JOIN message cannot be sent until the application layer protocol
 has determined that the key exchange has completed.

 Depending on the key-exchange protocol that is in use at the
 application layer, it may be that the client already knows the key,
 while the server is not yet aware of it. In that case the server
 might receive SYN+MP_JOIN with a valid token, but the MPTCP-state on
 the server has not yet been populated with the key. The server must
 silently drop in that case the SYN+MP_JOIN. The client will
 retransmit its SYN+MP_JOIN and eventually the application on the
 server will have populated the MPTCP-state with the key.

2.3. Data Sequence Number Changes

 The Initial Data Sequence Number for each host involved in an MPTCP
 connection is, by [3], derived from the SHA-1 hash of the key. If
 application-layer authentication is selected, the IDSN MUST instead
 be derived from the most-significant 64 bits of the SHA-1 hash of the
 token.

Paasch & Ford Expires November 28, 2016 [Page 6]

Internet-Draft MPTCP Application Layer Auth May 2016

2.4. MP_FASTCLOSE Changes

 MP_FASTCLOSE is the other method that uses the key in [3]. Given
 there is no knowledge as to a potential key's sensitivity, it can no
 longer be said that a key should be sent here. Instead, a truncation
 of the 64 most-significant bits of the SHA-1 hash [4] of the key
 should be used.

3. Security Considerations

 This draft is proposing a mechanism that would allow an application-
 layer protocol to provide security, rather than relying on a
 cleartext exchange of the keys. As such, this document itself does
 not introduce any additional security concerns, but provides a
 mechanism by which additional security could be added to the MPTCP
 handshake, depending on the authentication method used at the
 application layer.

4. IANA Considerations

 This document would update the "MPTCP Handshake Algorithms" sub-
 registry under the "Transmission Control Protocol (TCP) Parameters"
 registry, based on the flags in MP_CAPABLE, to add the following
 algorithm:

 +----------+----------------------------------+---------------+
 | Flag Bit | Meaning | Reference |
 +----------+----------------------------------+---------------+
 | G | Application-layer Authentication | This document |
 +----------+----------------------------------+---------------+

 Table 1: MPTCP Handshake Algorithms

5. References

5.1. Normative References

 [1] Postel, J., "Transmission Control Protocol", STD 7, RFC
793, September 1981.

 [2] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [3] Ford, A., Raiciu, C., Handley, M., Bonaventure, O., and C.
 Paasch, "TCP Extensions for Multipath Operation with
 Multiple Addresses", draft-ietf-mptcp-rfc6824bis-05 (work
 in progress), January 2016.

https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/rfc793
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/draft-ietf-mptcp-rfc6824bis-05

Paasch & Ford Expires November 28, 2016 [Page 7]

Internet-Draft MPTCP Application Layer Auth May 2016

 [4] National Institute of Science and Technology, "Secure Hash
 Standard", Federal Information Processing Standard (FIPS)
 180-3, October 2008,
 <http://csrc.nist.gov/publications/fips/fips180-3/

fips180-3_final.pdf>.

5.2. Informative References

 [5] Paasch, C., Greenway, G., and A. Ford, "Multipath TCP
 behind Layer-4 loadbalancers", draft-paasch-mptcp-

loadbalancer-00 (work in progress), September 2015.

Authors' Addresses

 Christoph Paasch
 Apple, Inc.
 Cupertino
 US

 EMail: cpaasch@apple.com

 Alan Ford
 Pexip

 EMail: alan.ford@gmail.com

http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-loadbalancer-00
https://datatracker.ietf.org/doc/html/draft-paasch-mptcp-loadbalancer-00

Paasch & Ford Expires November 28, 2016 [Page 8]

