
Internet Engineering Task Force
INTERNET-DRAFT Jitendra Padhye
draft-padhye-dcp-ccid3-04.txt Microsoft Research
 Sally Floyd
 Eddie Kohler
 ICIR
 19 June 2002
 Expires: December 2002

Profile for DCCP Congestion Control ID 3:
TFRC Congestion Control

Status of this Document

 This document is an Internet-Draft and is in full conformance with
 all provisions of Section 10 of RFC2026.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF), its areas, and its working groups. Note that
 other groups may also distribute working documents as Internet-
 Drafts.

 Internet-Drafts are draft documents valid for a maximum of six
 months and may be updated, replaced, or obsoleted by other documents
 at any time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 The list of current Internet-Drafts can be accessed at
http://www.ietf.org/ietf/1id-abstracts.txt

 The list of Internet-Draft Shadow Directories can be accessed at
http://www.ietf.org/shadow.html.

 Abstract

 This document contains the profile for Congestion Control
 Identifier 3, TCP-friendly rate control (TFRC), in the
 Datagram Congestion Control Protocol (DCCP). DCCP implements
 a congestion-controlled unreliable datagram flow suitable for
 use by applications such as streaming media. The TFRC CCID is
 used by applications that want a TCP-friendly send rate,

Padhye/Floyd/Kohler [Page 1]

https://datatracker.ietf.org/doc/html/draft-padhye-dcp-ccid3-04.txt
https://datatracker.ietf.org/doc/html/rfc2026#section-10
http://www.ietf.org/ietf/1id-abstracts.txt
http://www.ietf.org/shadow.html

INTERNET-DRAFT Expires: December 2002 June 2002

 possibly with Explicit Congestion Notification (ECN), while
 minimizing abrupt rate changes.

Padhye/Floyd/Kohler [Page 2]

INTERNET-DRAFT Expires: December 2002 June 2002

 Table of Contents

1. Introduction. 4
1.1. Usage Scenario 4
1.2. Example Half-Connection. 4
2. Connection Establishment. 5
3. Congestion Control on Data Packets. 5
4. Acknowledgments . 6
4.1. Congestion Control on Acknowledgments. 6
4.2. Quiescence . 6
4.3. Acknowledgments of Acknowledgments 7
5. Explicit Congestion Notification. 7
6. Relevant Options and Features 7
6.1. Window counter option. 7
6.2. Elapsed time option. 8
6.3. Loss Event Rate Option 8
6.4. Receive Rate Option. 8
6.5. ECN NONCE Option 9
7. Application Requirements. 10
8. Design Considerations 10
8.1. Determining Loss Events. 10
8.2. Sending Feedback Packets 11
9. Thanks. 12
10. References . 12
11. Authors' Addresses 14

Padhye/Floyd/Kohler [Page 3]

INTERNET-DRAFT Expires: December 2002 June 2002

1. Introduction

 This document contains the profile for Congestion Control Identifier
 3, TCP-friendly rate control (TFRC), in the Datagram Congestion
 Control Protocol (DCCP). DCCP uses Congestion Control Identifiers,
 or CCIDs, to specify the congestion control mechanism in use on a
 half-connection. (A half-connection might consist of data packets
 sent from DCCP A to DCCP B, plus acknowledgments sent from DCCP B to
 DCCP A. DCCP A is the sending DCCP, and DCCP B the acknowledging
 DCCP, for this half-connection.)

 TFRC is a receiver-based congestion control mechanism that provides
 a TCP-friendly send rate, while minimizing abrupt rate changes [1].

 The basic TFRC protocol is as follows. The sender sends a stream of
 data packets to the receiver at some rate. The receiver sends a
 feedback packet to the sender at least once every round-trip time.
 Based on the information contained in the feedback packets, the
 sender adjusts its sending rate in accordance with the TCP
 throughput equation [2], to maintain TCP-friendliness. If no
 feedback is received from the receiver in several round-trip times
 (four, in the current TFRC specification), the sender halves its
 sending rate.

 The values of the round-trip time RTT, the loss event rate p and the
 base timeout value TO are needed by the sender to calculate the send
 rate using the TCP throughput equation. The sender calculates the
 values of RTT and TO, while the receiver calculates the value of p.

1.1. Usage Scenario

 DCCP with TFRC congestion control is intended to provide congestion
 control for the flow of data packets from the server to the client
 for applications that do not require fully reliable data
 transmission, or that desire to implement reliability on top of
 DCCP. TFRC congestion control is appropriate for flows that would
 prefer to minimize abrupt changes in the sending rate.

1.2. Example Half-Connection

 This example, taken from the main DCCP draft, is of a half-
 connection using TFRC Congestion Control specified by CCID 3. The
 "sender" is the HC-Sender, and the "receiver" is the HC-Receiver.

 (1) The sender sends DCCP-Data packets, where the number of packets
 sent is governed by an allowed transmit rate, as specified in
 [1]. Each DCCP-Data packet has a sequence number and a window

Padhye/Floyd/Kohler Section 1.2. [Page 4]

INTERNET-DRAFT Expires: December 2002 June 2002

 counter option.

 One or more of these data packets are DCCP-DataAck packets
 acknowledging the data packet from the receiver, but for
 simplicity we will not discuss the half-connection of data from
 the receiver to the sender in this example.

 (2) The receiver sends DCCP-Ack packets at least once per round-trip
 time acknowledging the data packets, unless the sender is
 sending at a rate of less than one packet per RTT, as indicated
 by the TFRC specification [1]. Each DCCP-Ack packet uses a
 sequence number and identifies the most recent packet received
 from the sender. Each DCCP-Ack packet includes feedback about
 the loss event rate calculated by the receiver, as specified
 below.

 (3) The sender continues sending DCCP-Data packets as controlled by
 the allowed transmit rate. Upon receiving DCCP-Ack packets, the
 sender updates its allowed transmit rate as specified in [1].

 (4) The sender estimates round-trip times and calculates a TimeOut
 value TO as specified in [1].

 (5) If the use of ECN has been negotiated, each DCCP-Data and DCCP-
 DataAck packet is sent as ECN-Capable, with either the ECT(0) or
 the ECT(1) codepoint set. The use of the ECN Nonce with TFRC is
 described below.

2. Connection Establishment

 The connection is initiated by the client using mechanisms described
 in the DCCP specification [3]. The client and the server MAY
 negotiate the use of the ACK Vector option. The ACK vector option
 is described in [3].

3. Congestion Control on Data Packets

 The sender sends DCCP-Data packets to the receiver at the rate
 specified by the TCP throughput equation [2].

 Each DCCP-Data packet has a sequence number, and an acknowledgment
 number that is the sequence number of the most recent acknowledgment
 packet received from the receiver. Each data packet contains the
 window counter option. The format of the window counter option is
 described below.

Padhye/Floyd/Kohler Section 3. [Page 5]

INTERNET-DRAFT Expires: December 2002 June 2002

 After each feedback packet is received from the receiver, the sender
 updates values of RTT, TO and the sending rate using procedures
 specified in [1].

 If no feedback packet is received from the receiver after an
 interval specified in [1], the sending rate is halved. However, the
 sending rate is never reduced below one packet per 64 seconds. See
 [1] for more details.

4. Acknowledgments

 The receiver sends a DCCP-Ack packet to the sender roughly once per
 round-trip time, if the sender is sending packets that frequently.
 This rate is determined by details of the TFRC protocol, as
 specified in [1].

 The acknowledgment number in the DCCP-Ack packet acknowledges the
 most recent packet received from the sender. Each DCCP-Ack packet
 from the receiver includes the following options:

 1. An option specifying the amount of time elapsed between since
 the receiver received the packet whose sequence number appears
 in the acknowledgment field.

 2. An option specifying the loss event rate p calculated by the
 receiver as described in [1].

 3. An option specifying the rate at which the receiver received
 data since the last DCCP-Ack was sent.

 The format of these options is described below.

4.1. Congestion Control on Acknowledgments

 The rate and timing for generating acknowledgments is determined by
 the TFRC algorithm [1]. The sending rate for acknowledgements is
 relatively low, and there is no explicit congestion control on the
 acknowledgements.

4.2. Quiescence

 This section refers to quiescence in the DCCP sense (see section 6.1
 of [3]): How does a CCID 3 receiver determine that the corresponding
 sender is not sending any data?

Padhye/Floyd/Kohler Section 4.2. [Page 6]

INTERNET-DRAFT Expires: December 2002 June 2002

 The receiver detects that the sender has gone quiescent after two
 round-trip times have passed without receiving any additional data.
 Since ACKs are not required to be reliable, the receiver needs to do
 nothing special in this case, unlike CCID 2 [5].

4.3. Acknowledgments of Acknowledgments

 Acknowledgments in TFRC are entirely unreliable -- TFRC works even
 if every acknowledgment is dropped -- and it is never necessary for
 the sender to acknowledge an acknowledgment.

5. Explicit Congestion Notification

 ECN [6] MAY be used with CCID 3. If ECN is used, then the ECN Nonce
 will automatically be used for the data packets, following the
 specification for the ECN Nonce [4] for TCP. For the data sub-flow,
 the sender sets either the ECT[0] or ECT[1] codepoint on DCCP-Data
 packets.

 If the ACK vector option is being used, the ECN-NONCE information is
 returned via the ACK vector.

 If the ACK vector option is not being used, the information about
 the ECN-NONCE is returned by the receiver using the ECN-NONCE option
 described below. In this case the receiver MUST return this option
 if it is reporting a lower packet loss rate than the one it reported
 in the previous acknowledgment.

6. Relevant Options and Features

6.1. Window counter option

 +--------+--------+----...--------+
 |10000000|00000011| Window Counter|
 +--------+--------+----...--------+
 Type=128 Len=3 1 byte

 This option is set by the data sender on all data packets. The first
 byte gives the option type and the second gives the option length.
 The last byte gives the value of a counter which the sender sets to
 0 at the beginning of the transmission, and increases by 1 every
 quarter of round trip time as described in [1].

Padhye/Floyd/Kohler Section 6.1. [Page 7]

INTERNET-DRAFT Expires: December 2002 June 2002

6.2. Elapsed time option

 +--------+--------+----...------+
 |10000001|00000110| Elapsed Time|
 +--------+--------+----...------+
 Type=129 Len=4 2 bytes

 This option is set by the data receiver on all acknowledgment
 packets. The first byte gives the option type and the second gives
 the option length. The last two bytes indicate the amount of time
 (in milliseconds) elapsed since the packet being acknowledged was
 received.

6.3. Loss Event Rate Option

 +--------+--------+----...-----+
 |11000000|00000110| Loss rate |
 +--------+--------+----...-----+
 Type=192 Len=6 4 bytes

 This option is set by the data receiver on all acknowledgment
 packets. The first byte gives the option type and the second gives
 the option length. The last four bytes indicate the inverse of the
 loss event rate, rounded UP, as calculated by the receiver.

6.4. Receive Rate Option

 +--------+--------+----...-----+
 |10000001|00000110| Recv rate |
 +--------+--------+----...-----+
 Type=129 Len=6 4 bytes

 This option is set by the data receiver on all acknowledgment
 packets. The first byte gives the option type and the second gives
 the option length. The last four bytes indicate the rate at which
 the receiver has received data since it last sent an acknowledgment,
 in bits per second.

Padhye/Floyd/Kohler Section 6.4. [Page 8]

INTERNET-DRAFT Expires: December 2002 June 2002

6.5. ECN NONCE Option

 +--------+--------+----...-----+----...-----+--------+
 |10000010|00001001| Left Edge | Right Edge |X0000000|
 +--------+--------+----...-----+----...-----+--------+
 Type=130 Len=9 3 bytes 3 bytes 1 byte

 If ECN is used without the ACK vector option, then the ECN Nonce
 option is set by the data receiver on any acknowledgment packet that
 reports a loss rate lower than the loss rate reported in the
 previous acknowledgment packet. The first byte gives the option
 type and the second gives the option length. The right edge (RE)
 and the left edge (LE) are sequence numbers of data packets, such
 that:

 - Let LastAck be the sequence number of the data packet
 acknowledged by the previous acknowledgment.

 - If (LastAck + 1) was a dropped or marked packet, then RE
 should be the highest non-dropped and non-marked packet before
 (LastAck + 1).

 - If (LastAck + 1) was not a dropped or marked packet, the RE
 should be the greatest sequence number such that all data
 packets between (LastAck + 1) and RE, inclusive, were received
 and not ECN-marked. Clearly (RE >= LastAck + 1).

 - LE should be the smallest sequence number such that all data
 packets between LE and RE, inclusive, were received and not ECN-
 marked. Clearly (LE <= RE).

 The first bit of the final byte is the Nonce Echo. It equals the
 base-2 modulus of the number of received ECN Nonce packets between
 LE and RE, both included.

 Note that the interval [LE, RE] would be the largest non-loss
 interval containing the first packet received since the last report,
 or, if that was a dropped packet, containing the run before this
 drop. That is, [LE, RE] would continue to grow during non-drop and
 non-mark periods. Thus, for every loss event, the receiver reports
 the Nonce Echo for the consecutive sequence of packets received
 before the beginning of that loss event.

Padhye/Floyd/Kohler Section 6.5. [Page 9]

INTERNET-DRAFT Expires: December 2002 June 2002

7. Application Requirements

 As described in the TFRC specifications [1], this CCID should not be
 used by applications that change their sending rate by varying the
 packet size, rather than varying the rate at which packets are sent.

 As it is presently specified, this CCID should only be used by
 senders that are willing to trust the receiver to report the correct
 loss event rate. If ECN is used, the ECN Nonce Option allows the
 sender to probabilistically verify the loss rate reported by the
 receiver. However, we have not specified such a verification
 procedure in this document.

8. Design Considerations

 The data packets do not carry timestamps. The sender can store the
 times at which recent packets were sent. When an acknowledgement
 arrives, the acknowledgement number and the elapsed time option
 provide sufficient information to compute the round trip time.

8.1. Determining Loss Events

 The window counter option is used by the receiver to determine if
 multiple lost packets belong to the same loss event. The sender
 increases the window counter by 1 every quarter round trip time. To
 determine whether two lost packets, with sequence numbers X and Y (Y
 > X), belong to different loss events, the receiver proceeds as
 follows:

 - Let X_prev be the highest sequence number which was received
 with X_prev < X.

 - Let Y_prev be the highest sequence number which was received
 with Y_prev < Y.

 - Let CX_prev and CY_prev be the window counters associated with
 packets X_prev and Y_prev respectively. Clearly, CY_prev >=
 CX_prev.

 - Packets X and Y belong to different loss events if (CY_prev -
 CX_prev) > 4

 The use of the window counter option can help the receiver to
 disambiguate multiple losses after a sudden decrease in the actual
 round-trip time. When the sender receives an acknowledgement
 acknowledging a data packet with window counter i, the sender

Padhye/Floyd/Kohler Section 8.1. [Page 10]

INTERNET-DRAFT Expires: December 2002 June 2002

 increases its window counter, if necessary, so that subsequent data
 packets are sent with window counter values of at least i+4. This
 can help minimize errors on the part of the receiver of incorrectly
 interpreting multiple loss events as a single loss event.

 As an alternative to the window counter option, the sender could
 have sent its estimate of the round-trip time to the receiver
 directly in a round-trip time option, and the receiver should use
 the sender's round-trip time estimate to infer when multiple lost or
 marked packets belong in the same loss event. In some respects, a
 round-trip time option gives a more precise encoding of the sender's
 round-trip time estimate than does the window counter option.
 However, the window counter option conveys information about the
 relative *sending* times for packets, while the receiver could only
 use the round-trip time option to distinguish between the relative
 receive times (in the absence of timestamps). That is, the window
 counter option will give more robust performance in some cases when
 there is a large variation in delay for packets sent within a window
 of data. As a slightly more speculative consideration, the round-
 trip time option could possibly be used more easily by middleboxes
 attempting to verify that a flow was using conformant end-to-end
 congestion control.

8.2. Sending Feedback Packets

 The window counter option is also used by the receiver to decide
 when to send feedback packets. Feedback packets should normally be
 sent at least once per round-trip time, if the sender is sending at
 least one data packet per round-trip time. Whenever the receiver
 sends a feedback message, the receiver sets a local variable
 last_counter to the highest received value of the window counter
 since the last feedback message was sent, if any data packets have
 been received since the last feedback message was sent. If the
 receiver receives a data packet with a window counter value greater
 than last_counter + 4, then the receiver sends a new feedback
 packet.

 The TFRC protocol [1] specifies that the receiver uses a feedback
 timer to decide when to send feedback packets. In the TFRC
 protocol, when the feedback timer expires, the receiver resets the
 timer to expire after R_m seconds, where R_m is the most recent
 estimate of the round-trip time received by the receiver from the
 sender. However, when the window counter option is used, the
 receiver can use information from the window counter option in
 deciding when to send feedback packets.

 When the sender is sending less than one packet per round-trip time,

Padhye/Floyd/Kohler Section 8.2. [Page 11]

INTERNET-DRAFT Expires: December 2002 June 2002

 then the receiver sends a feedback packet after each data packet,
 and the feedback timer is not required. Similarly, when the sender
 is sending several packets per round-trip time, then the receiver
 will send a feedback packet each time that a data packet arrives
 with a window counter more than four greater than the window counter
 when the last feedback packet was sent, and again the feedback
 counter is not required. Similarly, the receiver always sends a
 feedback packet after the detection of a loss event. Thus, the
 feedback timer is not absolutely necessary when the window counter
 is used.

 However, the feedback timer still could be useful in some rare cases
 to prevent the sender from unnecessarily halving its sending rate.
 We have not considered this in detail. Consider the case when the
 receiver receives data soon after the most recent feedback packet
 has been sent, but has received no data packets with a window
 counter sufficiently large to trigger sending a new feedback packet.
 The TFRC protocol specifies that after a feedback packet is
 received, the sender sets a nofeedback timer to at least four times
 the round-trip time estimate. If the sender doesn't receive any
 feedback packets before the nofeedback timer expires, then the
 sender halves its sending rate. One could construct scenarios where
 the use of a feedback timer at the receiver would prevent the
 unnecessary expiration of the nofeedback timer at the sender.

 For implementors who wish to implement a feedback timer for the data
 receiver, we suggest estimating the round-trip time from the most
 recent data packet as follows: Let K be the window counter from the
 most recent data packet, and let T_k be the time that that packet
 was received. Let J be the highest window counter received that was
 less than K-4, and let T_j be the most recent time that such a
 packet was received. Then the round-trip time can be very roughly
 estimated as 4 (T_k-T_j)/(K-J).

9. Thanks

 We thank Mark Handley for his help in defining CCID 3. We thank
 Sara Karlberg and Yufei Wang for feedback on an earlier version of
 this document.

10. References

 [1] M. Handley, J. Padhye, and S. Floyd. TCP Friendly Rate Control
 (TFRC): Protocol Specification, draft-ietf-tsvwg-tfrc-04.txt,
 work in progress, April 2002.

https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tfrc-04.txt

Padhye/Floyd/Kohler Section 10. [Page 12]

INTERNET-DRAFT Expires: December 2002 June 2002

 [2] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP
 Throughput: A Simple Model and its Empirical Validation. Proc
 ACM SIGCOMM 1998.

 [3] E. Kohler, M. Handley, S. Floyd, and J. Padhye. Datagram
 Congestion Control Protocol, draft-kohler-dcp-02.txt, work in
 progress, March 2002.

 [4] Neil Spring, David Wetherall, and David Ely. Robust ECN
 Signaling with Nonces, draft-ietf-tsvwg-tcp-nonce-03.txt, work
 in progress, April 2002.

 [5] S. Floyd, E. Kohler. Profile for DCCP Congestion Control ID 2:
 TCP-like Congestion Control, draft-floyd-dcp-ccid2-03.txt, work
 in progress, May 2002.

 [6] K.K. Ramakrishnan, S. Floyd, and D. Black. The Addition of
 Explicit Congestion Notification (ECN) to IP. RFC 3168.
 September 2001.

https://datatracker.ietf.org/doc/html/draft-kohler-dcp-02.txt
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-tcp-nonce-03.txt
https://datatracker.ietf.org/doc/html/draft-floyd-dcp-ccid2-03.txt
https://datatracker.ietf.org/doc/html/rfc3168

Padhye/Floyd/Kohler Section 10. [Page 13]

INTERNET-DRAFT Expires: December 2002 June 2002

11. Authors' Addresses

 Jitendra Padhye <padhye@microsoft.com>

 Microsoft Research
 One Microsoft Way
 Redmond, WA 98052 USA

 Sally Floyd <floyd@icir.org>
 Eddie Kohler <kohler@icir.org>

 ICSI Center for Internet Research
 1947 Center Street, Suite 600
 Berkeley, CA 94704 USA

Padhye/Floyd/Kohler Section 11. [Page 14]

