
Workgroup: OPSA Working Group

Internet-Draft: draft-palmero-opsawg-dmlmo-03

Published: 7 March 2022

Intended Status: Standards Track

Expires: 8 September 2022

Authors: M. Palmero

Cisco Systems

F. Brockners

Cisco Systems

S. Kumar

NC State University

S. Bhandari

Thoughtspot

C. Cardona

NTT

D. Lopez

Telefonica I+D

Data Model for Lifecycle Management and Operations

Abstract

This document motivates and specifies a data model for lifecycle

management and operations. It describes the motivation and

requirements to collect asset-centric metrics including but not

limited to asset adoption and usability, licensing, supported

features and capabilities, enabled features and capabilities, etc.;

with the primary objective to measure and improve the overall user

experience along the lifecycle journey, from technical requirements

and technology selection through advocacy and renewal, including the

end of life of an asset.

Status of This Memo

This Internet-Draft is submitted in full conformance with the

provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering

Task Force (IETF). Note that other groups may also distribute

working documents as Internet-Drafts. The list of current Internet-

Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six

months and may be updated, replaced, or obsoleted by other documents

at any time. It is inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 8 September 2022.

Copyright Notice

Copyright (c) 2022 IETF Trust and the persons identified as the

document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal

Provisions Relating to IETF Documents

(https://trustee.ietf.org/license-info) in effect on the date of

publication of this document. Please review these documents

¶

¶

¶

¶

¶

¶

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

carefully, as they describe your rights and restrictions with

respect to this document. Code Components extracted from this

document must include Revised BSD License text as described in

Section 4.e of the Trust Legal Provisions and are provided without

warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Requirements language

2. Terminology

3. Motivation

4. Use Cases

4.1. License Inventory and Activation

4.2. Features in Use

4.3. Assets in Use

4.4. Risk Mitigation Check (RMC)

4.5. Errata

4.6. Security Advisory

4.7. Optimal Software Version (OSV)

4.7.1. Software Conformance

4.7.2. Risk Trend Analysis

4.7.3. What-if Analysis

4.8. Asset Retirement - End of Life (EOL)

5. Information Model

6. Data Models

6.1. Tree Diagrams of the modules that form LMO

6.1.1. Aggregated Asset Inventory

6.1.2. Licenses

6.1.3. Usage

6.1.4. Usage

6.1.5. Incident Management

6.1.6. Organization

6.1.7. Service

6.1.8. User

6.2. LMO Modules

6.2.1. LMO Module

7. Deployment Considerations

8. Security Considerations

9. IANA Considerations

9.1. The IETF XML Registry

9.2. The YANG Module Names Registry

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Change log

Authors' Addresses

¶

1. Introduction

The virtualization of hardware assets and the development of

applications using microservice architecture for cloud-native

infrastructure created new consumption and licensing models. Any

service can be deployed by composing multiple assets together where

an asset refers to hardware, software, application, system or

service. For example, cloud-native infrastructure from one vendor

may be hosted on the physical server from another vendor or a

combination of multiple cloud-native functions from one or more

vendors can be combined to execute any service.

This introduces challenges for both lifecycle and adoption

management of the assets. For example, a user may need to identify

the capability availability of different assets or measure the usage

of each capability (or the combination) from any specific asset to

measure its optimal potential. Moreover, the user could pinpoint the

reason: the software application could not be optimally deployed, or

is not simple to use, or is not well documented, etc. The user may

use feed such measurements and analysis metrics back to the support

engineers and the developers, so they can focus their work effort

only on features that users are adopting, or even determine when the

lifecycle of the development could end.

This creates the need to collect and analyze asset-centric lifecycle

management and operations data. From now on this data will be

referred as Lifecycle Management and Operations (LMO); where LMO is

not limited to virtualized or cloud environments, it covers all

types of networking environments in which technology assets are

deployed.

LMO data constitutes data needed to measure asset-centric lifecycle

metrics including but not limited to asset adoption and usability,

licensing, supported features and capabilities, enabled features and

capabilities, etc. The primary objective is to facilitate the asset

lifecycle management from the initial asset selection and

positioning, licensing, feature enablement and usage, and beyond

renewal to improve the overall user experience.

The main challenge in collecting LMO-related data, especially in a

multi-vendor environment, relies on the ability to produce and

consume such data in a vendor-agnostic, consistent and synchronized

manner. APIs or telemetry are meant to collect and relay this data

to receiving equipment for storing, analysis and/or visualization.

This document describes the motivation behind LMO, lists use cases,

followed by the information model and data model of LMO. The list of

use cases describes the need for new functional blocks and their

interactions. The current version of this draft is focused on asset

¶

¶

¶

¶

¶

inventory, licenses information, feature usage and incident

management. This draft specifies four YANG modules [RFC7950] focused

on LMO, including:

This document is organized as follows. Section 2 establishes the

terminology and abbreviations. In Section 3, the goals and

motivation of LMO are discussed. In Section 4, use cases are

introduced. Section 5 specifies the information model and the data

models for LMO.

1.1. Requirements language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

"OPTIONAL" in this document are to be interpreted as described in

BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

capitals, as shown here.

2. Terminology

Terminology and abbreviations used in this document:

Asset: refers to hardware, software, applications, or services.

An asset can be physical or virtual.

Consumer: refers to an entity that utilizes the outcomes of LMO.

A consumer can be a user, a developer or some other interested

third party.

Developer: refers to the entity that creates or develops the

entire asset or the part of the asset.

EOL: End of Life.

Features: are options or functional capabilities available in an

asset.

License: is issued by an entity such as the developer or the Open

Source community and allows the user to operate the asset.

Licenses determine how the asset can be leveraged and what is

required in cases the asset is changed.

LMO: Lifecycle Management and Operations.

¶

* Licenses,

* Assets,

* Usage level of Asset features, and

* Incident Management.

¶

¶

¶

¶

*

¶

*

¶

*

¶

* ¶

*

¶

*

¶

* ¶

Optimal Software Version(OSV): refers to the elected software

version considered optimal in the user environment.

PID: Product Identifier.

Usage: refers to how features of the asset are used.

User: refers to the organization that owns or consumes the asset.

Within the organization there are entities that: a) use the

assets in their operations, b) manage the assets.

User Experience: how a user interacts with and experiences a

particular asset. It includes a user's perceptions of ease of

use, efficiency, and utility of an asset.

3. Motivation

The user experience with a specific asset can be organized into four

classes:

Asset characteristic class, covering anything related to asset,

license, features, etc.

Utilization class, to measure how the assets and features are

used, duration of usage, uptime, etc.

Notification class, covering any security advisory, retirement,

etc.

Incident class, to record and report any problem the user has

faced with the asset.

The ability to measure, produce and consume LMO could benefit the

user organization in addressing issues such as:

Licenses may not have been obtained at the optimum level for a

given feature, where a user might have bought licenses that are

not activated.

Features of an asset might not be used as needed in all

deployments within the organization.

Resolution of incidents involving the asset and the developer of

the technology used within the asset.

In addition to the resolution of incidents, LMO could allow

developer organizations to optimize the features they offer. For

example, they could consider deprecating features that are used

infrequently or focus on introducing more features for the assets

that are widely deployed in various infrastructures.

*

¶

* ¶

* ¶

*

¶

*

¶

¶

1.

¶

2.

¶

3.

¶

4.

¶

¶

*

¶

*

¶

*

¶

¶

LMO also covers the need of communication between users and the

developer. LMO can provide the capability for users to provide

feedback about any asset (e.g., potential deficiency of a feature,

feature enhancement request). An administrator in the user

organization may include specific metrics that identify a potential

problem of that specific feature or a capability of the asset. An

engineer in the developer organization can determine the impact of

the potential deficiency from the number of users providing

feedback. Note that this channel is different from a "call to a

Technical Assistance Center" in which the user may request help in

resolving operational issues with the asset.

4. Use Cases

4.1. License Inventory and Activation

An operations engineer would like to understand which licenses are

activated and which are used and/or consumed. It is also important

for asset users to understand which features within their assets

might need a license and how to activate them.

It is relatively straightforward to have an inventory of existing

licenses when there is only one asset developer (providing the

asset) and one asset family.

But complexity grows when there are many different developers,

systems and processes involved. New service offerings have

introduced new attributes and datasets and require alignment with

new business models (pay-per-product, subscription model, pay-as-

you-go model, etc.). They might support different license types and

models: asset activation keys, trust-based model, systems that act

as proxy from the back end owned by the asset developer to support

the control of licenses, etc.

Sometimes it is a challenge to report which licenses have been

bought by the asset user, or who in the user organization owns that

license because that information might rely on different asset

developers; even within the same asset developer, licenses may

correspond to different types or groups of assets. Asset users often

need to interact with different license systems and processes.

Information on how assets are licensed could be delivered from a

combination of attributes such as: sales order, purchase order,

asset activation key, serial number, etc.

If there is no consistency on how to deal with those data points,

complexity increases for the consumer, potentially requiring manual

steps. Automating those manual steps or exceptions becomes time-

consuming, eventually leading to higher costs for the asset

consumer.

¶

¶

¶

¶

¶

¶

¶

Having a common data model for LMO eases the integration between

different data sources, processes, and consolidation of the

information under a common reference.

4.2. Features in Use

Feature logic is required to identify the configured features from

the running configuration and determine how they might be used.

There is often a lack of an easy method to list any configured

features available in the current asset.

This information is extracted from the running configuration many

times, implemented by a rule system without having an easy method to

list any configured features available in the current asset.

Some of these use cases need to be built on top of others, and from

them, other more complex use cases could be created. For instance,

Software Compliance use cases can be automated, based on use cases

like security advisory, errata, End of Life(EOL), etc.

All this brings a complete set of use cases that fulfills Lifecycle

Management of assets, complementing and providing metrics on how

asset users are using assets and how their experience from using

those assets can be improved.

4.3. Assets in Use

Current approach to quantify how an asset is used, requires volume

or aggregated usage/consumption metrics related to deployed assets,

functions, features, integrations, etc. Also the need to quantify

which metrics might be associated to a user, an organization, to

specific services and how often are used; while others may be based

on pre agreed profile (contractural or usage) of intented use.

Examples include:

Number of search/queries sent by the user.

Amount of data returned to the user.

Amount of active time spent using the asset/feature.

Number of concurrent users accessing the asset/feature.

Number of features in use.

Number of users or sites using those features, etc.

The information models and data models for LMO include data fields

to support metrics that might be required by consumption-based

charging and licensing of asset usage.

¶

¶

¶

¶

¶

¶

* ¶

* ¶

* ¶

* ¶

* ¶

* ¶

¶

4.4. Risk Mitigation Check (RMC)

Network, software and cloud engineers would like to be aware of

known issues that are causing assets to crash so that they can act

to remediate the issue quickly, or even prevent the crash if alerts

are triggered on time. There are analytics tools that can process

memory core dumps and crash-related files, providing the ability to

the asset developers to determine the root cause.

Accordingly, asset users can remediate the problem, automate the

remedy to enable incident deflection, allowing the support staff to

focus on new problems. The goal of introducing normalization is not

to define attributes for each of the elements being part of the

crash information, but the results of RMC should be normalized and

registered.

Risk Mitigation Check could also include the possibility to be aware

of current and historical restarts allowing network and software

engineers to enhance the service quality to asset users.

4.5. Errata

Both hardware and software critical issues or Errata need

development to automate asset user matching:

Hardware Errata match on product identifiers (PIDs) + serial

numbers along with additional hardware attributes.

Software Errata match on software type and software version along

with some additional device attributes.

Engineering might develop the logic to check whether any critical

issue applies to a single serial number or a specific software

release.

The information to be correlated includes customer identification,

license, and asset information that the asset user might own. All

this information needs to be correlated with hardware and software

Errata, and EOL information to show which part of the asset

inventory might be affected.

4.6. Security Advisory

The Security Advisory use case automates the matching of asset user

data to security bulletins published by asset developers.

Security Advisory logic implemented by developers could apply to a

specific software release.

¶

¶

¶

¶

*

¶

*

¶

¶

¶

¶

4.7. Optimal Software Version (OSV)

The objective of the Optimal Software Version (OSV) use case is that

consumers can mark software images as OSV for their assets; based on

this, it is easier for them to control and align their hardware and

software assets to the set of OSVs.

Based on the logic of OSV, use cases like software compliance, risk

trend analysis, acknowledge bugs, security advisories, errata, what-

if analysis, etc., could be realized.

4.7.1. Software Conformance

All the assets should be at their latest recommended software

version in case a security update is required to address a security

issue of a specific feature.

The Software Conformance use case provides a view to the asset users

and informs the users whether the assets that belong to a specific

group conforms to the OSV or not. It can provide the users with a

report, including a representation of software compliance for the

entire network and software applications. This report could include

the current software version running on the asset and the

recommended software version. The report could enable users to

quickly highlight which group of assets might need the most

attention to inspire appropriate actions.

The Software Conformance use case uses data that might not be

provided by the asset itself. Data needs to be provided and

maintained also by the asset developers, through e.g., asset catalog

information. Similar logic applies to a feature catalog, where the

asset developer maintains the data and updates it adequately based

on existing bugs, security advisories, etc.

The Software Conformance process needs to correlate the Software

catalog information with the software version running on the asset.

4.7.2. Risk Trend Analysis

The Risk Trend Analysis use case provides customers with a risk

trend analysis, summarizing what might change before applying

changes, including registered bugs, security advisories and errata.

4.7.3. What-if Analysis

The What-if Analysis use case allows asset users to plan for new

hardware or software, giving them the possibility to change the

config parameters or model how new hardware or software might change

the software suggestions generated by OSV.

¶

¶

¶

¶

¶

¶

¶

¶

OSV and the associated use cases involve dependencies on attributes

that might need to be collected from assets directly, including

related inventory information (serial numbers, asset identifiers,

software versions, etc.), but also dynamic information could be

required, like:

Information on features that might be enabled on the particular

asset.

Catalogs, that might include information related to release

notes. For example, consider a feature catalog. This catalog

could include software versions that support a specific feature;

the software releases that a feature is supported in; or the

latest version that a feature is supported in, in case the

feature is EOL.

Data sources to correlate information coming from reports on

critical issues or errata, security advisory, End of Life, etc.

Those catalogs and data sources with errata information, EOL, etc.

need to be maintained and updated by asset developers, making sure,

that the software running on the assets is safe to run and up to

date.

4.8. Asset Retirement - End of Life (EOL)

Hardware EOL reports need to map Hardware EOL PIDs, focusing on base

PIDs so that bundles, spares, non-base PIDs, etc., do not provide

false EOL reporting to asset users. Software EOL reports are used to

automate the matching of user software type and software version to

software EOL bulletins.

5. Information Model

The broad metric classes defined in section 3 that quantify user

experience can be modeled as shown in Figure 1. There is an

inventory of all assets that the user possesses. Each asset in the

inventory may be entitled to one or more licenses; a license may

contain one or more sub-licenses. The level of usage for each

feature and license associated with the asset is measured. For every

asset, a list of incidents could be created.

For example, a user needs to measure the utilization of a specific

license for a specific type of asset. The information about the

license may reside in a license server. The state (activated or not)

of the license may reside with the asset itself or a proxy. They can

be aggregated/correlated as per the information model shown in

Figure 1 to give information to the user regarding the utilization

of the licenses. The user experience is thus enhanced by having

accurate knowledge about the utility of the given license.

¶

*

¶

*

¶

*

¶

¶

¶

¶

¶

The model allows for future expansion by new metrics that will

quantify user experience. Notice that future asociation relationship

and future expansion might be linked to asset or to one of the other

datasets: incident, feature usage or licenses.

6. Data Models

6.1. Tree Diagrams of the modules that form LMO

6.1.1. Aggregated Asset Inventory

This specification uses [I-D.draft-ietf-netmod-geo-location-11], [I-

D.draft-ietf-opsawg-sbom-access-03]

 may_be_part_of may_be_part_of

 +------+ +-------+

 | | | |

 | v v |

+------------+ entitled_by tracked_by +------------+

| Licenses |<------------+ +-------------| Usage |

+------------+-----------+ | may_be_ | +---------->+------------+

| License | entitles | | part_of | | tracks | Asset |

| attributes | | | +------+ | | | Features |

+------------+ | | | | | | | and usage |

 v | | v v | | attributes |

 +----------------+ +------------+

 | Asset |

 future_ +----------------+ generated_by

 association | Asset |<----------------+

 +---------->| attributes |---------------+ |

 | +----------------+ generates | |

 v v |

 +-----------+ +------------+

 | Future | | Incident |

 | Expansion | +------------+

 +-----------+ | Incident |

 | attributes |

 +------------+

 Figure 1: Information Model

¶

¶

¶

6.1.2. Licenses

6.1.3. Usage

6.1.4. Usage

6.1.5. Incident Management

6.1.6. Organization

6.1.7. Service

6.1.8. User

6.2. LMO Modules

6.2.1. LMO Module

<CODE BEGINS> file "ietf-lmo@2022-03-01.yang"

module ietf-lmo {

 yang-version 1.1;

 namespace "urn:ietf:params:xml:ns:yang:ietf-lmo";

 prefix ietf-lmo;

 import ietf-lmo-common {

 prefix ietf-lmo-common;

 }

 import ietf-yang-types {

 prefix yang;

 }

 organization

 "IETF OPSA (Operations and Management Area) Working Group";

 contact

 "WG Web: <https://datatracker.ietf.org/wg/opsawg/>

 WG List: <mailto:opsawg@ietf.org>

 Editor: Jan Lindblad

 <mailto:jlindbla@cisco.com>

 Editor: Marisol Palmero

 <mailto:mpalmero@cisco.com>";

 description

 "This YANG module add the flexibility to define its own

 and extensible set of lmo classes.

 Copyright (c) 2021 IETF Trust and the persons identified as

 authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with or

 without modification, is permitted pursuant to, and subject to

 the license terms contained in, the Simplified BSD License set

 forth in Section 4.c of the IETF Trust's Legal Provisions

 Relating to IETF Documents

 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC XXXX

 (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself

 for full legal notices.";

 revision 2022-03-01 {

 description

 "Initial revision for LMO Module as part of the

 LMO YANG Model";

 reference

 "RFC XXXX: LMO YANG Model";

 }

 container lmos {

 //config false; //temporarily commented out for easy testing

 list lmo {

 key lmo-class;

 leaf lmo-class {

 type identityref {

 base ietf-lmo-common:lmo-class;

 }

 }

 list inst {

 key id;

 leaf id {

 type string;

 }

 container parent {

 leaf lmo-class {

 type leafref {

 path /lmos/lmo/lmo-class;

 }

 }

 leaf id {

 type leafref {

 path deref(../lmo-class)/../inst/id;

 }

 }

 }

 container capture-info {

 // Moved capture-info to the instance level, as

 // asset/... data will generally be collected

 // from one source at one time.

 description

 "Capture information for this data";

 leaf collected-on {

 type yang:date-and-time;

 description

 "Time at which this data was collected";

 }

 leaf collected-from {

 type string;

 description

 "Identifier for original source of this data";

 }

 }

 }

 }

 }

<CODE ENDS>

¶

7. Deployment Considerations

LMO Data Models defines the data schemas for LMO data. LMO Data

Models are based on YANG. YANG data models can be used independent

of the transport and can be converted into any encoding format

supported by the network configuration protocol. YANG is a protocol

independent.

To enable the exchange of LMO data among all interested parties,

deployment considerations that are out of the scope of this

document, will need to include:

The data structure to describe all metrics and quantify relevant

data consistently, i.e. specific formats like XML or JSON encoded

message would be deemed valid or invalid based on LMO models.

The process to share and collect LMO data across the consumers

consistently, including the transport mechanism. The LMO YANG

models can be used with network management protocols such as

NETCONF [RFC6241], RESTCONF [RFC8040], streaming telemetry, etc.

OpenAPI specification might also help to consume LMO metrics.

How the configuration of assets should be done.

8. Security Considerations

The security considerations mentioned in section 17 of [RFC7950]

apply.

LMO brings several security and privacy implications because of the

various components and attributes of the information model. For

example, each functional component can be tampered with to give

manipulated data. LMO when used alone or with other relevant data,

can identify an individual, revealing Personal Identifiable

Information (PII). Misconfigurations can lead to data being accessed

by unauthorized entities.

Methods exist to secure the communication of management information.

The transport entity of the functional model MUST implement methods

for secure transport. This document also contains an Information

model and Data-Model in which none of the objects defined are

writable. If the objects are deemed sensitive in a particular

environment, access to them MUST be restricted using appropriately

configured security and access control rights. The information model

contains several optional elements which can be enabled or disabled

for the sake of privacy and security. Proper authentication and

audit trail MUST be included for all the users/processes that access

the LMO.

¶

¶

*

¶

*

¶

* ¶

¶

¶

¶

9. IANA Considerations

9.1. The IETF XML Registry

This document registers URIs in the IETF XML registry [RFC3688].

Following the format in [RFC3688], the registrations defined below

are requested:

URI: urn:ietf:params:xml:ns:yang:ietf-lmo

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-common

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-assets-inventory

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-licenses

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-feature

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-usage

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-incident-management

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-organization

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-service

Registrant Contact: The OPSA WG of the IETF.

¶

¶

¶

¶

¶

¶

¶

¶

¶

XML: N/A, the requested URI is an XML namespace.

URI: urn:ietf:params:xml:ns:yang:ietf-lmo-user

Registrant Contact: The OPSA WG of the IETF.

XML: N/A, the requested URI is an XML namespace.

9.2. The YANG Module Names Registry

This document registers YANG modules in the YANG Module Names

registry [RFC7950]. Following the format in [RFC7950], the

registrations defined below are requested:

name: ietf-lmo

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo

maintained by IANA: N

prefix: lmocom

reference: RFC XXXX

name: ietf-lmo-common

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-common

maintained by IANA: N

prefix: lmocom

reference: RFC XXXX

name: ietf-lmo-asset-inventory

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-assets-inventory

maintained by IANA: N

prefix: lmoasset

reference: RFC XXXX

name: ietf-lmo-licenses

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-licenses

maintained by IANA: N

prefix: lmolicense

reference: RFC XXXX

name: ietf-lmo-feature

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-feature

maintained by IANA: N

prefix: lmousage

reference: RFC XXXX

¶

¶

¶

¶

¶

¶

¶

¶

[RFC2119]

[RFC8174]

name: ietf-lmo-usage

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-usage

maintained by IANA: N

prefix: lmousage

reference: RFC XXXX

name: ietf-lmo-incident-management

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-incident-management

maintained by IANA: N

prefix: lmoscm

reference: RFC XXXX

name: ietf-lmo-organization

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-organization

maintained by IANA: N

prefix: lmoscm

reference: RFC XXXX

name: ietf-lmo-service

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-service

maintained by IANA: N

prefix: lmoscm

reference: RFC XXXX

name: ietf-lmo-user

namespace: urn:ietf:params:xml:ns:yang:ietf-lmo-user

maintained by IANA: N

prefix: lmoscm

reference: RFC XXXX

10. References

10.1. Normative References

Bradner, S., "Key words for use in RFCs to Indicate

Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/

RFC2119, March 1997, <https://www.rfc-editor.org/info/

rfc2119>.

Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

¶

¶

¶

¶

¶

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc8174

[I-D.draft-ietf-netmod-geo-location-11]

[I-D.draft-ietf-opsawg-sbom-access-03]

[RFC3688]

[RFC6241]

[RFC7950]

[RFC8040]

Hopps, C., "A YANG Grouping for Geographic Locations",

Work in Progress, Internet-Draft, draft-ietf-netmod-geo-

location-11, 11 February 2022, <https://www.ietf.org/

archive/id/draft-ietf-netmod-geo-location-11.txt>.

Lear, E. and S. Rose,

"Discovering and Retrieving Software Transparency and

Vulnerability Information", Work in Progress, Internet-

Draft, draft-ietf-opsawg-sbom-access-03, 24 October 2021,

<https://www.ietf.org/archive/id/draft-ietf-opsawg-sbom-

access-03.txt>.

Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,

DOI 10.17487/RFC3688, January 2004, <https://www.rfc-

editor.org/info/rfc3688>.

Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J.,

Ed., and A. Bierman, Ed., "Network Configuration Protocol

(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,

<https://www.rfc-editor.org/info/rfc6241>.

Bjorklund, M., Ed., "The YANG 1.1 Data Modeling

Language", RFC 7950, DOI 10.17487/RFC7950, August 2016,

<https://www.rfc-editor.org/info/rfc7950>.

Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF

Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,

<https://www.rfc-editor.org/info/rfc8040>.

Acknowledgments

The ideas in this document originate from early work by Tony Colon,

Carlos Pignataro, and Yenu Gobena originally referred to as

Experience Telemetry.

This document was created by meaningful contributions from Josh

Suhr, Eric Vyncke, Yannis Viniotis, Nagendra Kumar Nainar, Yenu

Gobena, Dhiren Tailor and Jan Lindblad.

The authors wish to thank Gonzalo Salgueiro, Martin Beverley and

many others for their helpful comments and suggestions.

Change log

RFC Editor Note: This section is to be removed during the final

publication of the document.

¶

¶

¶

¶

https://www.ietf.org/archive/id/draft-ietf-netmod-geo-location-11.txt
https://www.ietf.org/archive/id/draft-ietf-netmod-geo-location-11.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-sbom-access-03.txt
https://www.ietf.org/archive/id/draft-ietf-opsawg-sbom-access-03.txt
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040

version 03

Flexible root structure has been introduced by the ietf-lmo YANG

module: Modules are arranged into layers, with ietf-lmo-common

and ietf-lmo at the core. Other modules can be added in layers on

top. This structure allows flexibility and the option to be

enhanced by vendor implementation.

The new structure allows to include other lmo classes, or exclude

current lmo classes.

Feature and Usage containers have been split in two independent

modules. Where Usage relates to runtime data.

Organization attribute, has been enhanced to an independent YANG

module, adding flexibility and the option to be called

independently and enhanced.

Service and User YANG modules, have been also introduced in a

similar flexible structure, being part of new lmo classes.

Information Model, has been enhanced with new modules:

Organization, Service and User modules. On this version the new

lmo classes can be called independently or from the licenses

module. There is no restriction to be called from any of the

other YANG odules.

version 02

"Support case" renamed to "incident".

Add MAC address and IP address attributes under asset-inventory

YANG module.

Link among objects & YANG modules (notably with feature).

New text about asset usage.

version 01

Fixes for YANG validator and idnits warnings.

version 00

Initial version.

Authors' Addresses

Marisol Palmero

Cisco Systems

¶

*

¶

*

¶

*

¶

*

¶

*

¶

¶

* ¶

*

¶

* ¶

* ¶

¶

* ¶

¶

* ¶

Email: mpalmero@cisco.com

Frank Brockners

Cisco Systems

Email: fbrockne@cisco.com

Sudhendu Kumar

NC State University

Email: skumar23@ncsu.edu

Shwetha Bhandari

Thoughtspot

Email: shwetha.bhandari@thoughtspot.com

Camilo Cardona

NTT

Email: camilo@ntt.net

Diego Lopez

Telefonica I+D

Email: diego.r.lopez@telefonica.com

mailto:mpalmero@cisco.com
mailto:fbrockne@cisco.com
mailto:skumar23@ncsu.edu
mailto:shwetha.bhandari@thoughtspot.com
mailto:camilo@ntt.net
mailto:diego.r.lopez@telefonica.com

	Data Model for Lifecycle Management and Operations
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Requirements language

	2. Terminology
	3. Motivation
	4. Use Cases
	4.1. License Inventory and Activation
	4.2. Features in Use
	4.3. Assets in Use
	4.4. Risk Mitigation Check (RMC)
	4.5. Errata
	4.6. Security Advisory
	4.7. Optimal Software Version (OSV)
	4.7.1. Software Conformance
	4.7.2. Risk Trend Analysis
	4.7.3. What-if Analysis

	4.8. Asset Retirement - End of Life (EOL)

	5. Information Model
	6. Data Models
	6.1. Tree Diagrams of the modules that form LMO
	6.1.1. Aggregated Asset Inventory
	6.1.2. Licenses
	6.1.3. Usage
	6.1.4. Usage
	6.1.5. Incident Management
	6.1.6. Organization
	6.1.7. Service
	6.1.8. User

	6.2. LMO Modules
	6.2.1. LMO Module

	7. Deployment Considerations
	8. Security Considerations
	9. IANA Considerations
	9.1. The IETF XML Registry
	9.2. The YANG Module Names Registry

	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Change log
	Authors' Addresses

