
httpbis L. Pardue
Internet-Draft October 18, 2018
Intended status: Informational
Expires: April 21, 2019

HTTP-initiated Network Tunnelling (HiNT)
draft-pardue-httpbis-http-network-tunnelling-01

Abstract

 The HTTP CONNECT method allows an HTTP client to initiate, via a
 proxy, a TCP-based tunnel to a single destination origin. This memo
 explores options for expanding HTTP-initiated Network Tunnelling
 (HiNT) to cater for diverse UDP and IP associations.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on April 21, 2019.

Copyright Notice

 Copyright (c) 2018 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Pardue Expires April 21, 2019 [Page 1]

https://datatracker.ietf.org/doc/html/bcp78
https://datatracker.ietf.org/doc/html/bcp79
https://datatracker.ietf.org/drafts/current/
https://datatracker.ietf.org/doc/html/bcp78
https://trustee.ietf.org/license-info

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

Table of Contents

1. Introduction . 3
2. Notational Conventions 6
2.1. Definitions . 6

3. Design Consideration Aspects 7
3.1. HTTP Version . 7
3.2. HTTP Forward Proxying 7
3.3. Message Destination Agility 7
3.4. Path MTU Discovery 7
3.5. Blind forwarding vs. in-the-loop Processing 8
3.6. Head-of-line Blocking 8

4. Candidate Solutions . 9
4.1. CONNECT Method Augmentation 9

 4.2. UDPASSOCIATE with HINT Frames for HTTP/2 and HTTP/QUIC . 9
4.3. HELIUM over WebSockets for all HTTP Versions 9

 4.4. HELIUM over WebSockets for HTTP/1.1, Native Framing for
 HTTP/2 or HTTP/QUIC 9

5. Technical Specification for HiNT Requests 10
5.1. The UDPASSOCIATE Method for HTTP/1.1x 10
5.2. The UDPASSOCIATE Method for HTTP/2 and HTTP/QUIC 11
5.3. The IPASSOCIATE Method 12

6. Technical Specification for HiNT Message Transfer 12
6.1. HiNT Message Framing 12
6.1.1. The HINT HTTP/2 Frame 13
6.1.2. The HINT HTTP/QUIC Frame 14

6.2. Light HIP HTTP/2 Framing 14
6.3. Full HIP HTTP/2 Framing 15
6.3.1. The OHIP HTTP/2 Frame 16
6.3.2. The IHIP HTTP/2 Frame 17
6.3.3. The MHIP HTTP/2 Frame 18

7. Security Considerations 20
8. IANA Considerations . 20
8.1. UDPASSOCIATE Method Registration 20
8.2. IPASSOCIATE Method Registration 21
8.3. The HINT HTTP/2 Frame Type 21
8.4. The HINT HTTP/QUIC Frame Type 21
8.5. The HIP HTTP/2 Frame Type 22
8.6. The OHIP HTTP/2 Frame Type 22
8.7. The IHIP HTTP/2 Frame Type 22
8.8. The MHIP HTTP/2 Frame Type 22

9. References . 23
9.1. Normative References 23
9.2. Informative References 23

Appendix A. Acknowledgments 24
Appendix B. HiNT Request Options 25
Appendix C. HiNT Message Transfer Options 26
Appendix D. Changelog . 28

Pardue Expires April 21, 2019 [Page 2]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

D.1. Since draft-pardue-httpbis-http-network-tunnelling-00 . . 29
 Author's Address . 29

1. Introduction

 A wide range of network tunnelling solutions already exist (e.g.
 SOCKS [RFC1928], TURN [RFC5766] etc.), with various applicability.
 So why consider creating another one? Several tunnelling
 specifications reserve well known TCP or UDP ports that are easy to
 block. Even if port usage is more agile, plain text communications
 allow potential attackers to easily analyse traffic and cause
 interference.

 This document we consider options for HTTP-initiated Network
 Tunnelling (HiNT) as a solution. The use case is a client behind a
 forward proxy but other uses may be supported. Using HTTP as a
 substrate for other protocols follows a trend seen elsewhere (DNS
 Queries over HTTPS [DOH]). Shifting to an HTTP port, makes port
 blocking less effective. However, the real advantage comes from
 securing HTTP (TLS [RFC5246], QUIC [QUIC-TRANSPORT]) to provide
 confidentiality, integrity and authenticity, which makes analysis and
 interference harder. This also enables secure communication to a
 remote proxy on the Internet (in contrast to SOCKS etc.).

 A HiNT session is initiated by some HTTP mechanism. This could be a
 HTTP request or some binary frame format (HTTP/2 and HTTP/QUIC only).

https://datatracker.ietf.org/doc/html/draft-pardue-httpbis-http-network-tunnelling-00
https://datatracker.ietf.org/doc/html/rfc1928
https://datatracker.ietf.org/doc/html/rfc5766
https://datatracker.ietf.org/doc/html/rfc5246

Pardue Expires April 21, 2019 [Page 3]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Client Forward Proxy Server
 + + +
+------------------------------------+			
	TCP Connection		
	CONNECT example.org		
+===>			
	200 OK		+-----------------+
<===+	TCP Connection		
	+--+		
		TLS Session	
		GET /foo	
+===>			
		200 OK	
<===+			
	+--+		
+------------------------------------+	+-----------------+		
 + + +

 Figure 1: HTTP/1.1 CONNECT-based TLS tunnel

 The CONNECT request method (see Section 4.3.6 of [RFC7231]) is
 commonly used to establish a tunnelled TLS session with an origin
 identified by a request-target. In HTTP/1.1, the entire client-to-
 proxy HTTP connection is converted into a tunnel (Figure 1). In
 HTTP/2 (see Section 8.3 of [RFC7540]) and HTTP/QUIC (see
 Section 3.1.2 of [QUIC-HTTP]), a single stream gets dedicated to a
 tunnel (Figure 2).

https://datatracker.ietf.org/doc/html/rfc7231#section-4.3.6
https://datatracker.ietf.org/doc/html/rfc7540#section-8.3

Pardue Expires April 21, 2019 [Page 4]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Client Forward Proxy Server
 + + +
+------------------------------------+							
	TCP Connection or UDP Association						
	+------------------------------+						
		TLS or QUIC Security Context					
		+------------------------+					
			HTTP/2 or HTTP/QUIC				
			Stream				
			CONNECT example.org				
+===>							
			200 OK				+-----------------+
<===+	TCP Connection						
			+--+				
				TLS Session			
				+--+			
					HTTP/2 Stream		
					GET /foo		
+===>							
					200 OK		
<===+							
				+--+			
			+--+				
		+------------------------+					
	+------------------------------+						
+------------------------------------+	+-----------------+						
 + + +

 Figure 2: HTTP/2 and HTTP/QUIC CONNECT-based TLS tunnel

 A proxy that supports CONNECT blindly forwards packets, in both
 directions, using TCP for both client-to-proxy and proxy-to-origin
 hops. The use of TCP for the latter hop is a limiting factor: other
 application or transport protocols are unsupported. This document
 specifically concerns itself with finding a solution that permits a
 UDP-based HTTP/QUIC client behind an HTTP proxy to establish an HTTP/
 QUIC session with the origin. Without such a capability, there
 continues to be a dependency on origins to support TCP-based HTTP
 (for a small subset of the client population).

Pardue Expires April 21, 2019 [Page 5]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 The document is arranged in the following order:

 o Design aspects are considered in Section 3.

 o Tunnel initiation options are surveyed in Appendix B.

 o Messaging (post-handshake data transfer) options are surveyed in
Appendix C.

 o Four candidate solutions are presented in Section 4, based on the
 above options.

 Candidate solutions have the purpose of stimulating discussion in the
 community in order to drive toward a single solution.

2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP

14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2.1. Definitions

 Definitions of terms that are used in this document:

 o HiNT request: a message that requests the establishment of a
 network tunnel to a HiNT destination.

 o HiNT response: a message that confirms the establishment of a
 network tunnel.

 o HiNT message: a message that allows data transfer between client,
 proxy and/or destination during a HiNT session.

 o HiNT client: an HTTP endpoint that sends a HiNT request to a HiNT
 proxy. Also referred to as a client.

 o HiNT proxy: an HTTP endpoint that services HiNT requests. It
 returns a HiNT response that indicates the outcome of network
 tunnel creation. Also referred to as a proxy.

 o HiNT destination: the service that the HiNT client is trying to
 reach via a HiNT proxy. Also referred to as a destination.

 o HiNT session: a specific instance of a network tunnel.

https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc8174

Pardue Expires April 21, 2019 [Page 6]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 o Network Tunnel: describes any forms of association between client
 and destination (end-to-end). A tunnel ceases to exist when both
 ends of the association are closed (implicitly or explicitly).

3. Design Consideration Aspects

3.1. HTTP Version

 The design should consider if all HTTP Versions need be supported.
 Differences in version syntax (in particular binary framing and
 streams) may provide certain design advantages.

3.2. HTTP Forward Proxying

 The design considers the "forward proxying" intermediary (see
Section 2.3 of [RFC7230]) model, which is widely deployed.

 HTTP clients may use a range of methods to discover the presence of
 an HTTP proxy (WPAD, DHCP, manual configuration). Client
 application-layer communications remain unaware of such
 configuration. (In other words, handshake and data transfer
 interactions with the HTTP proxy are invisible to the application
 layer.)

 Intermediaries may themselves have an HTTP proxy configured. A
 client attempting to initiate a tunnel to a remote host may end up
 traversing a proxy chain. This is a useful design characteristic and
 should be considered when selecting a preferred option.

3.3. Message Destination Agility

 The CONNECT method currently expresses a request-target. This is a
 "fixed destination mode" where all messages travel on the same fixed
 TCP path to the same destination (ignoring lower level network
 elements).

 The design should consider if more agile approach i.e. a "per-message
 destination mode" would support new network interaction models. This
 may add per-message overhead but optimisation may be possible.

3.4. Path MTU Discovery

 The design should consider that endpoints may want/be required to
 avoid IP fragmentation. Support for reasonable attempts at path MTU
 discovery (PMTUD) should be included. Traditional PMTUD methods
 (such as those described in [RFC1191] and [RFC8201] are intended for
 TCP and rely on ICMP and ICMPv6 messages. [RFC2293] catalogs some of
 the problems with PMTUD. Packetization Layer PMTUD (PLPMTUD)

https://datatracker.ietf.org/doc/html/rfc7230#section-2.3
https://datatracker.ietf.org/doc/html/rfc1191
https://datatracker.ietf.org/doc/html/rfc8201
https://datatracker.ietf.org/doc/html/rfc2293

Pardue Expires April 21, 2019 [Page 7]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 [RFC4821] is an extension that describes an algorithm that can
 operate at the transport layer. Datagram PLPMTUD [DPLPMTUD] is a
 proposed further extension that describes approaches for various UDP-
 based transports.

3.5. Blind forwarding vs. in-the-loop Processing

 [RFC7230] describes a tunnel as "a blind relay between two
 connections without changing messages". This approach may be overly
 restrictive for new interaction modes.

 In the case of CONNECT for TCP-based tunnelling, the HiNT message
 sent by a client (TCP/IP packet payload) is decapsulated at the proxy
 and recapsulated in a new TCP/IP packet created and sent by the
 proxy. The proxy performs no processing of the HiNT message.

 [HELIUM] proposes an alternative model, where the proxy does (and is
 expected to) modify HiNT messages.

3.6. Head-of-line Blocking

 The current design of CONNECT-based tunnelling reserves either a
 whole TCP connection (HTTP/1.1) or an ordered byte stream (HTTP/2 and
 HTTP/QUIC) for the client-to-proxy hop. These are subject to head-
 of-line (HoL) blocking. For example, where there is an end-to-end
 tunnelled HTTP/2 connection, all of its streams are subject to the
 blocking on the single reserved stream. It is unknown to the author
 is this is perceived to be a high impact problem.

 This document defines HTTP/2 and HTTP/QUIC frames (Section 6) that
 are sent on HTTP/2 or QUIC streams respecitvely.

 For UDP or IP-based tunnels, HoL blocking may be problematic. It is
 unlikely that the application expects blocking to occur, leading to
 potential issues. (QUIC is specifically designed to avoid HoL
 blocking and is designed to operate on unreliable UDP, a reliable
 bearer may adversely affect performance.)

 Future versions of QUIC may offer partial reliability. If it were
 used for the client-to-proxy hop, it could help mitigate HoL blocking

 The design should consider the tension between the benefits of
 tunnelling, impact of HoL, and HTTP version Section 3.1.

Pardue Expires April 21, 2019 [Page 8]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

4. Candidate Solutions

 Strawman candidate solutions are presented in order of increasing
 perceived complexity. It is hoped that wider input will help shape
 the solution.

4.1. CONNECT Method Augmentation

 Enhance or augment the current definitions of the CONNECT method in
 HTTP/1.x, HTTP/2 and HTTP/QUIC. Data exchanges between a client and
 a single destination will be conveyed over existing byte streams with
 no additional framing. Client and proxy are required to assign
 meaning to groups of bytes delivered on the stream, which may be
 impractical.

4.2. UDPASSOCIATE with HINT Frames for HTTP/2 and HTTP/QUIC

 Define a new method, UDPASSOCIATE (Section 5.1), that reserves a
 stream for the carriage of newly defined HINT frames (Section 6.1).
 Data exchanges between a client and a single destination will be
 conveyed using these frames. This requires HTTP/2 or HTTP/QUIC
 proxies, and precludes HTTP/1.x (because there is no means for
 framing HiNT messages).

4.3. HELIUM over WebSockets for all HTTP Versions

 Tunnelling of UDP or IP using HELIUM ([HELIUM]) over WebSockets.
 Data exchanges between a client and destination(s) will be conveyed
 using CBOR-encoded HIP messages. WebSockets connections between
 client and proxy are established by existing means. This option
 would work for all HTTP versions that support WebSockets.

4.4. HELIUM over WebSockets for HTTP/1.1, Native Framing for HTTP/2 or
 HTTP/QUIC

 Tunnelling of UDP or IP using HELIUM ([HELIUM]). Data exchanges
 between a client and destination(s) will be conveyed using HIP
 messages appropriate for the HTTP version.

 For HTTP/1.x, WebSockets with CBOR-encoded HIP messages would be
 used.

 For HTTP/2 and HTTP/QUIC, HIP messages would be framed and exchanged
 on a stream reserved by the new method, IPASSOCIATE (Section 5.3).

 There are two framing options presented: light framing (Section 6.2)
 that uses the CBOR-encoded format, which would allow direct reuse of
 code to that used for the above WebSocket substrate; full framing

Pardue Expires April 21, 2019 [Page 9]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 (Section 6.3) that uses the native features of the application layer
 substrate, which may have advantages.

5. Technical Specification for HiNT Requests

 This section outlines the technical specifications required to
 support the candidate solutions. Discussion of respective merits and
 drawbacks is captured in Appendix B.

5.1. The UDPASSOCIATE Method for HTTP/1.1x

 In HTTP/1.x, the UDPASSOCIATE method requests that the recipient
 establish a UDP-based tunnel to the destination origin server
 identified by the request-target and, if successful, thereafter
 restrict its behavior to blind forwarding of UDP datagram payloads,
 in both directions, until the tunnel is closed.

 UDPASSOCIATE is intended only for use in requests to a proxy. An
 origin server that receives a UDPASSOCIATE request for itself MAY
 respond with a 2xx (Successful) status code to indicate that a
 connection is established. TODO: explicitly ban this?

 A client sending a UDPASSOCIATE request MUST send the authority form
 of request-target (Section 5.3 of [RFC7230]); i.e., the request-
 target consists of only the host name and port number of the tunnel
 destination, separated by a colon. The port number is for UDP only.

 UDPASSOCIATE hq.example.com:50781 HTTP/1.1
 Host: hq.example.com:50781

 The recipient proxy can establish a tunnel either by directly
 connecting to the request-target or, if configured to use another
 proxy, by forwarding the UDPASSOCIATE request to the next inbound
 proxy. Any 2xx (Successful) response indicates that the sender (and
 all inbound proxies) will switch to tunnel mode immediately after the
 blank line that concludes the successful response's header section;
 data received after that blank line is from the server identified by
 the request-target. Any response other than a successful response
 indicates that the tunnel has not yet been formed and that the
 connection remains governed by HTTP.

 TODO: how do connectionless UDP associations affirm that connection
 to the remote host succeeded? Perhaps a 2xx should be formed when
 the proxy believes it has sufficient capability to send or receive
 packets.

 A tunnel is closed when an intermediary detects that either side has
 closed its connection (explicitly or implicitly). The intermediary

https://datatracker.ietf.org/doc/html/rfc7230#section-5.3

Pardue Expires April 21, 2019 [Page 10]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 MUST attempt to send any outstanding data that came from the closed
 side to the other side, close both connections, and then discard any
 remaining data left undelivered.

 A server MUST NOT send any Transfer-Encoding or Content-Length header
 fields in a 2xx (Successful) response to UDPASSOCIATE. A client MUST
 ignore any Content-Length or Transfer-Encoding header fields received
 in a successful response to UDPASSOCIATE.

 A payload within a UDPASSOCIATE request message has no defined
 semantics.

5.2. The UDPASSOCIATE Method for HTTP/2 and HTTP/QUIC

 In HTTP/2 and HTTP/QUIC, the UDPASSOCIATE method requests the
 establishment of a tunnel to a single remote host over a single
 stream. This mechanism has a few differences from the header field
 mapping described in [RFC7540], Section 8.1.2.3:

 o The ":method" pseudo-header field is set to "UDPASSOCIATE"

 o The ":scheme" and ":path" pseudo-header fields MUST be omitted

 o The ":authority" pseudo-header field contains the host and port to
 connect to (equivalent to the authority-form of the request-target
 of CONNECT requests (see [RFC7230], Section 5.3)).

 A UDPASSOCIATE method that does not conform to these restrictions is
 malformed ([RFC7540], Section 8.1.2.6).

 A proxy that supports UDPASSOCIATE can establish a tunnel to the
 server identified in the ":authority" pseudo-header field. Once this
 is completed (see earlier TODO), the proxy sends a HEADERS frame
 containing a 2xx series status code to the client.

 A successful UDPASSOCIATE request reserves the request stream for
 tunnelling. After the initial HEADERS frame sent by each peer, all
 subsequent frames exchanged on this stream correspond to data sent on
 the UDP association. Section 6.1, Section 6.2 and Section 6.3
 explore options for application-level framing and the mapping to UDP.
 Some frame types MUST NOT be sent on the reserved stream (e.g.
 RST_STREAM and more TBD). An endpoint that receives any of these
 MUST respond with a connection error.

 The UDP association can be closed (explicitly or implicitly) by
 either peer. It is RECOMMENDED that peers close the association
 explicitly using tunnelled application-level means (if possible).
 Once this has happened, the client SHOULD close the reserved stream

https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.3
https://datatracker.ietf.org/doc/html/rfc7230#section-5.3
https://datatracker.ietf.org/doc/html/rfc7540#section-8.1.2.6

Pardue Expires April 21, 2019 [Page 11]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 on the client-to-proxy hop. Closing the reserved stream before an
 explicit close is likely to trigger an application-level implicit
 close (i.e. idle timeout).

5.3. The IPASSOCIATE Method

 The IPASSOCIATE method can be used by a client to request that the
 recipient establish an IP-based tunnel to the destination origin
 server identified by the request-target and, if successful,
 thereafter restrict its behaviour to blind forwarding of IP payloads,
 in both direction, until the tunnel is closed.

 The IPASSOCIATE method would look and behave much like the
 UDPASSOCIATE method.

 TODO: expand this definition if this method is preferred or required.
 Additional parameters may be required to accommodate the extra
 capabilities of IP-based tunnels.

6. Technical Specification for HiNT Message Transfer

 This section outlines the technical specifications required to
 support the candidate solutions. Discussion of respective merits and
 drawbacks is captured in Appendix C.

6.1. HiNT Message Framing

 The HINT frame carries HiNT messages between client and proxy. Is
 intended to be used with versions of HTTP that support binary
 framing. Definitions are provided for HTTP/2 and HTTP/QUIC,
 differing only in their use of padding. (The QUIC transport
 ([QUIC-TRANSPORT]) provides padding itself.) Frames are non-critical
 extensions to their respective protocols. Endpoints that do not
 support these frames will ignore them.

 The payload of each HINT frame corresponds to a UDP datagram (or IP
 Packet?) sent or received by a HiNT proxy. A separate HiNT request
 is REQUIRED in order to initiate the tunnel with which these frames
 relate.

 HINT frames are subject to flow control. The size of HINT frames
 should take into consideration the path MTU. Methods for path MTU
 discovery are discussed in Section 3.4.

 Frames MUST be associated with a non-control stream. If a frame is
 received on a control stream, the recipient MUST respond with a
 connection error. For HTTP/2 this is PROTOCOL_ERROR, for HTTP/QUIC
 this is TBD.

Pardue Expires April 21, 2019 [Page 12]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

6.1.1. The HINT HTTP/2 Frame

 The HINT HTTP/2 frame (type=0xTBD) defines the following flags (based
 on HTTP/2 flags):

 END_STREAM (0x1): When set, bit 0 indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half-
 closed" states or the "closed" state ([RFC7540], Section 5.1).

 PADDED (0x8): When set, bit 3 indicates that the Pad Length field
 and any padding that it describes are present.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)| Payload (*) ...
 +-+
 | Padding (*) ...
 +-+

 Figure 3: HINT HTTP/2 frame payload

 The HINT HTTP/2 frame payload has the following fields:

 Pad Length: An OPTIONAL 8-bit field containing the length of the
 frame padding in units of octets. This field is only present if
 the PADDED flag is set.

 Payload: Arbitrary octets that correspond to messages sent to/from a
 HiNT proxy.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error ([RFC7540], Section 5.4.1) of type
 PROTOCOL_ERROR.

 HINT HTTP/2 frames are subject to flow control ([RFC7540],
 Section 5.2) and can only be sent when a stream is in the "open" or
 "half-closed (remote)" state. If an HINT HTTP/2 frame is received
 whose stream is not in "open" or "half-closed (local)" state, the
 recipient MUST respond with a stream error ([RFC7540] Section 5.4.2)
 of type STREAM_CLOSED.

 The HINT HTTP/2 frame is processed hop-by-hop. An intermediary MUST
 NOT forward HINT HTTP/2 frames, though it can use the information

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.2
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.2

Pardue Expires April 21, 2019 [Page 13]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 contained in HINT HTTP/2 frames in forming new HINT HTTP/2 frames to
 send to its own proxy.

6.1.2. The HINT HTTP/QUIC Frame

 The HINT HTTP/QUIC frame (type=0xTBD) defines no flags.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Payload (*) ...
 +-+

 Figure 4: HINT HTTP/QUIC frame payload

 The HINT HTTP/QUIC frame carries arbitrary octets that correspond to
 messages sent to/from a HiNT proxy. The payload MUST be non-zero-
 length. If a HINT HTTP/QUIC frame is received with with a payload
 length of zero, the recipient MUST respond with a stream error
 ([QUIC-HTTP], Section 6) of type TBD.

 The HINT HTTP/QUIC frame is processed hop-by-hop. An intermediary
 MUST NOT forward HINT HTTP/QUIC frames, though it can use the
 information contained in HINT HTTP/QUIC frames in forming new HINT
 HTTP/QUIC frames to send to its own proxy.

6.2. Light HIP HTTP/2 Framing

 The HELIUM inner protocol (HIP) [HELIUM] defines an abstract message
 structure that may be carried on a variety of substrates.

 The HIP HTTP/2 frame (type=0xTBD) carries CBOR-encoded HIP message.
 The message type is indicated in a frame field.

 The frame is a non-critical extension. Endpoints that do not support
 it will ignore it.

 The size of frame should take into consideration the path MTU.
 Methods for path MTU discovery are discussed in Section 3.4.

 Frames MUST be associated with a non-control stream. If a frame is
 received on a control stream, the recipient MUST respond with a
 connection error. For HTTP/2 this is PROTOCOL_ERROR.

 The HIP HTTP/2 frame defines the following flags:

 END_STREAM (0x1): When set, bit 0 indicates that this frame is the
 last that the endpoint will send for the identified stream.

Pardue Expires April 21, 2019 [Page 14]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Setting this flag causes the stream to enter one of the "half-
 closed" states or the "closed" state ([RFC7540], Section 5.1).

 PADDED (0x8): When set, bit 3 indicates that the Pad Length field
 and any padding that it describes are present.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)| Type (8) | HIP-CBOR Message (*) ...
 +-+
 | Padding (*) ...
 +-+

 Figure 5: HIP HTTP/2 frame payload

 The HIP HTTP/2 frame payload has the following fields:

 Pad Length: An OPTIONAL 8-bit field containing the length of the
 frame padding in units of octets. This field is only present if
 the PADDED flag is set.

 Type: An 8-bit field that identifies the HIP message type as defined
 in [HELIUM].

 HIP-CBOR Message: A HIP message expressed in CBOR encoding including
 type, metadata (including padding), and packet or packet-prefix.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error ([RFC7540], Section 5.4.1) of type
 PROTOCOL_ERROR.

6.3. Full HIP HTTP/2 Framing

 The OHIP, IHIP and MHIP frames (collectively xHIP) encode all HIP
 message data directly in the HTTP/2 frame structure.

 These frames are non-critical extensions, endpoints that do not
 support them will ignore them.

 The size of these frames should take into consideration the path MTU.
 Methods for path MTU discovery are discussed in Section 3.4.2.

 Frames MUST be associated with a non-control stream. If a frame is
 received on a control stream, the recipient MUST respond with a
 connection error. For HTTP/2 this is PROTOCOL_ERROR.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1

Pardue Expires April 21, 2019 [Page 15]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Each xHIP frame type contains zero or more instances of the Metadata-
 entry field. Fields are processed by the HIP application layer.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Metadata-entry (*) ...
 +-+

 A Metadata-entry field is a tuple consisting of a Key and a length-
 delimited Value:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 | Key (16) | Value Length (32) ...
 +-+
 ... | Value? ...
 +-+

 Specifically:

 Key: An unsigned, 16-bit integer representing the HIP metadata key.

 Value Length: An unsigned, 16-bit integer indicating the length, in
 octets of the Value field.

 Value: An OPTIONAL sequence of octets containing an application-
 specific value.

6.3.1. The OHIP HTTP/2 Frame

 The OHIP HTTP/2 frame (type=0xTBD) carries an "outbound" HIP message.

 The OHIP HTTP/2 frame defines the following flags:

 END_STREAM (0x1): When set, bit 0 indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half-
 closed" states or the "closed" state ([RFC7540], Section 5.1).

 METADATA (0x2): When set, bit 1 indicates that the Metadata Entries
 field and metadata that is describes are present

 PADDED (0x8): When set, bit 3 indicates that the Pad Length field
 and any padding that it describes are present.

https://datatracker.ietf.org/doc/html/rfc7540#section-5.1

Pardue Expires April 21, 2019 [Page 16]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)| Metadata Entries? (16) | ...
 +-+
 | Metadata (*) ...
 +-+
 | Payload (*) ...
 +-+
 | Padding (*) ...
 +-+

 Figure 6: OHIP HTTP/2 frame payload

 The OHIP HTTP/2 frame payload has the following fields:

 Pad Length: An OPTIONAL 8-bit field containing the length of the
 frame padding in units of octets. This field is only present if
 the PADDED flag is set.

 Metadata Entries: An OPTIONAL 16-bit field that indicates the number
 of Metadata-entries held in the Metadata field. This field is
 only present if the METADATA flag is set.

 Metadata: Zero or more instances of the Metadata-entry field.

 Payload: At most one packet (or prefix of a packet), in essence, a
 standard IP packet starting with an IP header.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error ([RFC7540], Section 5.4.1) of type
 PROTOCOL_ERROR.

6.3.2. The IHIP HTTP/2 Frame

 The IHIP HTTP/2 frame (type=0xTBD) carries an "inbound" HIP message.

 The IHIP HTTP/2 frame defines the following flags:

 END_STREAM (0x1): When set, bit 0 indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half-
 closed" states or the "closed" state ([RFC7540], Section 5.1).

 METADATA (0x2): When set, bit 1 indicates that the Metadata Entries
 field and metadata that is describes are present

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.1

Pardue Expires April 21, 2019 [Page 17]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 PADDED (0x8): When set, bit 3 indicates that the Pad Length field
 and any padding that it describes are present.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)| Metadata Entries? (16) | ...
 +-+
 ... Metadata (*) ...
 +-+
 | Payload (*) ...
 +-+
 | Padding (*) ...
 +-+

 Figure 7: IHIP HTTP/2 frame payload

 The IHIP HTTP/2 frame payload has the following fields:

 Pad Length: An OPTIONAL 8-bit field containing the length of the
 frame padding in units of octets. This field is only present if
 the PADDED flag is set.

 Metadata Entries: An OPTIONAL 16-bit field that indicates the number
 of Metadata-entries held in the Metadata field. This field is
 only present if the METADATA flag is set.

 Metadata: Zero or more instances of the Metadata-entry field.

 Payload: A packet, in essence, a standard IP packet starting with an
 IP header, as received by the proxy.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error ([RFC7540], Section 5.4.1) of type
 PROTOCOL_ERROR.

6.3.3. The MHIP HTTP/2 Frame

 The MHIP HTTP/2 frame (type=0xTBD) carries a "meta" HIP message.

 The MHIP HTTP/2 frame defines the following flags:

 END_STREAM (0x1): When set, bit 0 indicates that this frame is the
 last that the endpoint will send for the identified stream.
 Setting this flag causes the stream to enter one of the "half-
 closed" states or the "closed" state ([RFC7540], Section 5.1).

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-5.1

Pardue Expires April 21, 2019 [Page 18]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 METADATA (0x2): When set, bit 1 indicates that the Metadata Entries
 field and metadata that is describes are present

 ERROR (0x4): When set, bit 2 indicates that this frame includes an
 Error-len field.

 PADDED (0x8): When set, bit 3 indicates that the Pad Length field
 and any padding that it describes are present.

 PAYLOAD (0xc): When set, bit 4 indicates that the Payload field is
 present

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |Pad Length? (8)| Metadata Entries? (16) |Err Length? (8)|
 +-+
 | Metadata (*) ...
 +-+
 | Errors (*)
 +-+
 | Payload? (*) ...
 +-+
 | Padding (*) ...
 +-+

 Figure 8: MHIP HTTP/2 frame payload

 The MHIP HTTP/2 frame payload has the following fields:

 Pad Length: An OPTIONAL 8-bit field containing the length of the
 frame padding in units of octets. This field is only present if
 the PADDED flag is set.

 Metadata Entries: An OPTIONAL 16-bit field that indicates the number
 of Metadata-entries held in the Metadata field. This field is
 only present if the METADATA flag is set.

 Err Length: An OPTIONAL 8-bit field containing the length of the
 Errors field. This field is only present if the ERROR flag is
 set.

 Metadata: Zero or more instances of the Metadata-entry field.

 Errors: An OPTIONAL octet array of length Err Length. Each octet of
 the array represents a HIP error as described in [HELIUM].

Pardue Expires April 21, 2019 [Page 19]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Payload: An OPTIONAL payload containing a prefix of the outbound
 packet as sent, including any parts that were modified. This
 field is only present if the PAYLOAD flag is set.

 Padding: Padding octets that contain no application semantic value.
 Padding octets MUST be set to zero when sending. A receiver is
 not obligated to verify padding but MAY treat non-zero padding as
 a connection error ([RFC7540], Section 5.4.1) of type
 PROTOCOL_ERROR.

7. Security Considerations

 This document is partly motivated by the desire to prevent exposure
 to observers, to make detection and interference more difficult. The
 effectiveness of this is dependent on the chosen solution. Where
 HTTP is used only to bootstrap a HiNT session, messages will be
 carried without additional HTTP traffic to mask them. A more secure
 option would be to both bootstrap and carry HiNT messages inside an
 HTTP session. This of course relies on secure HTTP to provide
 confidentiality.

 It is noted that different HiNT traffic may have different
 characteristics (e.g. volumes and timing) when compared to the HTTP
 context that it is operating in. Session level encryption is weak
 with respect to traffic analysis. HTTP/2 provides further advice
 about the use of compression ([RFC7540] Section 10.6) and padding
 ([RFC7540] Section 10.7) to mitigate the ability for an observer to
 discriminate different forms of traffic. Additional application-
 layer padding may help.

 TODO: Proxy authentication might be used to establish the authority
 to create a tunnel.

 There are significant risks in establishing a tunnel to arbitrary
 servers. Proxies that support HiNT requests SHOULD restrict a HiNT
 session to a limited set of known ports or a configurable white list
 of safe request targets.

 This section will address more security considerations once a single
 solution is chosen.

8. IANA Considerations

8.1. UDPASSOCIATE Method Registration

 This section registers the "UDPASSOCIATE" method in "HTTP Method
 Registry" ([RFC7230], Section 8.1).

https://datatracker.ietf.org/doc/html/rfc7540#section-5.4.1
https://datatracker.ietf.org/doc/html/rfc7540#section-10.6
https://datatracker.ietf.org/doc/html/rfc7540#section-10.7
https://datatracker.ietf.org/doc/html/rfc7230#section-8.1

Pardue Expires April 21, 2019 [Page 20]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Method Name: UDPASSOCIATE

 Safe: No

 Idempotent: No

 Cacheable: No

 Specification document(s): Section 5.1 of this document

8.2. IPASSOCIATE Method Registration

 This section registers the "IPASSOCIATE" method in "HTTP Method
 Registry" ([RFC7230], Section 8.1).

 Method Name: IPASSOCIATE

 Safe: No

 Idempotent: No

 Cacheable: No

 Specification document(s): Section 5.3 of this document

8.3. The HINT HTTP/2 Frame Type

 This section registers the "HINT" frame type in the "HTTP/2 Frame
 Type" registry ([RFC7540], Section 11.2).

 Frame Type: HINT

 Code: 0XTBD

 Specification: Section 6.1.1 of this document

8.4. The HINT HTTP/QUIC Frame Type

 This section registers the "HINT" frame type in the "HTTP/QUIC Frame
 Type" registry ([QUIC-HTTP], Section 9.3).

 Frame Type: HINT

 Code: 0XTBD

 Specification: Section 6.1.2 of this document

https://datatracker.ietf.org/doc/html/rfc7230#section-8.1
https://datatracker.ietf.org/doc/html/rfc7540#section-11.2

Pardue Expires April 21, 2019 [Page 21]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

8.5. The HIP HTTP/2 Frame Type

 This section registers the "HIP" frame type in the "HTTP/2 Frame
 Type" registry ([RFC7540], Section 11.2).

 Frame Type: HIP

 Code: 0XTBD

 Specification: Section 6.2 of this document

8.6. The OHIP HTTP/2 Frame Type

 This section registers the "OHIP" frame type in the "HTTP/2 Frame
 Type" registry ([RFC7540], Section 11.2).

 Frame Type: OHIP

 Code: 0XTBD

 Specification: Section 6.3.1 of this document

8.7. The IHIP HTTP/2 Frame Type

 This section registers the "IHIP" frame type in the "HTTP/2 Frame
 Type" registry ([RFC7540], Section 11.2).

 Frame Type: IHIP

 Code: 0XTBD

 Specification: Section 6.3.2 of this document

8.8. The MHIP HTTP/2 Frame Type

 This section registers the "MHIP" frame type in the "HTTP/2 Frame
 Type" registry ([RFC7540], Section 11.2).

 Frame Type: MHIP

 Code: 0XTBD

 Specification: Section 6.3.3 of this document

https://datatracker.ietf.org/doc/html/rfc7540#section-11.2
https://datatracker.ietf.org/doc/html/rfc7540#section-11.2
https://datatracker.ietf.org/doc/html/rfc7540#section-11.2
https://datatracker.ietf.org/doc/html/rfc7540#section-11.2

Pardue Expires April 21, 2019 [Page 22]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

9. References

9.1. Normative References

 [HELIUM] Schwartz, B., "Hybrid Encapsulation Layer for IP and UDP
 Messages (HELIUM)", draft-schwartz-httpbis-helium-00 (work
 in progress).

 [QUIC-HTTP]
 Bishop, M., Ed., "Hypertext Transfer Protocol (HTTP) over
 QUIC", draft-ietf-quic-http-13 (work in progress).

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",

RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [DOH] Hoffman, P. and P. McManus, "DNS Queries over HTTPS",
draft-ietf-doh-dns-over-https-10 (work in progress).

 [DPLPMTUD]
 Ruengeler, I., "Packetization Layer Path MTU Discovery for
 Datagram Transports", draft-ietf-tsvwg-datagram-plpmtud-01
 (work in progress).

https://datatracker.ietf.org/doc/html/draft-schwartz-httpbis-helium-00
https://datatracker.ietf.org/doc/html/draft-ietf-quic-http-13
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://datatracker.ietf.org/doc/html/rfc7230
https://www.rfc-editor.org/info/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://www.rfc-editor.org/info/rfc7231
https://datatracker.ietf.org/doc/html/rfc7540
https://www.rfc-editor.org/info/rfc7540
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/rfc2119
https://datatracker.ietf.org/doc/html/bcp14
https://datatracker.ietf.org/doc/html/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://datatracker.ietf.org/doc/html/draft-ietf-doh-dns-over-https-10
https://datatracker.ietf.org/doc/html/draft-ietf-tsvwg-datagram-plpmtud-01

Pardue Expires April 21, 2019 [Page 23]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 [H2-WEBSOCKETS]
 McManus, P., Ed., "Bootstrapping WebSockets with HTTP/2",

draft-ietf-httpbis-h2-websockets-02 (work in progress).

 [QUIC-TRANSPORT]
 Iyengar, J., Ed. and M. Thomson, Ed., "QUIC: A UDP-Based
 Multiplexed and Secure Transport", draft-ietf-quic-

transport-13 (work in progress).

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,
 DOI 10.17487/RFC1191, November 1990,
 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928,
 DOI 10.17487/RFC1928, March 1996,
 <https://www.rfc-editor.org/info/rfc1928>.

 [RFC2293] Kille, S., "Representing Tables and Subtrees in the X.500
 Directory", RFC 2293, DOI 10.17487/RFC2293, March 1998,
 <https://www.rfc-editor.org/info/rfc2293>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU
 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,
 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5766] Mahy, R., Matthews, P., and J. Rosenberg, "Traversal Using
 Relays around NAT (TURN): Relay Extensions to Session
 Traversal Utilities for NAT (STUN)", RFC 5766,
 DOI 10.17487/RFC5766, April 2010,
 <https://www.rfc-editor.org/info/rfc5766>.

 [RFC8201] McCann, J., Deering, S., Mogul, J., and R. Hinden, Ed.,
 "Path MTU Discovery for IP version 6", STD 87, RFC 8201,
 DOI 10.17487/RFC8201, July 2017,
 <https://www.rfc-editor.org/info/rfc8201>.

Appendix A. Acknowledgments

 The first draft of this document was written with support from BBC
 Research & Development while Lucas was employed there.

https://datatracker.ietf.org/doc/html/draft-ietf-httpbis-h2-websockets-02
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-13
https://datatracker.ietf.org/doc/html/rfc1191
https://www.rfc-editor.org/info/rfc1191
https://datatracker.ietf.org/doc/html/rfc1928
https://www.rfc-editor.org/info/rfc1928
https://datatracker.ietf.org/doc/html/rfc2293
https://www.rfc-editor.org/info/rfc2293
https://datatracker.ietf.org/doc/html/rfc4821
https://www.rfc-editor.org/info/rfc4821
https://datatracker.ietf.org/doc/html/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://datatracker.ietf.org/doc/html/rfc5766
https://www.rfc-editor.org/info/rfc5766
https://datatracker.ietf.org/doc/html/rfc8201
https://www.rfc-editor.org/info/rfc8201

Pardue Expires April 21, 2019 [Page 24]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 Many aspects of this document were inspired by the existing outputs
 of the HTTP Working Group and the wider IETF community. Some aspects
 were inspired by Mark Nottingham's previous work on HTTP/2 VPN.

 The author would like to thank Richard Bradbury, Katharine Daly,
 Piers O'Hanlon, and Ben Schwartz for design input and review of this
 document.

Appendix B. HiNT Request Options

 The following list presents options for a HiNT request in no
 particular order:

 1. Enhance the CONNECT method (i.e. request/response headers) that
 permits negotiation of the proxy-to-destination transport
 protocol.

 * Pros:

 + Already widely supported for HTTP proxying use case.

 + Bootstrapping WebSockets for HTTP/2 [H2-WEBSOCKETS] has
 made some headway here.

 * Cons:

 + Deployability may be unrealistic. New types of tunnelling
 behaviour may not meet expectations of extant endpoints.

 + CONNECT method extension may not be popular. Need to
 consider if this is suited for all HTTP or specific
 version.

 2. Define a new method (e.g. UDPASSOCIATE Section 5.1) that is
 restricted to use UDP for the proxy-to-destination transport
 protocol.

 * Pros:

 + Clear demarcation between the conventional TCP case.

 + Well suited for HTTP/QUIC use case.

 * Cons:

 + Limited applicability (because it is UDP-only?).

Pardue Expires April 21, 2019 [Page 25]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 3. Define a new method (e.g. IPASSOCIATE) that permits negotiation
 of the proxy-to-destination transport protocol.

 * Pros:

 + Clear demarcation between the conventional TCP case.

 + Well suited for HTTP/QUIC use case.

 * Cons:

 + Too complicated for most needs (?).

 4. Define a substrate that is already supported by HTTP proxying
 i.e. WebSocket.

 * Pros:

 + Capable of functioning irrespective of HTTP version.

 * Cons:

 + Multiple layers requires implementation complexity and adds
 data transfer overhead.

 5. Define HTTP/2 and HTTP/QUIC means of HiNT request, e.g. a new
 frame or setting that is used to reserve a stream (or streams)
 for special processing of HiNT messages.

 * Pros:

 + Avoids coining a new method.

 * Cons:

 + Excludes HTTP/1.1.

Appendix C. HiNT Message Transfer Options

 The following list presents options for framing of messages within a
 HiNT session in no particular order:

 1. Where CONNECT is used by an HTTP/1.1 client, each TCP/IP packet
 on the client-to-proxy hop maps directly to a packet (TCP/IP or
 UDP/IP) on the proxy-to-destination hop.

 * Pros:

Pardue Expires April 21, 2019 [Page 26]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 + "Simple" option that requires no new TCP framing
 definition.

 * Cons:

 + Breaks the layering model

 + In practice, the endpoints are not likely to be able to do
 this.

 2. Where CONNECT is used by an HTTP/2 or HTTP/QUIC client, each DATA
 frame on the client-to-proxy hop maps directly to a packet (TCP/
 IP or UDP/IP) on the proxy-to-destination hop.

 * Pros:

 + Simple option that requires no additional framing.

 + Client and proxy already handle DATA frames.

 * Cons:

 + DATA frames are delivered on streams, which are treated as
 an ordered byte stream. It may not be possible to treat
 them individually.

 3. Define framing format that uses a WebSocket substrate. For
 example, the HELIUM Inner Protocol [HELIUM].

 * Pros:

 + Would be supported in HTTP/1.1, HTTP/2 and HTTP/QUIC
 (subject to further work).

 * Cons:

 + Framing overhead which could be optimised away in HTTP/2
 and HTTP/QUIC.

 + Requires WebSocket support in endpoints.

 + Breaks the layering model(?).

 4. Define a new simple HTTP/2 and HTTP/QUIC extension frame for
 carriage of HiNT messages. (This would likely be subject to
 stream-level flow control). The frame payload would be
 encapsulated by the proxy. This approach is reliant on a fixed
 destination tunnel Section 3.3.

Pardue Expires April 21, 2019 [Page 27]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

 * Pros:

 + Clear separation between stream-based and message-based
 tunnels.

 + Similar to how endpoints already handle CONNECT today.

 * Cons:

 + New frame may change the semantic of HTTP/2 and HTTP/QUIC.
 Therefore, it may need to be negotiated by a new SETTINGS
 parameter.

 + Excludes HTTP/1.1

 + Dependence on fixed destination tunnel may not support all
 desired interaction modes.

 5. Define a new HTTP/2 and HTTP/QUIC extension frame(s) for carriage
 of HiNT messages. (This would likely be subject to stream-level
 flow control). This could express HELIUM Inner Protocol [HELIUM]
 messages directly and, by virtue, would support per-message
 destination.

 * Pros:

 + Clear separation between stream-based and message-based
 tunnels.

 + Reduced overhead compared for HTTP/2 and HTTP/QUIC compared
 to carriage over WebSocket substrate.

 * Cons:

 + New frame may change the semantic of HTTP/2 and HTTP/QUIC.
 Therefore, it may need to be negotiated by a new SETTINGS
 parameter.

 + Some divergence from HTTP/1.1.

 + Differs from blind forwarding which is implemented in
 CONNECT proxies today.

Appendix D. Changelog

 RFC Editor's Note: Please remove this section prior to
 publication of a final version of this document.

Pardue Expires April 21, 2019 [Page 28]

Internet-Draft HTTP-initiated Network Tunnelling (HiNT) October 2018

D.1. Since draft-pardue-httpbis-http-network-tunnelling-00

 o Author's address.

Author's Address

 Lucas Pardue

 Email: lucaspardue.24.7@gmail.com

Pardue Expires April 21, 2019 [Page 29]

https://datatracker.ietf.org/doc/html/draft-pardue-httpbis-http-network-tunnelling-00

