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Abstract

Mobile IPv6 as specified in RFC3775 relies on IPsec for securing the

signaling messages and user plane traffic between the mobile node and

home agent. An IPsec SA between the mobile node and the home agent

provides security for the mobility signaling. Use of IPsec for securing

the data traffic between the mobile node and home agent is optional.

This document analyses the implications of the design decision to

mandate IPsec as the default security protocol for Mobile IPv6 and

consequently Dual-stack Mobile IPv6 and recommends revisiting this

decision in view of the experience gained from implementation and

adoption in other standards bodies. 
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1. Introduction

Mobile IPv6 as specified in [RFC3775] requires an IPsec security

association between the mobile node (MN) and home agent (HA). The IPsec

SA protects the mobility signaling messages between the MN and HA. The

user data may be optionally protected by the IPsec SA but is not

required. The use of IPsec by most hosts today is primarily as a

solution for enterprise connectivity through VPN applications. IPsec

has not evolved into a generic security protocol. 

The use of IPsec and IKE (v1 and v2) with Mobile IPv6 are specified in

RFCs 3776 [RFC3776] and 4877 [RFC4877]. The Mobile IP and MIP6 working

groups in the IETF chose to mandate IPsec as the default security

protocol for Mobile IPv6 based on various criteria and lengthy

discussions that occured between the years 2000 and 2004.

Implementation experience with Mobile IPv6 and the security variants

with which it has been specified in some SDOs indicates a need to

revisit the design choice for MIP6 signaling security. The analysis and

recommendation to revisit the security protocol architecture for MIP6

should not be interpreted as a recommendation for Authentication

Protocol for Mobile IPv6 [RFC4285]. The objective is to highlight the

misfit of IPsec and IKEv2 as the security protocol for MIP6 and hence

the need for considering alternatives. A simpler security architecture

for securing the signaling and traffic between the MN and HA can co-

exist with the IPsec based solution as well. 

The objective of Mobile IPv6 [RFC3775] is to enable IP mobility for

IPv6 hosts. The security aspect of the protocol is a critical component

for consideration in terms of deployment and operation on large scales.

If complexity of implementation were a consideration then the current

specification dealing with Mobile IPv6, i.e RFC3775 [RFC3775] and

RFC5555 [RFC5555] would win high accolades. An implementer spends 20%

of his time on implementing the Mobile IPv6 protocol and 80% of the

time integrating it with IPsec and IKEv2. And even after that

interoperability of the client with home agents is not guaranteed. The

IPsec/IKEv2 security architecture may work in implementations wherein

the OS, the IPsec/IKEv2 stack and mobile ipv6 client software are all

implemented by a single entity. It just does not work on open systems. 
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2. Terminology and Abbreviations

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

document are to be interpreted as described in [RFC2119]. 

This document refers to [RFC3775][RFC4877] for terminology. 

3. Background

IP mobility support in IPv6 was considered to be an integral feature of

the IPv6 stack based on the experience gained from developing mobility

support for IPv4. The design of Mobile IPv6 was worked on by the Mobile

IP WG in the late 90s and by the MIP6 WG until its publication as 

[RFC3775] in 2004. 

IPsec [RFC4301] was also intended to be a default component of the IPv6

stack and was the preferred protocol choice for use by any other IPv6

protocol that needed security. Rather than design security into every

protocol feature, the intent was to reuse a well-defined security

protocol to meet the security needs. Hence Mobile IPv6 has been

designed with a security architecture that relies on reusing IPsec. 

The Mobile IPv6 specification [RFC3775] was published along with the

companion specification "Using IPsec to Protect Mobile IPv6 Signaling

Between Mobile Nodes and Home Agents", [RFC3776]. The establishment of

the IPsec SA between the MN and HA as per RFC 3776 is based on the use

of IKE. The use of IKE in the context of Mobile IPv6 for IPsec SA

establishment did not gain traction because of factors such as

complexity of IKE and the IETF transitioning to IKEv2. The MIP6 WG

completed the specification, Mobile IPv6 Operation with IKEv2 and the

Revised IPsec Architecture [RFC4877] in April 2007. This [RFC4877] is

considered as the default security protocol solution for MIP6 and

updates [RFC3776]. 

4. Problem statement

4.1. Problem Statement

Mobile IPv6 is encumbered by its reliance on IPsec [RFC4301] from an

implementation and deployment perspective. As a protocol solution for

host based mobility, MIP6 can be simpler without the IPsec baggage. The

issues with IPsec are even more exacerbated in the case of dual-stack

MIP6 [RFC5555]. 

IPsec SAs between the MN and HA are established either manually or via

the use of IKEv2 [RFC4306]. Manual SA configuration is not a scalable

solution and hence MIP6 hosts and Home agents rely on IKEv2 for

establishing dynamically IPsec SAs. As a result MIP6 depends on the

existence of IPsec and IKEv2 for successful operation. 

IPsec is unable to provide security protection for MIP6 in a

transparent way, and numerous interactions between the host's security

subsystems and the MIP6 application are needed in the course of the



regular operation of the MIP6 application. Besides requiring an

extensive communications channel between the security subsystems and

the MIP6 application, those interactions often also require

modification of the MNs security subsystems code. The situation today

is such that the communications channel between the IPsec subsystems

and the MIP6 application is non existent and this is generally true for

most of the commercially available platforms. Even if such a channel

were to be available, there does not exist a standardized protocol over

that channel which would enable the MIP6 application to communicate

with the security modules in a non- implementation specific way. 

Considering a third party application developer who would like to

provide a MIP6 application for a particular platform, the need for

numerous interactions with the IPsec subsystem and the unavailability

of the standardized communications channel through which such

interactions could take place is a major obstacle to the implementation

of the mobility protocol. Without such a communication channel being

available it is not possible to implement a MIP6 application as a third

party developer. 

Even if the platform would provide such a communication interface for

the MIP6 daemon, this is still insufficient as the MIP6 protocol

standardized today [RFC3775] requires numerous changes to the host's

IPsec and IKEv2 implementation. This document enumerates various

implementation issues related to the interactions between the MIP6

application and the host's security subsystems.

An argument can be made that the MIP6 application itself should provide

the required changes to the IPsec subsystems of the platform (maybe in

the form of patches). While this is possible at least for some open

source platforms to provide modifications to the host's IPsec

implementation as well as the key management application(s), this is

still an issue for several reasons: 

Target platform could be a commercial platform for which no

source code for the security modules (IPsec and IKEv2) is

available.

If the MIP6 application were to patch the IPsec subsystems, then

multiple MIP6 applications from different developers would

implement it in different ways, which would inevitably lead to

variations and problems with interoperability at a minimum, for

instance when the user tries to install several MIP6 applications

it is difficult to determine which one is the best suited for

his/ her needs.

Key management daemons are usually provided as third party

software for which no source code may be available, even if the

platform itself is available as open source.

Even if the MIP6 application developer would be willing to

provide patches for the key management daemon to make it work
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with his MIP6 application, how would the MIP6 application

developer know which of the several available key management

daemons the user is running?

Each application would be able to work only with a single key

management daemon, namely the one for which the MIP6 application

provides the patches. The user may be running another key

management daemon and may be unwilling to change its daemon to

the one that comes as part of the MIP6 application.

Patches for the IPsec part in the kernel and the key management

daemon would typically be valid only for the particular version

of the kernel and the key management daemon for which they were

written. This might prevent the user from upgrading the platform

or applying OS security patches that are provided as part of the

regular platform maintenance since this would in all probability

make the MIP6 application defunct.

Modifying the security subsystems by a third party is a security

issue and users are generally advised to refrain from allowing

the security subsystems to be modified in any way.

he developer may not have the knowledge or the time to modify the

platform's IKEv2 and IPsec subsystems, although it might be

perfectly capable to deliver the MIP6 application itself.

There could be copyright issues as well that would prevent

modifications of the platform's security subsystems or the

delivery of the modifications by the third party.

Even if the MIP6 application developer is able to come up with

the necessary patches for the security subsystem, it is not

realistic to expect the prospective user of MIPv6 to first patch

the kernel and the key management daemons before using the MIPv6

service.

The above discussion shows why it is unrealistic to expect that the

MIP6 application could provide the needed modifications to the IKEv2

and IPsec subsystems of the host. Section 6 presents a more technical

discussion of various implementation issues related to the interworking

between the MIP6 application and the IPsec/key management modules.

The problem in a nutshell for MIP6 is the dependence on IPsec and IKEv2

for successful operation. 

4.2. General issues with the use of IPsec for MIP6 security

This section captures several issues with the use of IPsec by MIP6. 

The design of Mobile IPv6 emphasized the reuse of IPv6 features

such as IPsec. IPsec for IPv4 was a bolt-on solution. With the
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increasing need for security, IPv6 designers chose to

incorporate IPsec as a default feature. There existed an

assumption in the MIP6 working group that every IPv6 host would

have IPsec capability as a standard feature. While this is true

in many host implementations today, the existence of IPsec in

every IPv6 stack is not a given. Hence a host which needs to

implement Mobile IPv6 must ensure that IPsec and IKEv2 are also

available. As a result of this dependence, MIP6 is no longer a

standalone host-based mobility protocol. A good example of a

host based mobility protocol that works as a self-sufficient

module is Mobile IPv4 [RFC3344]. The security associated with

MIP4 signaling is integrated into the protocol itself. MIP4 has

been successfully deployed on a large scale in several

networks. 

IPsec use in most hosts is generally for the purpose of VPN

connectivity to enterprises. It has not evolved into a generic

security protocol that can be used by Mobile IPv6 easily. While

[RFC4877] does specify the details which enable only the MIP6

signaling to be encapsulated with IPsec, the general method of

IPsec usage has been such that all traffic between a host and

the IPsec gateway is carried via the tunnel. Selective

application of IPsec to protocols is not the norm. Use of IPsec

with Mobile IPv6 requires configuration which in many cases is

not easily achievable because of reasons such as enterprise

environments preventing changes to IPsec policies. 

A MIP6 home agent is one end of the IPsec SA in a many-to-one

relationship. A MIP6 HA may support a very large number of

mobile nodes which could be in the hundreds of thousands to

millions. The ability to terminate a large number of IPsec SAs

(millions) requires signifiant hardware and platform

capability. The cost issues of such an HA are detrimental and

hence act as a barrier to deployment. 

The implementation complexity of Mobile IPv6 is greatly

increased because of the interaction with IKEv2. The complexity

of the protocol implementation is even more so in the case of

Dual stack MIP6 [RFC5555] wherein NAT traversal scenarios are

considered. 

IPsec and IKEv2 are not implemented or available by default in

every IPv6 or dual stack host. Mobile IPv6 support on such

devices is not an option. Many low-end cellular hosts have IP

stacks. The need for IPsec and IKEv2 in these devices is not

important whereas mobility support is needed in many cases. A

simpler security protocol than the use of IPsec/IKEv2 would

make MIP6 much more attractive to implement and deploy. 
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[RFC4877] which specifies the use of IKEv2 and IPsec with

Mobile IPv6 essentially results in a variant of IPsec which is

specific to Mobile IP. Hence this results in added complexity

to implementations. 

Mobile IPv6 needs to be capable of being deployed in situations

where alternative security mechanisms are already well-

understood by the network administration. It should be possible

to enable Mobile IPv6 to work in situations where alternative

security mechanisms already supply the necessary authentication

and privacy. 

IPsec has been successfully applied to VPN and other

infrastructure operations, but not for general end-to-end

applications. Thus, the granularity for selectors was

originally not at all sufficient for Mobile IPv6. 

The way that the IPsec code sits in the usual kernel, and the

access mechanisms for the SA database, are not very convenient

for use by straightforward implementations of Mobile IPv6.

Unusual calling sequences and parameter passing seems to be

required on many platforms. 

In certain environments the use of IPsec and IKEv2 for

establishing the SA is considered as an overhead. Bandwidth

constrained links such as cellular networks and air interfaces

which are in the licensed spectrum tend to be optimized for

user traffic. MIP6 signaling with the IPsec overhead and the

IKEv2 messages are viewed negatively. It is more acceptable to

have signaling without IPsec encapsulation. 

The issues listed above can be speculatively attributed as some of the

causes for MIP6 not being implemented widely. 

4.3. Security Association Management

Once the MN has contacted the HAC and mutual authentication has taken

place between the MN and the HAC inside the TLS protected tunnel, the

HAC provisions the MN with all security related information inside the

TLS protected tunnel. This security related information constitutes a

security association (SA) between the MN and the HA. The created SA

MUST NOT be tied to the Care-of Address (CoA) of the MN. 

The HAC may proactively distribute the SA information to HAs under its

management, or the HA may query the SA information from the HAC once

the MN contacts the HA. If the HA queries for the SA information from

the HAC, then the HA MUST be able to query/index the SA information

from the HAC based on the Security Parameter Index (SPI). 

In certain situations, the HA may want the MN to re-establish the SA

even if the existing SA is still valid. The HA can indicate this to the
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Mobility SPI:

MN-HA shared key for ciphering:

MN-HA shared key for integrity protection:

Security association validity time:

Security Association Scope:

MN using a dedicated Status Code in a BA (value set to

REINIT_SA_WITH_HAC). As a result, the MN would contact the HAC prior

the SA times out, and the HAC would provision the MN and HAs with a new

SA information. 

The SA contains at least the following information: 

This parameter is an SPI used by the MN and the HA to index the SA

between the MN and the HA. The HAC is responsible for assigning SPIs

to MNs. There is only one SPI for both binding management messaging

and possible user data protection. The same SPI is used for both

directions between the MN and the HA. The SPI values are assigned by

the HAC. The HAC MUST ensure uniqueness of the SPI values across all

MNs controlled by the HAC. 

This parameter is a key used for ciphering Mobile IPv6 traffic

between the MN and the HA. The HAC is responsible for generating

this key. The key generation algorithm is specific to the HAC

implementation. 

This parameter is a key used for integrity protecting Mobile IPv6

traffic between the MN and the HA. This includes both binding

management messages and reverse tunneled user data traffic between

the MN and the HA. The HAC is responsible for generating this key.

The key generation algorithm is specific to the HAC implementation.

In case of combined algorithms a separate integrity protection key

is not needed and may be omitted. 

This parameter represents the validity time for the security

association. The HAC is responsible for defining the lifetime value

based on its policies. The lifetime may be in the order of hours or

weeks. The MN MUST re-contact the HAC before the SA validity time

ends. 

This parameter defines whether the security association is applied

to Mobile IPv6 signaling messages only, or to both Mobile IPv6

signaling messages and data traffic. 



Selected ciphersuite:

Sequence number:

Home Agent IP Address:

Home Address:

Home Link Prefix:

This parameter is the ciphersuite used to protect the traffic

between the MN and the HA. This includes both binding management

messages and reverse tunneled user data traffic between the MN and

the HA. The selected algorithms SHOULD be one of the mutually

supported ciphersuites of the negotiated TLS version between the MN

and the HAC. The HAC is responsible for choosing the mutually

supported ciphersuite that complies with the policy of the HAC.

Obviously, the HAs under HAC's management must have at least one

ciphersuite with the HAC in common and need to be aware of the

implemented ciphersuites. 

This parameter represents a monotonically increasing unsigned

sequence number used in all protected packets exchanged between the

MN and the HA. The initial sequence number MUST always be set to 0

(zero). The sequence number may cycle to 0 (zero) when it increases

beyond its maximum defined value. 

4.4. Bootstrapping of Additional Mobile IPv6 Parameters

When the MN contacts the HAC to distribute of the security related

information, the HAC may also provision the MN with various Mobile IPv6

related bootstrapping information. Bootstrapping of the following

information SHOULD at least be possible: 

Concerns both IPv6 and IPv4 home agent addresses. 

Concerns both IPv6 and IPv4 Home Addresses. 

Concerns the IPv6 Home link prefix and the associated prefix length.

The Mobile IPv6 related bootstrapping information is delivered from the

HAC to the MN over the same TLS protected tunnel as the security

related information. 



4.5. Protecting Traffic Between Mobile Node and Home Agent

The same integrity and confidentiality algorithms MUST be used to

protect both binding management messages and reverse tunneled user data

traffic between the MN and the HA. Generally, all binding management

messages (BUs, BAs and so on) MUST be both integrity and SHOULD be

confidentially protected. The reverse tunneled user data traffic SHOULD

be equivalently protected. Generally, the rules stated in [RFC3775]

concerning the protection of the traffic between the MN and the HA

apply also in this specification. 

5. Mobile Node to Home Agent Controller Communication

5.1. Request-response Message Framing over TLS-tunnel

The MN and the HAC communicate with each other using a simple lock-step

request-response protocol that is run directly on top of the TLS-

tunnel. We define only one message container framing for the request

messages and for the response messages. The message containers are only

meant to be exchanged on top of connection oriented TLS-layer.

Therefore, the end of message exchange is determined by the other end

closing the transport connection (assuming the "application layer" has

also indicated the completion of the message exchange). The peer

initiating the TLS-connection is always sending "Requests" and the peer

accepting the TLS-connection is always sending "Responses". The format

of the message container is shown in Figure 1. 

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Ver |  Rsrvd  | Identifier    | Length                        |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| Content portion..                                             ~

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

All data inside the Content portion of the message container MUST be

encoded using octets. Fragmentation of message containers is not

supported, which means one request or response at the "application

layer" MUST NOT exceed the maximum size allowed by the message

container format. 

The three bit Ver field identifies the protocol version. The current

version is 0 i.e. all bits are set to value 0 (zero). 

The Rsrvd field MUST be set to value 0 (zero), 

The Identifier field is meant for matching requests and responses. The

valid Identifier values are between 1-255. The value 0 MUST NOT be

used. The first request for each communication session between the MN

and the HAC MUST have the Identifier values set to 1. 

The Length field tells the length of the Content portion of the

container (i.e. Reserved octet, Identifier octet and Length field are



excluded). The Content portion length MUST always be at least one octet

up to 65535 octets. The value is in network order. 

5.2. Request-response Message Content Encoding

The encoding of the message content is similar to HTTP header encoding,

and complies to the augmented Backus-Naur Form (BNF) defined in Section

2.1 of [RFC2616]. All presented hexadecimal numbers are in network byte

order. From now on, we use TypeValue header (TV-header) term to refer

request-response message content HTTP-like headers. 

5.3. Request-Response Message Exchange

The message exchange between the MN and the HAC is a simple lock-step

request-response type as stated in Section 5.1. A request message

includes monotonically increasing Identifier value that is copied to

the corresponding response message. Each request MUST have a different

Identifier value and due the assumption of a reliable connection

oriented transport below the message container framing. The number of

request-response message exchanges MUST NOT exceed 255. 

Each new communication session between the MN and the HAC MUST reset

the Identifier value to 1. The MN is also the peer that always sends

only request messages and the HAC only sends response messages. Once

the request-response message exchange completes, the HAC and the MN

MUST close the transport connection and the corresponding TLS-tunnel. 

In a case of a HAC side error, the HAC MUST send a response back to a

MN with an appropriate status code and then close the transport

connection. 

The first request message - MHAuth-Init - (i.e. the Identifier is 1)

MUST always contain at least the following parameters: 

MN-Identity - See Section 5.5.1.

Authentication Method - See Section 5.5.2.

The first response message - MHAuth-Init - (i.e. the Identifier is 1)

MUST contain at minimum the following parameters: 

Selected authentication Method - See Section 5.5.2.

The last request message from the MN side - MHAuth-Done - MUST contain

the following parameters: 

Security Association Scope - See Section 5.6.4.

Proposed ciphersuites - See Section 5.6.5.

Message Authenticator - See Section 5.5.5.
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The last response message - MHAuth-Done - that ends the request-

response message exchange MUST contain the following parameters: 

Status Code - See Section 5.5.4.

Message Authenticator - See Section 5.5.5.

And in a case of successful authentication the following additional

parameters: 

Selected ciphersuite - See Section 5.6.5.

Security Association Scope - See Section 5.6.4.

The rest of the security association data - See Section 5.6.

5.4. Home Agent Controller Discovery

All bootstrapping information, whether for setting up the SA or for

bootstrapping Mobile IPv6 specific information, is exchanged between

the MN and the HAC using the framing protocol defined in Section 5.1.

The IP address of the HAC MAY be statically configured to the MN or

dynamically discovered using for example DNS. In a case of DNS-based

HAC discovery, the MN either queries an A/AAAA or a SRV record for the

HAC IP address. The actual domain name used in queries is up to the

deployment to decide and out of scope of this specification. 

5.5. Generic Request-Response Parameters

5.5.1. Mobile Node Identifier

An identifier that identifies a MN. The Mobile Node Identifier is in

form of a Network Access Identifier (NAI) [RFC4282]. 

mn-id = "mn-id" ":" nai CRLF 

nai = username 

    | "@" realm 

    | username "@" realm 

... 

5.5.2. Authentication Method

The HAC is the peer that mandates the used authentication method. The

MN sends its proposal to the HAC but eventually the used authentication

method returned from the HAC defines the one to be used. The MN MUST

propose at least one authentication method and it SHOULD propose more

than one. The HAC MUST select exactly one authentication method, or

return an error and then close the connection. 
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auth-method = "auth-method" ":" a-method *("," a-method) CRLF 

a-method = 

     "psk" ; Pre-sharer key based authentication 

   | "eap" ; EAP-based authentication 

5.5.3. Extensible Authentication Protocol Payload

Each Extensible Authentication Protocol (EAP) [RFC3748] message is

encoded string of hexadecimal numbers. The "eap-payload" is completely

transparent what EAP-method or EAP message is carried inside it. The

"eap-payload" can appear in both request and response messages: 

eap-payload = "eap-payload" ":" 1*(HEX HEX) CRLF

5.5.4. Status Code

The "status-code" MUST only be present in the response message that

ends the request-response message exchange. The "status-code" follows

the principles of HTTP and the definitions found in Section 10 of RFC

2616 also apply for these status codes listed below: 

status-code = "status-code" ":" status-value CRLF 

status-value = 

     "100" ; Continue 

   | "200" ; OK 

   | "400" ; Bad Request 

   | "401" ; Unauthorized 

   | "500" ; Internal Server Error 

   | "501" ; Not Implemented 

   | "503" ; Service Unavailable 

   | "504" ; Gateway Time-out 

5.5.5. Message Authenticator

The "auth" header contains data used for authentication purposes. It

MUST be the last TV-header in the message and calculated over the whole

message till the start of the "msg-header": 

msg-auth = "auth" ":" 1*(HEX HEX) CRLF

5.5.6. Retry After

reply-after = "retry-after" ":" rfc1123-date CRLF

5.5.7. End of Message Content

end-of-message = 2CRLF

*

*

*

*

*

*



5.5.8. Random Values

Random number generated by the MN or the HAC. The length of the random

number MUST be 32 octets (before TV-header encoding): 

mn-rand = "mn-rand" ":" 32(HEX HEX) CRLF

hac-rand = "hac-rand" ":" 32(HEX HEX) CRLF

5.6. Security Association Configuration Parameters

During the Mobile IPv6 bootstrapping, the MN and the HAC negotiate a

single ciphersuite for protecting the traffic between the MN and the

HA. The allowed ciphersuites for this specification are a subset of

those in TLS v1.2 (see Annex A.5 of [RFC5246]) as per Section 5.6.5.

This might appear as a constraint as the HA and the HAC may have

implemented different ciphersuites. These two nodes are, however,

assumed to belong to the same administrative domain. In order to avoid

exchanging supported MN-HA ciphersuites in the MN-HAC protocol and to

reuse the TLS ciphersuite negotiation procedure we make this

simplifying assumption. The selected ciphersuite MUST provide integrity

and confidentially protection. 

Section 5.6.5 provides the mapping from the TLS ciphersuites to the

integrity and encryption algorithms allowed for MN-HA protection. This

mapping mainly ignores the authentication algorithm part that is not

required within the context of this specification. For example, 

[RFC3268] defines a number of AES based ciphersuites for TLS including

'TLS_RSA_WITH_AES_128_CBC_SHA'. For this specification the relevant

part is 'AES_128_CBC_SHA'. 

All the parameters described in the following sections apply only to a

request-response protocol response message to the MN. The MN has no way

affecting to the provisioning decision of the HAC. 

5.6.1. Security Parameter Index

The 28-bit unsigned SPI number identifies the SA used between the MN

and the HA. The value 0 (zero) is reserved and MUST NOT be used.

Therefore, values ranging from 1 to 268435455 are valid. 

The TV-header corresponding to the SPI number is: 

mip6-spi = "mip6-spi" ":" 1*DIGIT CRLF

5.6.2. MN-HA Shared Keys

The MN-HA shared integrity (ikey) and encryption (ekey) keys are used

to protect the traffic between the MN and the HA. The length of these

keys depend on the selected ciphersuite. 

The TV-headers that carry these two parameters are: 

mip6-mn-to-ha-ikey = "mip6-mn-to-ha-ikey" ":" 1*(HEX HEX) CRLF

*

*

*

*



mip6-ha-to-mn-ikey = "mip6-ha-to-mn-ikey" ":" 1*(HEX HEX) CRLF

mip6-mn-to-ha-ekey = "mip6-mn-to-ha-ekey" ":" 1*(HEX HEX) CRLF

mip6-ha-to-mn-ekey = "mip6-ha-to-mn-ekey" ":" 1*(HEX HEX) CRLF

5.6.3. Security Association Validity Time

The end of the SA validity time is encoded using the "rfc1123-date"

format, as defined in Section 3.3.1 of [RFC2616]. 

The TV-header corresponding to the SA validity time value is: 

mip6-sa-validity-end = "mip6-sa-validity-end" ":" rfc1123-date

CRLF

5.6.4. Security association scope (SAS)

The SA is applied either to Mobile IPv6 signaling messages only, or to

both Mobile IPv6 signaling messages and data traffic. This parameter

MUST be agreed between the MN and HA prior to using the SA. Otherwise

the receiving side would not be aware of whether the SA applies to data

traffic and could not decide how to act when receiving unprotected

packets of PType 1 (see Section 6.4). 

mip6-sas = "mip6-sas" ":" 1DIGIT CRLF

where a value of “0” indicates that the SA does not protect data

traffic and a value of “1” indicates that all data traffic MUST be

protected by the SA. If the mip6-sas value of an SA is set to 1, any

packet with PType = 0 MUST be silently discarded when received. 

The HAC is the peer that mandates the used security association scope.

The MN sends its proposal to the HAC but eventually the security

association scope returned from the HAC defines the used scope. 

5.6.5. CipherSuites and Ciphersuite-to-Algorithm Mapping

The ciphersuite negotiation between HAC and MN uses a subset of the TLS

1.2 ciphersuites and follows the TLS 1.2 numeric representation defined

in Annex A.5 of [RFC5246]. The TV-headers corresponding to the selected

ciphersuite and ciphersuite list are: 

mip6-ciphersuite = "mip6-ciphersuite" ":" csuite CRLF 

csuite = "{" suite "}" 

suite = 

     "00" "," "02" ; CipherSuite NULL_SHA           = {0x00,0x02}

   | "00" "," "3B" ; CipherSuite NULL_SHA256        = {0x00,0x3B}

   | "00" "," "0A" ; CipherSuite 3DES_EDE_CBC_SHA   = {0x00,0x0A}

*

*

*

*

*

*



   | "00" "," "2F" ; CipherSuite AES_128_CBC_SHA    = {0x00,0x2F}

   | "00" "," "3C" ; CipherSuite AES_128_CBC_SHA256 = {0x00,0x3C}

mip6-suitelist = "mip6-suitelist" ":" csuite *("," csuite) CRLF 

All other Ciphersuite values are reserved and subject to future

specifications. 

    HMAC-SHA1-96                    [RFC2404]   AES-XCBC-MAC-96                 [RFC3566]  

The following integrity algorithms MUST be supported by all

implementations: 

The binding management messages between the MN and HA MUST be integrity

protected. Implementations MUST NOT use a NULL integrity algorithm. 

    NULL                            [RFC2410]   TripleDES-CBC                   [RFC2451]   AES-CBC with 128-bit keys       [RFC3602]  

The following encryption algorithms MUST be supported: 

Traffic between MN and HA MAY be encrypted. Any integrity-only

CipherSuite makes use of the NULL encryption algorithm. 

+-------------------+-----------------+--------------------------+|Ciphersuite        |Integ. Algorithm |Encr. Algorithm           |

+-------------------+-----------------+--------------------------+|NULL_SHA           |HMAC-SHA1-96     |NULL                      ||NULL_SHA256        |AES-XCBC-MAC-96  |NULL                      ||3DES_EDE_CBC_SHA   |HMAC-SHA1-96     |TripleDES-CBC             ||AES_128_CBC_SHA    |HMAC-SHA1-96     |AES-CBC with 128-bit keys ||AES_128_CBC_SHA256 |AES-XCBC-MAC-96  |AES-CBC with 128-bit keys |

+-------------------+----------------+---------------------------+  

Note: In the present version, this document does not consider combined

algorithms. The following table provides the mapping of each

ciphersuite to a combination of integrity and encryption algorithms

that are part of the negotiated SA between MN and HA. 

5.7. Mobile IPv6 Bootstrapping Parameters

In parallel with the SA bootstrapping, the HAC SHOULD provision the MN

with relevant Mobile IPv6 related bootstrapping information. 

   ip6-addr   = 7( word ":" ) word CRLF

   word       = 1*4HEX

   ip6-prefix = ip6-addr "/" 1*2DIGIT

   ip4-addr   = 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT "." 1*3DIGIT

The following generic BNFs are used to form IP addresses and prefixes.

They are used in subsequent sections. 

*



5.7.1. Home Agent Address

The HAC MAY provision the MN with an IPv4 or an IPv6 address of a HA,

or both. 

mip6-haa-ip6 = "mip6-haa-ip6" ":" ip6-addr CRLF

mip6-haa-ip4 = "mip6-haa-ip4" ":" ip4-addr CRLF

5.7.2. Home Addresses and Home Network Prefix

The HAC MAY provision the MN with an IPv4 or an IPv6 home address, or

both. The HAC MAY also provision the MN with its home network prefix. 

mip6-ip6-hoa = "mip6-ip6-hoa" ":" ip6-addr CRLF

mip6-ip4-hoa = "mip6-ip4-hoa" ":" ip4-addr CRLF

mip6-hnp-ip6 = "mip6-ip6-hnp" ":" ip6-prefix CRLF

5.8. Authentication of the Mobile Node

This section describes the basic operation required for the MN-HAC

mutual authentication and the channel binding. The authentication

protocol described as part of this section is a simple exchange that

follows the GPSK exchange used by EAP-GPSK [RFC5433]. It is secured by

the TLS tunnel and is cryptographically bound to the TLS tunnel through

channel binding based on [RFC5056] and on the channel binding type

'tls-server-endpoint' described in [I-D.altman-tls-channel-bindings].

As a result of the channel binding type, this method can only be used

with TLS ciphersuites that use server certificates and the Certificate

handshake message. For example, TLS ciphersuites based on PSK or

anonymous authentication cannot be used. 

The authentication exchange MUST be performed through the encrypted TLS

tunnel. It performs mutual authentication between the MN and the HAC

based on a pre-shared key (PSK) or based on an EAP-method (see Section

5.9). The PSK protocol is described in this section. It consists of the

message exchanges (MHAuth-Init, MHAuth-Mid, MHAuth-Done) in which both

sides exchange nonces and their identities, and compute and exchange a

message authenticator 'auth' over the previously exchanged values,

keyed with the pre-shared key. The MHAuth-Done messages are used to

deal with error situations. Key binding with the TLS tunnel is ensured

by channel binding of the type "tls-server-endpoint" as described by 

[I-D.altman-tls-channel-bindings] where the hash of the TLS server

certificate serves as input to the 'auth' calculation of the MHAuth

messages. 

Note: The authentication exchange is based on the GPSK exchange used by

EAP-GPSK. In comparison to GPSK, it does not support exchanging an

encrypted container (it always runs through an already protected TLS

tunnel). Furthermore, the initial request of the authentication

*

*

*

*

*



1 )

2 )

3 )

4 )

exchange (MHAuth-Init) is sent by the MN (client side) and is

comparable to EAP-Response/Identity, which reverses the roles of

request and response messages compared to EAP-GPSK. Figure 6 shows a

successful protocol exchange. 

MN                                                      HAC

 |                                                       |

 | Request/MHAuth-Init (...)                             |

 |------------------------------------------------------>|

 |                                                       |

 |                            Response/MHAuth-Init (...) |

 |<------------------------------------------------------|

 |                                                       |

 | Request/MHAuth-Done (...)                             |

 |------------------------------------------------------>|

 |                                                       |

 |                            Response/MHAuth-Done (...) |

 |<------------------------------------------------------|

 |                                                       |

Request/MHAuth-Init: (MN -> HAC) 

mn-id, mn-rand, auth-method=psk

Response/MHAuth-Init: (MN <- HAC) 

[mn-rand, hac-rand, auth-method=psk, [status],] auth

Request/MHAuth-Done: (MN -> HAC) 

mn-rand, hac-rand, sa-scope, ciphersuite-list, auth

Response/MHAuth-Done: (MN <- HAC) 

[sa-scope, sa-data, ciphersuite, bootstrapping-data,] mn-rand,

hac-rand, status, auth

Where:

auth = HMAC-SHA256(PSK, msg-octets | CB-octets)

*

*

*

*

*



The length "mn-rand", "hac-rand" is 32 octets. Note that "|" indicates

concatenation and optional parameters are shown in square brackets

[..]. The square brackets can be nested. 

The shared secret PSK can be variable length. 'msg-octets' includes all

payload parameters of the respective message to be signed except the

'auth' payload. CB-octets is the channel binding input to the auth

calculation that is the "TLS-server-endpoint" channel binding type. The

content and algorithm (only required for the "TLS-server-endpoint"

type) are the same as described in [I-D.altman-tls-channel-bindings]. 

The MN starts by selecting a random number 'mn-rand' and choosing a

list of supported authentication methods coded in 'auth-method'. The MN

sends its identity 'mn-id', 'mn-rand' and 'auth-method' to the HAC in

MHAuth-Init. The decision of which authentication method to offer and

which to pick is policy- and implementation-dependent and, therefore,

outside the scope of this document. 

In MHAuth-Done, the HAC sends a random number 'hac-rand' and the

selected ciphersuite. The selection MUST be one of the MN-supported

ciphersuites as received in 'ciphersuite-list'. Furthermore, it repeats

the received parameters of the MHAuth-Init message 'mn-rand'. It

computes a message authenticator 'auth' over all the transmitted

parameters except 'auth' itself. The HAC calculates 'auth' over all

parameters and appends it to the message. 

The MN verifies the received MAC and the consistency of the identities,

nonces, and ciphersuite parameters transmitted in MHAuth-Auth. In case

of successful verification, the MN computes a MAC over the session

parameter and returns it to the HAC in MHAuth-Done. The HAC verifies

the received MAC and the consistency of the identities, nonces, and

ciphersuite parameters transmitted in MHAuth-Init. If the verification

is successful, MHAuth-Done is prepared and sent by the HAC to confirm

successful completion of the exchange. 

5.9. Extensible Authentication Protocol Methods

Basic operation required for the MN-HAC mutual authentication using

EAP-based methods. 



1 )

2 )

3 )

MN                                                      HAC

 |                                                       |

 | Request/MHAuth-Init (...)                             |

 |------------------------------------------------------>|

 |                                                       |

 |                            Response/MHAuth-Init (..., |

 |                     eap-payload=EAP-Request/Identity) |

 |<------------------------------------------------------|

 |                                                       |

 | Request/MHAuth-Mid (eap-payload=                      | 

 |              EAP-Response/Identity)                   |

 |------------------------------------------------------>|

 |                                                       |

 |     Response/MHAuth-Mid (eap-payload=EAP-Request/...) |

 |<------------------------------------------------------|

 |                                                       |

 :                                                       :

 :        ..EAP-method specific exchanges..              :

 :                                                       :

 |                                                       |

 | Request/MHAuth-Done (eap-payload=EAP-Response/...,    |

 |                      ..., auth)                       |

 |------------------------------------------------------>|

 |                                                       |

 |        Response/MHAuth-Done (eap-payload=EAP-Success, |

 |                              ..., auth)               |

 |<------------------------------------------------------|

 |                                                       |

Request/MHAuth-Init: (MN -> HAC) 

mn-id, mn-rand, auth-method=eap

Response/MHAuth-Init: (MN <- HAC) 

[auth-method=eap, eap, [status,]] auth

Request/MHAuth-Mid: (MN –> HAC) 

eap, auth

*

*

*



4 )

5 )

6 )

Response/MHAuth-Mid: (MN <- HAC) 

eap, auth

MHAuth-Mid exchange is repeated as many times as needed by the used

EAP-method. 

Request/MHAuth-Done: (MN -> HAC) 

sa-scope, ciphersuite-list, eap, auth

Response/MHAuth-Done: (MN <- HAC) 

[sa-scope, sa-data, ciphersuite, bootstrapping-data,] eap,

status, auth

Where:

auth = HMAC-SHA256(shared-key, msg-octets | CB-octets)

In MHAuth-Init and MHAuth-Mid messages, shared-key is set to "1". If

the EAP-method is key-deriving and creates a shared MSK key as a side

effect of Authentication shared-key MUST be the MSK in all MHAuth-Done

messages. This MSK MUST NOT be used for any other purpose. In case the

EAP method does not generate an MSK key, shared-key is set to "1". 

'msg-octets' includes all payload parameters of the respective message

to be signed except the 'auth' payload. CB-octets is the channel

binding input to the AUTH calculation that is the "TLS-server-endpoint"

channel binding type. The content and algorithm (only required for the

"TLS-server-endpoint" type) are the same as described in [I-D.altman-

tls-channel-bindings]. 

6. Mobile Node to Home Agent communication

6.1. General

The following sections describe the packet formats used for the traffic

between the MN and the HA. This traffic includes binding management

messages (for example, BU and BA messages), reverse tunneled and

encrypted user data, and reverse tunneled plain text user data. This

specification defines a generic packet format, where everything is

encapsulated inside UDP. See Section 6.3 and Section 6.4 for detailed

illustrations of the corresponding packet formats. 

*

*

*
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The Mobile IPv6 service port number (HALTSEC), where the HA expects to

receive UDP packets, is reserved by IANA. The same port number is used

for both binding management messages and user data packets. The reason

for multiplexing data and control messages over the same port number is

due to the possibility of Network Address and Port Translators located

along the path between the MN and the HA. The Mobile IPv6 service MAY

use any ephemeral port number as the UDP source port, and MUST use the

Mobile IPv6 service port number (HALTSEC) as the UDP destination port. 

The encapsulating UDP header is immediately followed by a 4-bit Packet

Type (PType) field that defines whether the packet contains an

encrypted mobility management message or a, an encrypted user data

packet, or a plain text user data packet. 

The Packet Type field is followed by a 28-bit SPI value, which

identifies the correct SA concerning the encrypted packet. For any

packet that is neither integrity protected nor encrypted (i.e. no SA is

applied by the originator) the SPI MUST be set to 0 (zero). ). Mobility

management messages MUST always be at least integrity protected. Hence,

mobility management messages MUST NOT be sent with a SPI value of 0

(zero). 

There is always only one SPI per MN-HA mobility session and the same

SPI is used for all types of protected packets independent of the

direction. 

The SPI value is followed by a 32-bit Sequence Number value that is

used to identify retransmissions of encrypted messages. Each endpoint

in the security association maintains two "current" Sequence Numbers:

the next one to be used for a packet it initiates and the next one it

expects to see in a packet from the other end. If the MN and the HA

ends initiate very different numbers of messages, the Sequence Numbers

in the two directions can be very different. In a case encryption is

not used, the Sequence Number MUST be set to 0 (zero). Note that the HA

SHOULD initiate a re-establishement of the SA before any of the

Sequence Number cycle. 

Finally, the Sequence Number field is followed by the data portion,

whose content is identified by the Packet Type. The data portion may be

protected. 

6.2. Security Parameter Index

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

| PType |                        SPI                            |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The SPI is a 32-bit field, where the first 4 bits indicate the Packet

Type (PType) of the UDP encapsulated packet. The SPI value itself

consists of the remaining 28-bit of the SPI field. The SPI field is

treated as one 32-bit field during the integrity protection

calculation. 



6.3. Binding Management Message Formats

The binding management messages that are only meant to be exchanged

between the MN and the HA MUST be integrity protected and MAY be

encrypted. They MUST use the packet format shown in Figure 9. All

packets that are specific to the Mobile IPv6 protocol and contain a

Mobility Header (as defined in Section 6.1.1. of RFC 3775) SHOULD use

the packet format shown in Figure 9. (This means that some Mobile IPv6

mobility management messages, such as the HoTI message, as treated as

data packets and using encapsulation described in Section 6.4). 

 0                   1                   2                   3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                                                               |:         IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya)        :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                                                               |:            UDP header (src-port=Xp,dst-port=Yp)               :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------|PType=8|                    SPI                                | ^Int.+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-|                      Sequence Number                          | |ered+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----|                    Payload Data* (variable)                   | |   ^:                                                               : |   ||                                                               | |Conf.+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-|               |     Padding (0-255 bytes)                     | |ered*+-+-+-+-+-+-+-+-+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |   ||                               |  Pad Length   | Next Header   | v   v+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------|         Integrity Check Value-ICV   (variable)                |:                                                               :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The PType value 8 (eight) identifies that the UDP encapsulated packet

contains a RFC 3775 defined Mobility Header and other relevant IPv6

extension headers. Note, there is no additional IP header inside the

encapsulated part. The Next Header field MUST be set to value of the

first encapsulated header. The encapsulated headers follow the natural

IPv6 and Mobile IPv6 extension header alignment and formatting rules. 

The Padding, Pad Length, Next Header and ICV fields follow the rules of

Section 2.4 to 2.8 of [RFC4303] unless otherwise stated in this

document. For a SPI value of 0 (zero) that indicates an unprotected

packet, the Padding, Pad Length, Next Header and ICV fields MUST NOT be

present. 

The source and destination IP addresses of the outer IP header (i.e.

the src-addr and the dst-addr in Figure 9) use the current care-of

address of the MN and the HA address. 

6.4. Reverse Tunneled User Data Packet Formats

 0                   1                   2                   3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                                                               |:         IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya)        :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|                                                               |:            UDP header (src-port=Xp,dst-port=Yp)               :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|PType=1|                    SPI                                | ^Int.+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-|                      Sequence Number                          | |ered+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ----|                    Payload Data* (variable)                   | |   ^:                                                               : |   ||                                                               | |Conf.+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Cov-|               |     Padding (0-255 bytes)                     | |ered*+-+-+-+-+-+-+-+-+               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |   ||                               |  Pad Length   | Next Header   | v   v+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ------|         Integrity Check Value-ICV   (variable)                |:                                                               :|                                                               |+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

There are two types of reverse tunneled user data packets between the

MN and the HA. Those that are integrity protected and encrypted and

those that are plaintext. The MN or the HA decide whether to apply

integrity protection and encryption to a packet or to send it in

plaintext based on the mip6-sas value in the SA. If the mip6-sas is set

to 1 the originator MUST NOT send any plaintext packet, and the

receiver MUST silently discard any packet with the PType set to 0

(unprotected). It is RECOMMENDED to apply confidentiality and integrity

protection of user data traffic. The reverse tunneled IPv4 or IPv6 user

data packets are encapsulated as-is inside the 'Payload Data' shown in 

Figure 10. and Figure 11. 

The PType value 1 (one) identifies that the UDP encapsulated packet

contains an encrypted tunneled IPv4/IPv6 user data packet. The Next

Header field header MUST be set to value corresponding the tunneled IP

packet (e.g., 41 for IPv6). 

The Padding, Pad Length, Next Header and ICV fields follow the rules of

Section 2.4 to 2.8 of [RFC4303] unless otherwise stated in this



document. For a SPI value of 0 (zero) that indicates an unprotected

packet, the Padding, Pad Length, Next Header and ICV fields MUST NOT be

present. 

The source and destination IP addresses of the outer IP header (i.e.,

the src-addr and the dst-addr in Figure 10) use the current care-of

address of the MN and the HA address. The ESP protected inner IP

header, which is not shown in Figure 10, uses the home address of the

MN and the correspondent node (CN) address. 

 0                   1                   2                   3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

:         IPv4 or IPv6 header (src-addr=Xa, dst-addr=Ya)        :

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

:            UDP header (src-port=Xp,dst-port=Yp)               :

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|PType=0|                        0                              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                0                              |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|                                                               |

:           Payload Data (plain IPv4 or IPv6 Packet)            :

|                                                               |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The PType value 0 (zero) identifies that the UDP encapsulated packet

contains a plaintext tunneled IPv4/IPv6 user data packet. Also the SPI

and the Sequence Number fields MUST be set to 0 (zero). 

The source and destination IP addresses of the outer IP header (i.e.,

the src-addr and the dst-addr in Figure 11) use the current care-of

address of the MN and the HA address. The plain text inner IP header

uses the home address of the MN and the CN address. 

7. Route Optimization

The treatment of MN-CN route optimization is outside the scope of this

document. 

8. IANA Considerations

8.1. New Registry: Packet Type



Packet Type                       | Value

----------------------------------+----------------------------------

non-encrypted IP packet           | 0

encrypted IP packet               | 1

mobility header                   | 8

IANA is requested to create a new registry for the Packet Type as

described in Section 6.1. 

Following the allocation policies from [RFC5226] new values for the

Packet Type AVP MUST be assigned based on the "RFC Required" policy. 

8.2. HTTP Headers

A number of HTTP headers with their respective parameters are reserved.

See Section 5.6 and Section 5.7 for a list of header names and their

parameters. 

8.3. Status Codes

    REINIT_SA_WITH_HAC       TBD1

A new Status Code (to be used in BA messages) is reserved for the cases

where the HA wants to indicate to the MN that it needs to re-establish

the SA information with the HAC. The Result Code is reserved from the

0-127 code space: 

8.4. Port Numbers

    HALTSEC                  TBD2

A new port number (HALTSEC) for UDP packets is reserved from the PORT

NUMBERS registry. 

9. Security Considerations

This document describes and uses a number of building blocks that

introduce security mechanisms and need to interwork in a secure manner.

The following building blocks are considered from a security point of

view: 

Discovery of the HAC 

Authentication and MN-HA SA establishment executed between the

MN and the HAC (PSK or EAP-based) through a TLS tunnel

Protection of MN-HA communication 

1. 

2. 

3. 



Authentication:

AAA Interworking 

9.1. Discovery of the HAC

No dynamic procedure for discovering the HAC by the MN is described in

this document. As such, no specific security considerations apply to

the scope of this document. 

9.2. Authentication and Key Exchange executed between the MN and the

HAC

This document describes a simple authentication and MN-HA SA

negotiation exchange over TLS. The TLS procedures remain unchanged;

however, channel binding is provided. 

Server-side certificate based authentication MUST be

performed using TLS 1.2 [RFC5246]. 

The client-side authentication may depend on the specific deployment

and is therefore not mandated. Note that TLS-PSK [RFC4279] cannot be

used in conjunction with the methods described in section 5.8 and

5.9 of this document due to the limitations of the channel binding

type used. 

Through the protected TLS tunnel, an additional authentication

exchange is performed that provides client-side or mutual

authentication and exchanges SA parameters and optional

configuration data to be used in the subsequent protection of MN-HA

communication. The additional authentication exchange can either be

PSK-based (section 5.8) or EAP-based (section 5.9). Both exchanges

are always performed within the protected TLS tunnel and MUST NOT be

used as standalone protocols. 

The simple PSK-based authentication exchange provides mutual

authentication and follows the GPSK exchange used by EAP-GPSK 

[RFC5433] and has similar properties, although some features of GPSK

like the exchange of a protected container are not supported. 

The EAP-based authentication exchange simply defines message

containers to allow carrying the EAP packets between the MN and the

HAC. In principle, any EAP method can be used. However, it is

strongly recommended to use only EAP methods that provide mutual

authentication and that derive keys including an MSK key in

compliance with [RFC3748]. 

Both exchanges use channel binding with the TLS tunnel. The channel

binding type ‘TLS-server-endpoint’ as per [I-D.altman-tls-channel-

bindings] MUST be used. 

4. 



Dictionary Attacks:

Replay Protection:

Key Derivation and Key Strength:

Key Control:

Lifetime:

Denial of Service Resistance:

Session Independence:

All messages of the authentication exchanges

specified in this document are protected by TLS. However, any

implementation SHOULD assume that the properties of the

authentication exchange are the same as for GPSK [RFC5433] in case

the PSK-based method as per section 5.8. is used, and are the same

as those of the underlying EAP method in case the EAP-based exchange

as per section 5.9 is used. 

The underlying TLS protection provides protection

against replays. 

For TLS, the TLS specific

considerations apply unchanged. For the authentication exchanges

defined in this document, no key derivation step is performed as the

MN-HA keys are generated by the HAC and are distributed to the MN

through the secure TLS connection. 

No joint key control for MN-HA keys is provided by this

version of the specification. 

The TLS-protected authentication exchange between the MN and

the HAC is only to bootstrap keys and other parameters for usage

with MN-HA security. The SAs that contain the keys have an

associated lifetime. The usage of Transport Layer Security (TLS)

Session Resumption without Server-Side State, described in 

[RFC5077], provides the ability for the MN to minimize the latency

of future exchanges towards the HA without having to keep state at

the HA itself. 

The level of resistance against denial

of service attacks SHOULD be considered the same as for common TLS

operation, as TLS is used unchanged. For the PSK-based

authentication exchange, no additional factors are known. For the

EAP-based authentication exchange, any considerations regarding

denial-of-service resistance specific to the chosen EAP method are

expected to be applicable and need to be be taken into account. 

Each individual TLS protocol run is independent

from any previous exchange based on the security properties of the

TLS handshake protocol. However, several PSK or EAP-based

authentication exchanges can be performed across the same TLS

connection. 



Fragmentation:

Channel Binding:

Fast Reconnect:

Identity Protection:

Protected Ciphersuite Negotiation:

Confidentiality:

Cryptographic Binding:

Perfect Forward Secrecy:

Key confirmation:

Authentication:

TLS runs on top of TCP and no fragmentation specific

considerations apply to the MN-HAC authentication exchanges. 

Both the PSK and the EAP-based exchanges use channel

binding with the TLS tunnel. The channel binding type ‘TLS-server-

endpoint’ as per [I-D.altman-tls-channel-bindings] MUST be used. 

This protocol provides session resumption as part of

TLS and optionally the support for [RFC5077]. No fast reconnect is

supported for the PSK-based authentication exchange. For the EAP-

based authentication exchange, availability of fast reconnect

depends on the EAP method used. 

Based on the security properties of the TLS

tunnel, passive user identity protection is provided. An attacker

acting as man-in-the-middle in the TLS connection would be able to

observe the MN identity value sent in MHAuth-Init messages. 

This protocol provides ciphersuite

negotiation based on TLS. 

Confidentiality protection of payloads exchanged

between the MN and the HAC are protected with the TLS Record Layer.

TLS ciphersuites with confidentiality and integrity protection MUST

be negotiated and used in order to exchange security sensitive

material inside the TLS connection. 

No cryptographic bindings are provided by this

protocol specified in this document. 

Perfect forward secrecy is provided with

appropriate TLS ciphersuites. 

Key confirmation of the keys established with TLS is

provided by the TLS Record Layer when the keys are used to protect

the subsequent TLS exchange. 

9.3. Protection of MN and HA Communication

Data origin authentication is provided for the

communication between the MN and the HA. The chosen level of



Dictionary Attacks:

Replay Protection:

Key Derivation and Key Strength:

Key Control:

Key Naming:

Lifetime:

Denial of Service Resistance:

Session Independence:

security of this authentication depends on the selected ciphersuite.

Entity authentication is offered by the MN to HAC protocol exchange.

The concept of dictionary attacks is not

applicable to the MN-HA communication as the keying material used

for this communication is randomly created by the HAC and its length

depends on the chosen cryptographic algorithms. 

Replay protection for the communication between the

MN and the HA is provided based on sequence numbers and follows the

design of IPsec ESP. 

The strength of the keying material

established for the communication between the MN and the HA is

selected based on the negotiated ciphersuite (based on the MN-HAC

exchange) and the key created by the HAC. The randomness

requirements for security described in RFC 4086 [RFC4086] are

applicable to the key generation by the HAC. 

The keying material established during the MN-HAC

protocol exchange for subsequent protection of the MN-HA

communication is created by the HA and therefore no joint key

control is provided for it. 

For the MN-HA communication the security associations are

indexed with the help of the SPI and additionally based on the

direction (in-bound communication or out-bound communication). 

The lifetime of the MN-HA security associations is based on

the value in the mip6-sa-validity-end HTTP header field exchanged

during the MN-HAC exchange. The HAC controls the SA lifetime. 

For the communication between the MN and

the HA there are no heavy cryptographic operations (such as public

key computations). As such, there are no DoS concerns. 

Sessions are independent from each other when

new keys are created by via the MN-HAC protocol. A new MN-HAC

protocol run produces fresh and unique keying material for

protection of the MN-HA communication. 



Fragmentation:

Channel Binding:

Fast Reconnect:

Identity Protection:

Protected Ciphersuite Negotiation:

Confidentiality:

Cryptographic Binding:

Perfect Forward Secrecy:

Key confirmation:

There is no additional fragmentation support provided

beyond what is offered by the network layer. 

Channel binding is not applicable to the MN-HA

communication. 

The concept of fast reconnect is not applicable to the

MN-HA communication. 

User identities SHOULD NOT be exchanged between

the MN and the HA. In a case binding management messages contain the

user identity, the messages SHOULD be confidentity protected. 

The MN-HAC protocol provides

protected ciphersuite negotiation through a secure TLS connection. 

Confidentiality protection of payloads exchanged

between the MN and the HAC (for Mobile IPv6 signaling and optionally

for the data traffic) is provided utilizing algorithms negotiated

during the MN-HAC exchange. 

No cryptographic bindings are provided by this

protocol specified in this document. 

Perfect forward secrecy is provided when the

MN bootstraps new keying material with the help of the MN-HAC

protocol (assuming that a proper TLS ciphersuite is used). 

Key confirmation of the MN-HA keying material

conveyed from the HAC to the MN is provided when the first packets

are exchanged between the MN and the HA (in both directions as two

different keys are used). 

9.4. AAA Interworking

The AAA backend infrastructure interworking is not defined in this

document and therefore out-of-scope. 
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